首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ubiquitin-proteasome system (UPS) is responsible for turnover of most cellular proteins in eukaryotes. Protein degradation by the UPS serves quality control and regulatory functions. Proteasome inhibition showed great promise in effectively treating cancer and restenosis. UPS dysfunction in cardiac hypertrophy and failure has recently been suspected but remains to be investigated. A system capable of monitoring dynamic changes in proteolytic function of the UPS in cardiac myocytes in situ would no doubt benefit significantly efforts to decipher the pathogenic significance of UPS dysfunction in the heart and to evaluate the effect of proteasome inhibition on cardiac myocytes. We successfully established such a system in cultured cardiac myocytes by delivering and expressing a modified green fluorescence protein (GFPu) gene using recombinant adenoviruses. GFPu contains a ubiquitination signal sequence fused to the COOH terminus. Fluorescence microscopy and Western blots revealed that protein abundance of modified green fluorescent protein (GFPu), but not wild-type green fluorescent protein, in cultured cardiac myocytes was incrementally increased when function of the proteasomes was inhibited in various degrees by specific inhibitors. The increase in GFPu protein levels and fluorescence intensity is paralleled by a decrease in the in vitro peptidase activity of the proteasomes. Our results demonstrate that GFPu can be used as a surrogate marker to monitor dynamic changes in proteolytic function of the UPS in cardiac myocytes in situ. Application of this novel system reveals that moderate levels of H2O2, a reactive oxygen species generator, impair proteolytic function of the UPS in cultured cardiac myocytes.  相似文献   

2.
The ubiquitin proteasome system (UPS) is impaired in Huntington's disease, a devastating neurodegenerative disorder. Sulforaphane, a naturally occurring compound, has been shown to stimulate UPS activity in cell cultures. To test whether sulforaphane enhances UPS function in vivo, we treated UPS function reporter mice ubiquitously expressing the green fluorescence protein (GFP) fused to a constitutive degradation signal that promotes its rapid degradation in the conditions of a healthy UPS. The modified GFP is termed GFP UPS reporter (GFPu). We found that both GFPu and ubiquitinated protein levels were significantly reduced and the three peptidase activities of the proteasome were increased in the brain and peripheral tissues of the mice. Interestingly, sulforaphane treatment also enhanced autophagy activity in the brain and the liver. To further examine whether sulforaphane promotes mutant huntingtin (mHtt) degradation, we treated Huntington's disease cells with sulforaphane and found that sulforaphane not only enhanced mHtt degradation but also reduced mHtt cytotoxicity. Sulforaphane‐mediated mHtt degradation was mainly through the UPS pathway as the presence of a proteasome inhibitor abolished this effect. Taken together, these data indicate that sulforaphane activates protein degradation machineries in both the brain and peripheral tissues and may be a therapeutic reagent for Huntington's disease and other intractable disorders.

  相似文献   


3.
BACKGROUND: The ubiquitin proteasome system (UPS) mediates regulated protein degradation and provides a mechanism for closely controlling protein abundance in spatially restricted domains within cells. We hypothesized that the UPS may acutely determine the local concentration of key regulatory proteins at neuronal synapses as a means for locally modulating synaptic efficacy and the strength of neurotransmission communication. RESULTS: We investigated this hypothesis at the Drosophila neuromuscular synapse by using an array of genetic and pharmacological tools. This study demonstrates that UPS components are present in presynaptic boutons and that the UPS functions locally in the presynaptic compartment to rapidly eliminate a conditional transgenic reporter of proteasome activity. We assayed a panel of synaptic proteins to determine whether the UPS acutely regulates the local abundance of native synaptic targets. Both acute pharmacological inhibition of the proteasome (<1 hr) and targeted genetic perturbation of proteasome function in the presynaptic neuron cause the specific accumulation of the essential synaptic vesicle-priming protein DUNC-13. Most importantly, acute pharmacological inhibition of the proteasome (<1 hr) causes a rapid strengthening of neurotransmission (an approximately 50% increase in evoked amplitude) because of increased presynaptic efficacy. The proteasome-dependent regulation of presynaptic protein abundance, both of the exogenous reporter and native DUNC-13, and the modulation of presynaptic neurotransmitter release occur on an intermediate, rapid (tens of minutes) timescale. CONCLUSIONS: Taken together, these studies demonstrate that the UPS functions locally within synaptic boutons to acutely control levels of presynaptic protein and that the rate of UPS-dependent protein degradation is a primary determinant of neurotransmission strength.  相似文献   

4.
5.
In experimental membranous nephropathy, complement C5b-9 induces sublethal glomerular epithelial cell (GEC) injury and proteinuria. C5b-9 also activates mechanisms that restrict injury or facilitate recovery. The ubiquitin-proteasome system (UPS) selectively degrades damaged or abnormal proteins, while misfolded proteins in the endoplasmic reticulum (ER) undergo ER-associated degradation (ERAD). In this study, we investigated the effect of complement on the UPS and ERAD. We monitored UPS function by transfection of rat GECs with a UPS reporter, GFP(u) (CL1 degron fused with green fluorescent protein). By analogy, CD3δ-yellow fluorescent protein (YFP) was employed as a reporter of ERAD. We demonstrated decreased GFP(u) levels in GECs after incubation with antibody and complement, compared with control. Using C8-deficient serum with or without purified C8, cycloheximide (an inhibitor of protein synthesis), and the proteasome inhibitor, MG132, we confirmed that the decrease of GFP(u) was mediated by C5b-9, and subsequent proteasomal degradation of the reporter. Inhibition of the c-Jun N-terminal kinase attenuated the effect of complement on GFP(u) degradation. Complement, however, increased the level of CD3δ-YFP in GECs, implying an impairment of ERAD, likely due to an overabundance of misfolded proteins in the ER. The overall ubiquitination of proteins was enhanced in complement-treated GECs and in glomeruli of rats with experimental membranous nephropathy, although ubiquitin mRNA was unchanged in GECs. Proteasome inhibition with MG132 increased the cytotoxic effect of complement in GECs. Complement-stimulated UPS function, by accelerating removal of damaged proteins, may be a novel mechanism to limit complement-induced injury.  相似文献   

6.
ER-associated, ubiquitin-proteasome system (UPS)-mediated degradation of the wild-type (WT) gap junction protein connexin32 (Cx32) is inhibited by mild forms of cytosolic stress at a step before its dislocation into the cytosol. We show that the same conditions (a 30-min, 42 degrees C heat shock or oxidative stress induced by arsenite) also reduce the endoplasmic reticulum (ER)-associated turnover of disease-causing mutants of Cx32 and the cystic fibrosis transmembrane conductance regulator (CFTR), as well as that of WT CFTR and unassembled Ig light chain. Stress-stabilized WT Cx32 and CFTR, but not the mutant/unassembled proteins examined, could traverse the secretory pathway. Heat shock also slowed the otherwise rapid UPS-mediated turnover of the cytosolic proteins myoD and GFPu, but not the degradation of an ubiquitination-independent construct (GFP-ODC) closely related to the latter. Analysis of mutant Cx32 from cells exposed to proteasome inhibitors and/or cytosolic stress indicated that stress reduces degradation at the level of substrate polyubiquitination. These findings reveal a new link between the cytosolic stress-induced heat shock response, ER-associated degradation, and polyubiquitination. Stress-denatured proteins may titer a limiting component of the ubiquitination machinery away from pre-existing UPS substrates, thereby sparing the latter from degradation.  相似文献   

7.
8.
Signal-transducing adaptor protein-2 (STAP-2) is a recently identified adaptor protein that contains pleckstrin homology- and Src homology 2-like domains as well as a YXXQ motif in its C-terminal region. Our previous studies demonstrated that STAP-2 binds to STAT3 and STAT5, and regulates their signaling pathways. In the present study, we find that STAP-2-deficient splenocytes or T cells exhibit enhanced cell adhesion to fibronectin after PMA treatment, and that STAP-2-deficient T cells contain the increased protein contents of focal adhesion kinase (FAK). Furthermore, overexpression of STAP-2 induces a dramatic decrease in the protein contents of FAK and integrin-mediated T cell adhesion to fibronectin in Jurkat T cells via the degradation of FAK. Regarding the mechanism for this effect, we found that STAP-2 associates with FAK and enhances its degradation, proteasome inhibitors block FAK degradation, and STAP-2 recruits an endogenous E3 ubiquitin ligase, Cbl, to FAK. These results reveal a novel regulation mechanism for integrin-mediated signaling in T cells via STAP-2, which directly interacts with and degrades FAK.  相似文献   

9.
10.
The ubiquitin-proteasome system (UPS) is a unique protein degradation mechanism conserved in the eukaryotic cell. In addition to the control of protein quality, UPS regulates diverse cellular signal transduction via the fine-tuning of target protein degradation. Protein ubiquitylation and subsequent degradation by the 26S proteasome are involved in almost all aspects of plant growth and development and response to biotic and abiotic stresses. Recent studies reveal that the UPS plays an essential role in adaptation to carbon and nitrogen availability in plants. Here we highlight ubiquitin ligase ATL31 and the homologue ATL6 target 14-3-3 proteins for ubiquitylation to be degraded, which control signaling for carbon and nitrogen metabolisms and C/N balance response. We also give an overview of the UPS function involved in carbon and nitrogen metabolisms.  相似文献   

11.
《Autophagy》2013,9(10):1500-1508
Eukaryotes have two major intracellular protein degradation pathways, namely the ubiquitin-proteasome system (UPS) and autophagy. Inhibition of proteasomal activities has been previously shown to induce autophagy, indicating a coordinated and complementary relationship between these two systems. However, little is known about the regulation of the UPS by autophagy. In this study, we showed for the first time that proteasomes were activated in response to pharmacological inhibition of autophagy as well as disruption of autophagy-related genes by RNA interference under nutrient-deficient conditions in cultured human colon cancer cells. The induction was evidenced by the increased proteasomal activities and the upregulation of proteasomal subunits, including the proteasome β5 subunit, PSMB5. Co-inhibition of the proteasome and autophagy also synergistically increased the accumulation of polyubiquitinated proteins. Collectively, our findings suggest that proteasomes are activated in a compensatory manner for protein degradation upon autophagy inhibition. Our studies unveiled a novel regulatory mechanism between the two protein degradation pathways.  相似文献   

12.
13.
14.
Synaptic function crucially depends on uninterrupted synthesis and degradation of synaptic proteins. While much has been learned on synaptic protein synthesis, little is known on the routes by which synaptic proteins are degraded. Here we systematically studied how inhibition of the ubiquitin‐proteasome system (UPS) affects the degradation rates of thousands of neuronal and synaptic proteins. We identified a group of proteins, including several proteins related to glutamate receptor trafficking, whose degradation rates were significantly slowed by UPS inhibition. Unexpectedly, however, degradation rates of most synaptic proteins were not significantly affected. Interestingly, many of the differential effects of UPS inhibition were readily explained by a quantitative framework that considered known metabolic turnover rates for the same proteins. In contrast to the limited effects on protein degradation, UPS inhibition profoundly and preferentially suppressed the synthesis of a large number of synaptic proteins. Our findings point to the importance of the UPS in the degradation of certain synaptic proteins, yet indicate that under basal conditions most synaptic proteins might be degraded through alternative pathways.  相似文献   

15.
A novel ubiquitin-binding protein ZNF216 functioning in muscle atrophy   总被引:2,自引:0,他引:2  
The ubiquitin-proteasome system (UPS) is critical for specific degradation of cellular proteins and plays a pivotal role on protein breakdown in muscle atrophy. Here, we show that ZNF216 directly binds polyubiquitin chains through its N-terminal A20-type zinc-finger domain and associates with the 26S proteasome. ZNF216 was colocalized with the aggresome, which contains ubiquitinylated proteins and other UPS components. Expression of Znf216 was increased in both denervation- and fasting-induced muscle atrophy and upregulated by expression of constitutively active FOXO, a master regulator of muscle atrophy. Mice deficient in Znf216 exhibited resistance to denervation-induced atrophy, and ubiquitinylated proteins markedly accumulated in neurectomized muscle compared to wild-type mice. These data suggest that ZNF216 functions in protein degradation via the UPS and plays a crucial role in muscle atrophy.  相似文献   

16.
Substrate-specific protein degradation mediated by the ubiquitin proteasome system (UPS) is crucial for the proper function of the cell. Proteins are specifically recognized and ubiquitinated by the ubiquitin ligases (E3s) and are then degraded by the proteasome. BTB proteins act as the substrate recognition subunit that recruits their cognate substrates to the Cullin 3-based multisubunit E3s. Recently, it was reported that missense mutations in KLHL7, a BTB-Kelch protein, are related to autosomal dominant retinitis pigmentosa (adRP). However, the involvement of KLHL7 in the UPS and the outcome of the adRP causative mutations were unknown. In this study, we show that KLHL7 forms a dimer, assembles with Cul3 through its BTB and BACK domains, and exerts E3 activity. Lys-48-linked but not Lys-63-linked polyubiquitin chain co-localized with KLHL7, which increased upon proteasome inhibition suggesting that KLHL7 mediates protein degradation via UPS. An adRP-causative missense mutation in the BACK domain of KLHL7 attenuated only the Cul3 interaction but not dimerization. Nevertheless, the incorporation of the mutant as a heterodimer in the Cul3-KLHL7 complex diminished the E3 ligase activity. Together, our results suggest that KLHL7 constitutes a Cul3-based E3 and that the disease-causing mutation inhibits ligase activity in a dominant negative manner, which may lead to the inappropriate accumulation of the substrates targeted for proteasomal degradation.  相似文献   

17.
18.
The oncogenic human papillomavirus (HPV) E6/E7 proteins are essential for the onset and maintenance of HPV-associated malignancies. Here, we report that activation of the cellular ubiquitin–proteasome system (UPS) by the omega-3 fatty acid, docosahexaenoic acid (DHA), leads to proteasome-mediated degradation of E6/E7 viral proteins and the induction of apoptosis in HPV-infected cancer cells. The increases in UPS activity and degradation of E6/E7 oncoproteins were associated with DHA-induced overproduction of mitochondrial reactive oxygen species (ROS). Exogenous oxidative stress and pharmacological induction of mitochondrial ROS showed effects similar to those of DHA, and inhibition of ROS production abolished UPS activation, E6/E7 viral protein destabilization, and apoptosis. These findings identify a novel role for DHA in the regulation of UPS and viral proteins, and provide evidence for the use of DHA as a mechanistically unique anticancer agent for the chemoprevention and treatment of HPV-associated tumors.  相似文献   

19.
Regulated protein degradation mediated by the ubiquitin-proteasome system (UPS) is critical to eukaryotic protein homeostasis. Often vital to degradation of protein substrates is their disassembly, unfolding, or extraction from membranes. These processes are catalyzed by the conserved AAA-ATPase Cdc48 (also known as p97). Here we characterize the Cuz1 protein (Cdc48-associated UBL/zinc finger protein-1), encoded by a previously uncharacterized arsenite-inducible gene in budding yeast. Cuz1, like its human ortholog ZFAND1, has both an AN1-type zinc finger (Zf_AN1) and a divergent ubiquitin-like domain (UBL). We show that Cuz1 modulates Cdc48 function in the UPS. The two proteins directly interact, and the Cuz1 UBL, but not Zf_AN1, is necessary for binding to the Cdc48 N-terminal domain. Cuz1 also associates, albeit more weakly, with the proteasome, and the UBL is dispensable for this interaction. Cuz1-proteasome interaction is strongly enhanced by exposure of cells to the environmental toxin arsenite, and in a proteasome mutant, loss of Cuz1 enhances arsenite sensitivity. Whereas loss of Cuz1 alone causes only minor UPS degradation defects, its combination with mutations in the Cdc48Npl4-Ufd1 complex leads to much greater impairment. Cuz1 helps limit the accumulation of ubiquitin conjugates on both the proteasome and Cdc48, suggesting a possible role in the transfer of ubiquitylated substrates from Cdc48 to the proteasome or in their release from these complexes.  相似文献   

20.
Abnormal protein aggregates have been suggested as a common pathogenesis of many neurodegenerative diseases. Two well-known protein degradation pathways are responsible for protein homeostasis by balancing protein biosynthesis and degradative processes: the ubiquitin–proteasome system (UPS) and autophagy-lysosomal system. UPS serves as the primary route for degradation of short-lived proteins, but large-size protein aggregates cannot be degraded by UPS. Autophagy is a unique cellular process that facilitates degradation of bulky protein aggregates by lysosome. Recent studies have demonstrated that autophagy plays a crucial role in the pathogenesis of neurodegenerative diseases characterized by abnormal protein accumulation, suggesting that regulation of autophagy may be a valuable therapeutic strategy for the treatment of various neurodegenerative diseases. Sirtuin-2 (SIRT2) is a class III histone deacetylase that is expressed abundantly in aging brain tissue. Here, we report that SIRT2 increases protein accumulation in murine cholinergic SN56 cells and human neuroblastoma SH-SY5Y cells under proteasome inhibition. Overexpression of SIRT2 inhibits lysosome-mediated autophagic turnover by interfering with aggresome formation and also makes cells more vulnerable to accumulated protein-mediated cytotoxicity by MG132 and amyloid beta. Moreover, MG132-induced accumulation of ubiquitinated proteins and p62 as well as cytotoxicity are attenuated in siRNA-mediated SIRT2-silencing cells. Taken together, these results suggest that regulation of SIRT2 could be a good therapeutic target for a range of neurodegenerative diseases by regulating autophagic flux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号