首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mature zygotic embryos of recalcitrant Christmas tree species Fraser fir [Abies fraseri (Pursh) Poir], and Nordmann fir (Abies nordmanniana L.k.), and Virginia pine (Pinus virginiana Mill.) were used as explants for Agrobacterium tumefaciens strain GV3850-mediated transformation using the gfp (green fluorescent protein) gene as a reporter. Factors including media used for inoculation and co-cultivation, concentrations of acetosyringone, and antibiotics in tissue culture media have been evaluated. A high transformation frequency was obtained on TE medium containing 50μM acetosyringone and using 500 mg/l timentin to eliminate bacteria. Transient gene expression was observed in all three Christmas tree species, but transgenic plants were only produced from Virginia pine. Stable integration and expression of transgenes in the plant genome of Virginia pine was confirmed by polymerase chain reaction (PCR), Southern and northern blot analyses. These results demonstrated that a stable transformation system has been established in Virginia pine and this system would provide an opportunity to transfer economically important genes into Christmas tree species.  相似文献   

2.
Immature embryos have been used frequently as target tissues in the genetical transformation of wheat. However, obtaining a large number of high quality immature embryos throughout the year is a laborious and delicate process, because of the need to cultivate the plants under controlled conditions. To circumvent this, we have employed mature embryos rather than immature ones as starter explants for Agrobacterium-mediated transformation of an elite wheat (Triticum aestivum L.) cultivar EM12. The neomycin phosphotransferase ІІ (npt ІІ) and β-glucuronidase (gus) genes were used as selectable and screenable marker genes, respectively, to assess and optimize the performance of T-DNA delivery. With the aid of an orthogonal design, the effect of four factors in combination on transfer DNA (T-DNA) delivery was studied. These factors were preculture duration, different kinds of inoculation, length of inoculation and co-culture condition. Optimal conditions for T-DNA delivery were obtained for mature embryos precultured for 14 days, followed by immersing in inoculation suspension with full strength Murashige and Skoog (MS) salts in darkness at 23–25°C for 3 h, and then co-culturing with Agrobacterium under desiccating condition in the dark at 23–24°C for 2–3 days. Complete analysis of transgene insertion demonstrated that the optimized method for Agrobacterium-mediated transformation of mature embryos of wheat was efficient and practicable.  相似文献   

3.
Highly efficient Agrobacterium-mediated transformation of trifoliate orange (Poncirus trifoliata (L.) Raf.) was achieved via indirect shoot organogenesis. Stable transformants were obtained from epicotyl segments infected with Agrobacterium strain EHA 105 harboring the binary vector pBI121, which contained the neomycin phosphotransferase gene (NPTII) as a selectable marker and the β-glucuronidase (GUS) gene as a reporter. The effects of regeneration and selection conditions on the transformation efficiency of P. trifoliata (L.) Raf. have been investigated. A 7-d cocultivation on a medium with 8.86 μM 6-benzylaminopurine (BA)+1.43 μM indole-3-acetic acid (IAA) was used to improve callus formation from epicotyl segments after transformation. A two-step selection strategy was developed to select kanamycin-resistant calluses and to improve rooting of transgenic shoots. Transgenic shoots were multiplied on shoot induction medium with 1.11 μM BA + 5.71 μM IAA. Using the optimized transformation procedure, transformation efficiency and rooting frequency reached 417% and 96%, respectively. Furthermore, the number of regenerated escape shoots was dramatically reduced. Stable integration of the transgenes into the genome of transgenic citrus plants was confirmed by GUS histochemical assay, PCR, and Southern blot analysis.  相似文献   

4.
An improved method for the Agrobacterium infiltration of epicotyl segments of ‘Pineapple’ sweet orange [Citrus sinensis (L.) Osbeck] and ‘Swingle’ citrumelo [Citrus paradisi Macf. X Poncirus trifoliata (L.) Raf.] was developed in order to increase transformation frequency. Sonication-assisted Agrobacterium-mediated transformation (SAAT), vacuum infiltration, and a combination of the two procedures were compared with conventional Agrobacterium-mediated inoculation method (‘dipping’ method). It was observed that the morphogenic potential of the epicotyl segments decreased as the duration of SAAT and vacuum treatments increased. Transient GUS expression was not affected by the different SAAT treatments, but it was significantly enhanced by the vacuum infiltration treatments. The highest transformation efficiencies were obtained when the explants were subjected to a combination of SAAT for 2 s followed by 10 min of vacuum infiltration. PCR and Southern blot analysis of the uidA gene were used to confirm the integration of the transgenes. The transformation frequencies achieved in this study (8.4% for ‘Pineapple’ sweet orange and 11.2% for ‘Swingle’ citrumelo) are the highest ones reported for both cultivars.  相似文献   

5.
The dwarf pomegranate (Punica granatum L. var. nana) is a dwarf ornamental plant that has the potential to be the model plant of perennial fruit trees because it bears fruits within 1 year of seedling. We established an Agrobacterium-mediated transformation system for the dwarf pomegranate. Adventitious shoots regenerated from leaf segments were inoculated with A. tumefaciens strain EHA105 harboring the binary vector pBin19-sgfp, which contains neomycin phosphotransferase (npt II) and green fluorescent protein (gfp) gene as a selectable and visual marker, respectively. After co-cultivation, the inoculated adventitious shoots were cut into small pieces to induce regeneration, and then selected on MS medium supplemented with 0.5 μM α-naphthaleneacetic acid (NAA), 5 μM N6-benzyladenine (BA), 0.3% gellan gum, 50 mg/l kanamycin, and 10 mg/l meropenem. Putative transformed shoots were regenerated after 6–8 months of selection. PCR and PCR-Southern blot analysis revealed the integration of the transgene into the plant genome. Transformants bloomed and bore fruits within 3 months of being potted, and the inheritance of the transgene was confirmed in T1 generations. The advantage of the transformation of dwarf pomegranate was shown to be the high transformation rate. The establishment of this transformation system is invaluable for investigating fruit-tree-specific phenomena.  相似文献   

6.
An improved protocol for efficient Agrobacterium-mediated transformation of grapevine (Vitis sp.) was developed through modification of cocultivation and subsequent washing procedures. It was determined that Agrobacterium-infected somatic embryos (SE) cocultivated on filter paper exhibited less browning and significantly higher transient GFP and GUS expression than those cultured on agar-solidified medium. Furthermore, such SE, when subjected to a prolonged washing period in liquid medium containing cefotaxime and carbenicillin, followed by another wash in similar medium with kanamycin added, exhibited significantly higher rates of stable transformation compared to previously-described procedures. Transgenic plant recovery was increased 3.5–6 Xs by careful excision of leafy cotyledons from SE that had been induced to germinate on MS medium containing 1 μM of BA. Southern blot analysis revealed the low copy number integration of transgenes in transgenic plants recovered using the improved protocol. These improved cocultivation and plant recovery procedures have been demonstrated to facilitate production of large populations of transgenic plants from V. vinifera ‘Merlot’, ‘Shiraz’ and ‘Thompson Seedless’ as well as Vitis hybrid ‘Seyval Blanc’.  相似文献   

7.
Establishment, maintenance, regeneration, and transformation of somatic embryos by both direct and indirect means (callus-mediated) was achieved for Bixa orellana, a tropical plant whose seeds produce commercially edible ‘annatto pigment,’ which mainly constitutes an apocarotenoid called bixin. Callus-mediated methodology was found to be efficient in producing a greater number of embryos in a short time. The maximum of 28 somatic embryos were produced in 16–18 weeks when immature zygotic embryonic stalks were inoculated onto Murashige and Skoog (MS) medium containing B5 vitamins supplemented with 0.44 μM benzyladenine (BA), 0.054 μM α-naphthaleneacetic acid (NAA), 2.89 μM gibberellic acid (GA3), 0.02 μM triiodobenzoic acid (TIBA), and 0.011 μM triacontanol (TRIA). Callus initiation from hypocotyl explants was obtained on MS medium supplemented with 1.07–2.14 μM NAA and 10.2 μM BA. In 3 months, somatic embryos were produced when callus was inoculated onto MS medium supplemented with 4.44 μM BA, 40 μM AgNO3, and 0.011 μM TRIA. Somatic embryos were efficiently regenerated on MS basal solid and liquid media supplemented with 0.44–4.4 μM BA, 0.54–2.69 μM NAA, 4.92 μM 2iP, 2.1 μM calcium d-pantothenate, 0.21 μM biotin, 227.7 μM cysteine HCl monohydrate, and 108.6 μM adenine sulfate. Agrobacterium tumefaciens GV 3101 harboring pCAMBIA 1305.2 binary vector-mediated stable transformation of somatic embryos exhibited a transformation frequency of 2.56%. As somatic embryogenesis in any perennial system is useful in terms of both commercial and scientific nature, this somatic embryo-based transformation protocol for the commercially important dye-yielding tropical plant B. orellana is useful for its improvement through genetic engineering.  相似文献   

8.
A protocol for Agrobacterium tumefaciens-mediated genetic transformation of Rhipsalidopsis cv. CB5 was developed. Calluses derived from phylloclade explants and sub-cultured onto fresh callus induction medium over a period of 9–12 months were co-cultivated with A. tumefaciens LBA4404. Plasmid constructs carrying the nptII gene, as a selectable marker, and the reporter uidA gene were used. Transformed Rhipsalidopsis calluses with a vigorous growth phenotype were obtained by extended culture on media containing 600 mg l−1 kanamycin. After 9 months of a stringent selection pressure, the removal of kanamycin from the final medium together with the culture of the transformed calluses under nutritional stress led to the formation of several transgenic adventitious shoots. Transformation was confirmed by GUS staining (for uidA gene), ELISA analysis and Southern blot hybridization (for the nptII gene). With this approach, a transformation efficiency of 22.7% was achieved. Overall results described in this study demonstrate that Agrobacterium-mediated transformation is a promising approach for this cactus species.  相似文献   

9.
A shoot multiplication system derived from internode explants was investigated with the aim of improving genetic characteristics of watercress (Nasturtium officinale R. Br.). Internodes of ca. 1 cm excised from in vitro stock shoot culture were placed on half-strength Murashige and Skoog (MS) medium supplemented with 3 μM 2,4-dichlorophenoxyacetic acid as a pre-treatment. Laser scanning microscopy indicated clearly that the first sign of meristematic cell division could be seen after 1–2 days of pre-culture, and meristematic tissues multiplied along the vascular cambium of the internode segment during 7 days of culture. Multiple shoots could be obtained from more than 90% of the pre-treated explants when they were subsequently transferred to MS medium supplemented with 1 μM thidiazuron for 3 weeks. These findings indicate that pre-treatment of the internodes for 7 days promoted their capacity for organogenesis. Using this pre-treatment, frequent generation of transgenic watercress plants was achieved by adapting particle bombardment and Agrobacterium-mediated transformation techniques with a construct expressing a synthetic green florescent protein gene.  相似文献   

10.
Transgenic plants of hyacinth (Hyacinthus orientalis L.) cvs. Edisson and Chine Pink have been obtained by Agrobacterium-mediated transformation. Leaf explants of the both hyacinth cultivars regenerated shoots on MS medium containing 2.2 μM BAP and 0.3 μM NAA at a frequency of 95%. A. tumefaciens strain CBE21 carrying binary vector pBIThau35 was used for transformation. Plasmid pBIThau35 has been produced by cloning preprothaumatin II cDNA into pBI121 instead of uidA gene. Inoculated leaf explants formed calli and shoots at high frequency on selective medium with 100 mg l−1 kanamycin. Four hyacinth transgenic lines of cv. Chine Pink and one line of cv. Edisson have been selected on medium containing 200 mg l−1 kanamycin. The insertion of thaumatin II gene into hyacinth genome has been confirmed by PCR-analysis. All transgenic plants expressed substantial amounts of thaumatin II (between 0.06 and 0.28% of the total soluble protein). Hyacinth transgenic lines were assayed for resistance to the pathogenic fungi Fusarium culmorum and Botrytis cinerea. There were no significant differences between nontransformed control and transgenic leaves of both cultivars. At the same time the bulbs of the transgenic line Н7401 cv. Chine Pink showed the higher level of resistance to B. cinerea, the bulbs of the transgenic line Н7404 were more resistant to F. culmorum. In both cases the signs of the fungal disease were developed more slowly. The resistance of the bulbs cv. Edisson line to these fungi was not changed. All transgenic hyacinth plant were successfully transferred to soil for further evaluation.  相似文献   

11.
Efficient Agrobacterium-mediated genetic transformation of Scoparia dulcis L. was developed using Agrobacterium tumefaciens strain LBA4404 harboring the binary vector pCAMBIA1301 with β-glucuronidase (GUS) (uidA) and hygromycin phosphotransferase (hpt) genes. Two-day precultured leaf segments of in vitro shoot culture were found to be suitable for cocultivation with the Agrobacterium strain, and acetosyringone was able to promote the transformation process. After selection on shoot organogenesis medium with appropriate concentrations of hygromycin and carbenicillin, adventitious shoots were developed on elongation medium by twice subculturing under the same selection scheme. The elongated hygromycin-resistant shoots were subsequently rooted on the MS medium supplemented with 1 mg l−1 indole-3-butyric acid and 15 mg l−1 hygromycin. Successful transformation was confirmed by PCR analysis using uidA- and hpt-specific primers and monitored by histochemical assay for β-GUS activity during shoot organogenesis. Integration of hpt gene into the genome of transgenic plants was also verified by Southern blot analysis. High transformation efficiency at a rate of 54.6% with an average of 3.9 ± 0.39 transgenic plantlets per explant was achieved in the present transformation system. It took only 2–3 months from seed germination to positive transformants transplanted to soil. Therefore, an efficient and fast genetic transformation system was developed for S. dulcis using an Agrobacterium-mediated approach and plant regeneration via shoot organogenesis, which provides a useful platform for future genetic engineering studies in this medicinally important plant.  相似文献   

12.
Transgenic Podophyllum peltatum plants were successfully produced by Agrobacterium tumefaciens-mediated transformation. Embryogenic callus was co-cultivated with Agrobacterium tumefaciens harboring a binary vector pBI 121 carrying β-glucuronidase (GUS) and neomycinphosphotransferase (NPT II) gene. GUS-histochemical analysis revealed that, 50 μM acetosyringone treatments during Agrobacterium infection and 3 d co-cultivation with Agrobacterium showed enhanced transformation efficiency. Percentage of GUS positive callus increased rapidly as the subculture time proceeded on selection medium containing 100 mg dm−3 kanamycin. Kanamycin resistant somatic embryos were formed from embryogenic callus after cultivation with 11.35 μM abscisic acid (ABA) for 3 weeks and then on hormone-free selection medium. Somatic embryos were germinated and converted into plantlets on medium containing 2.89 μM gibberellic acid (GA3). The integration of GUS and NPT II gene into transgenic plants was confirmed by polymerase chain reaction and Southern analysis.  相似文献   

13.
A protocol was developed for Agrobacterium-mediated transformation of embryogenic suspension cultures of cassava. The bacterial strain ABI containing the binary vector pMON977 with the nptII gene as selectable marker and an intron-interrupted uidA gene (encoding β-glucuronidase) as visible marker was used for the experiments. Selection of transformed tissue with paromomycin resulted in the establishment of antibiotic-resistant, β-glucuronidase-expressing lines of friable embryogenic callus, from which embryos and subsequently plants were regenerated. Southern blot analysis demonstrated stable integration of the uidA gene into the cassava genome in five lines of transformed embryogenic suspension cultures and in two plant lines.  相似文献   

14.
A protocol was developed for regeneration and Agrobacterium-mediated genetic transformation of Lesquerella fendleri. Calli were first induced from hypocotyls and cotyledons on MS plus 0.5 mg l−1 BA, 1 mg l−1 NAA and 1 mg l−1 2,4-D, then co-cultivated for 2–3 days in darkness on MS supplemented with 0.5 mg l−1 BA, 0.2 mg l−1 NAA and 100 μmol l−1As together with Agrobacterium tumefaciens strain EHA105/pCAMBIA1301 that harbored genes for uidA (GUS) and hygromycin resistance. Following co-cultivation, calli transfected by A. tumefaciens were transferred to MS with 0.5 mg l−1 BA, 0.2 mg l−1NAA, 500 mg l−1 Cef and 10 mg l−1 hygromycin and cultured for 10 days, then the hygromycin was increased to 20 mg l−1 on the same medium. After 4 weeks the resistant regenerants were transferred to MS with 0.5 mg l−1BA, 0.2 mg l−1 NAA, 500 mg l−1 Cef and 25 mg l−1 hygromycin for further selections. Transgenic plants were confirmed by polymerase chain reaction analysis, GUS histochemical assay and genomic Southern blot hybridization. With this approach, the average regeneration frequency from transfected calli was 22.70%, and the number of regenerated shoots per callus was 6–13. Overall results described in this study demonstrate that Agrobacterium-mediated transformation is a promising approach for improvement of this Lesquerella species.  相似文献   

15.
We have developed a system to produce transgenic plants in tea (Camelia sinensis [L.] O. Kuntze) viaAgrobacterium tumefaciens-mediated transformation of embryogenic calli. Cotyledon-derived embryogenic callus cultures were cocultivated with anA. tumefaciens strain (AGL 1) harboring a binary vector carrying the hygromycin phosphotransferase (hpt II), glucuronidase (uid A), and green fluorescent protein (GFP) genes in the tDNA region. Following cocultivation, embryogenic calli were cultured in medium containing 500 mg/L carbenicillin for 1 wk and cultured on an antibiotic selection medium containing 75 mg/L hygromycin for 8–10 wk. Hygromycin-resistant somatic embryos were selected. The highest production efficiency of hygromycin-resistant calli occurred with cocultivation for 6–7 d in the presence of 400 μM acetosyringone (AS). Hygromycin-resistant somatic embryos developed into complete plantlets in regeneration medium containing half-strength Murashige and Skoog (MS) salts with 1 mg/L benzyl amino purine (BAP) and 9 mg/L giberellic acid (GA3). Transformants were subjected to GFP expression analysis, β-glucuronidase (GUS) histochemical assay, PCR analysis, and Southern hybridization to confirm gene integration.  相似文献   

16.
Meadow fescue (Festuca pratensis Huds.) is an important cool-season forage grass in Europe and Asia. We developed a protocol for producing meadow fescue transgenic plants mediated by Agrobacterium tumefaciens transformation. Embryogenic calli derived from mature embryos were transformed with A. tumefaciens strain AGL1 carrying the binary vector pDM805, coding for the phosphinothricin acetyltransferase (bar) and β-glucuronidase (uidA) genes. Bialaphos was used as the selective agent throughout all phases of tissue culture. In total, 40 independent transgenic plants were recovered from 45 bialaphos-resistant callus lines and an average transformation efficiency of 2% was achieved. The time frame from infection of embryogenic calli with Agrobacterium to transferring the transgenic plants to the greenhouse was 18 weeks. In a study of 11 BASTA-resistant transgenic lines, the uidA gene was expressed in 82% of the transgenic lines. Southern blot analysis revealed that 82% of the tested lines integrated one or two copies of the uidA gene. C. Gao and J. Liu contributed equally to the work.  相似文献   

17.
A protocol for Agrobacterium-mediated transformation was developed for in vitro leaf explants of an elite, mature Prunus serotina tree. Agrobacterium tumefaciens strain EHA105 harboring an RNAi plasmid with the black cherry AGAMOUS (AG) gene was used. Bacteria were induced for 12 h with 200 μM acetosyringone for vir gene induction before leaf explant inoculation. Explants were co-cultured for 3 days, and then cultured on woody plant medium supplemented with 9.08 μM thidiazuron, 1.07 μM napthaleneacetic acid, 60 μM silver thiosulphate, 3% sucrose, plus 200 mg l−1 timentin in darkness for 3 weeks. Regenerating shoots were selected 27 days after initial co-culture, on Murashige and Skoog medium with 3% sucrose, 8.88 μM 6-benzylaminopurine, 0.49 μM indole-3-butyric acid, 0.29 μM gibberellic acid, 200 mg l−1 timentin, and 30 mg l−1 kanamycin for five subcultures. After 5–6 months of selection, transformation efficiencies were determined, based on polymerase chain reaction (PCR) analysis of individual putative transformed shoots relative to the initial number of leaf explants tested. The transformation efficiency was 1.2%. Southern blot analysis of three out of four PCR-positive shoots confirmed the presence of the neomycin phosphotransferase and AG genes. Transgenic shoots were rooted (37.5%), but some shoot tips and leaves deteriorated or died, making acclimatization of rooted transgenic plants difficult. This transformation, regeneration, and rooting protocol for developing transgenic black cherry will continue to be evaluated in future experiments, in order to optimize the system for several mature black cherry genotypes.  相似文献   

18.
The effect of cobalt chloride, salicylic acid, and silver nitrate for embryogenesis was studied in in vitro cultures of Coffea canephora. Murashige and Skoog (in Physiol. Plant. 15:473–497, 1962) medium containing 20 and 40 μM either of cobalt chloride, silver nitrate, or salicylic acid supplemented with 1.1 μM N 6 benzyladenine and 2.85 μM indole-3-acetic acid was used for the study. At 20 and 40 μM silver nitrate treatment, 35–48% explants responded for embryogenesis, and 38 ± 7 and 153 ± 27 embryos were produced from each callus mass, respectively, whereas only 5% control explants responded on medium devoid of silver nitrate, cobalt chloride, or salicylic acid. Secondary embryogenesis was observed in 70–90% of the explants, and around 100–150 embryos were produced from each explant cultured on a medium containing silver nitrate, and only a 3% response was noticed in control embryo explants. Yellow friable embryogenic calluses were obtained from the cut edges of most of the tissues grown in a medium supplemented with cobalt chloride. The results clearly demonstrated that, among the tested ethylene inhibitors, silver nitrate is very effective in reprogramming the cellular machinery toward embryogenesis.  相似文献   

19.
Somatic embryogenesis from cultures of shoot apices, cotyledon and young leaves of in vitro shoots of Agave vera-cruz Mill. was studied. Embryogenic callus was obtained when explants were cultured on Murashige and Skoog’s (MS) medium (1962) supplemented with L2 vitamins, 4.52 μM 2,4-dichlorophenoxyacetic acid (2,4-d) or 5.37 μM ∝-naphthalene acetic acid (NAA). Somatic embryos differentiated from this embryogenic callus upon subculture to maturation/conversion medium containing cytokinin either alone or with auxin and l-glutamine. The best combination of growth regulators for development of somatic embryos was found to be 5.37 μM naphthalene acetic acid plus 0.91 μM zeatin and 40 g/l sucrose. The conversion frequency of somatic embryos to plantlets varied from 46–50%. Rooted plantlets were transferred directly to pots containing a soil, sand, and manure mixture without any hardening phase with 96–98% survival of the plantlets. Based on the histological observations, the potential origin of the somatic embryo is discussed.  相似文献   

20.
Efficient shoot regeneration and Agrobacterium-mediated genetic transformation systems were developed for Bacopa monnieri L. (Scrophulariaceae), a plant well known for its medicinal properties. Leaf explants were cultured on Murashige and Skoog (MS) medium with different concentrations of 6-benzylaminopurine (BAP), and in combination with either indole-3-acetic acid (IAA) or napthalene-3-acetic acid. A combination of BAP (17.80 μM) and IAA (2.28 μM) maximized shoot initiation (85.2 ± 2.43) with greatest shoot length (2.8 ± 0.22), and was obtained directly from leaf explants without an intervening callus phase. Leaf segments from in vitro grown plants were co-cultivated with Agrobacterium tumefaciens LBA4404 harboring pCAMBIA1301 with ?-glucuronidase (uidA) and hygromycin phosphotransferase (hpt) genes. The co-cultivated explants were transferred to selective shoot induction and elongation medium. The elongated hygromycin-resistant shoots were subsequently rooted on MS medium supplemented with 4.9 μM indole-3-butyric acid and 25 mg/l hygromycin (SSRM). Successful transformation was confirmed by monitoring histochemical GUS activity during shoot elongation and PCR analyses using uidA- and hpt-specific primers. Integration of hpt into the genome of transgenic plants was also verified by Southern blot analysis. The highest transformation efficiency achieved was 70.6%, with an average of 10.4 ± 0.15 transgenic plantlets per explant using the present transformation system. Therefore, these highly efficient and rapid regeneration and transformation systems create significant potential for engineering of B. monnieri with a view to detailed biomolecular analyses or for further enhancement of its medicinal properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号