首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Painful channels     
Catterall WA  Yu FH 《Neuron》2006,52(5):743-744
Paroxysmal extreme pain disorder (PEPD), previously known as familial rectal pain (FRP, OMIM 167400), is an inherited disease causing intense burning rectal, ocular, and submandibular pain and flushing. Fertleman et al. (this issue of Neuron) show that mutations in SCN9A, the gene encoding the sodium channel Na(V)1.7 channels, are responsible for this syndrome. Together with earlier work implicating a distinct class of functional mutations in SCN9A in a distinct inherited pain syndrome, these results point to Na(V)1.7 channels as key players in signaling nociceptive information and as a potential target for drug therapy of chronic pain.  相似文献   

5.
This study investigated acute and chronic effects of eicosapentaenoic acid (EPA) on voltage-gated Na+ current (I(Na)) expressed in cultured human bronchial smooth muscle cells (hBSMCs). The whole-cell voltage clamp technique and quantitative real-time RT-PCR analysis were applied. The alterations in the fatty acid composition of phospholipids after treatment with EPA were also examined. Extracellular application of EPA produced a rapid and concentration-dependent suppression of tetrodotoxin-sensitive I(Na) with the half-maximal inhibitory concentration of 2 microM. After washing out EPA with albumin, I(Na) returned to the control level. Similar inhibitory effects were observed regarding other fatty acids (docosahexaenoic, arachidonic, stearic, and oleic acids), but EPA was the most potent inhibitor. The effect of EPA on I(Na) was not blocked by nordihydroguaiaretic acid and indometacin, and was accompanied by a significant shift of the steady-state inactivation curve to more negative potentials. In cells chronically treated with EPA, the EPA content of the cell lipid fraction (mol%) increased time-dependently, while arachidonic acid (AA) decreased, resulting in an increase of EPA to AA ratio. Then, the level of mRNA (SCN9A) encoding I(Na) decreased significantly. These results provide novel evidence that EPA not only rapidly inhibits I(Na), but also reduces the mRNA levels of the Na+ channel after cellular incorporation of EPA in cultured hBSMCs.  相似文献   

6.
Kong LH  Ma JH  Zhang PH  Luo AT  Zhang S  Ren ZQ  Feng J  Chen JL 《生理学报》2012,64(4):433-443
The objectives of this study were to investigate the effects of veratridine (VER) on persistent sodium current (I(Na.P)), Na(+)/Ca(2+) exchange current (I(NCX)), calcium transients and the action potential (AP) in rabbit ventricular myocytes, and to explore the mechanism in intracellular calcium overload and myocardial contraction enhancement by using whole-cell patch clamp recording technique, visual motion edge detection system, intracellular calcium measurement system and multi-channel physiological signal acquisition and processing system. The results showed that I(Na.P) and reverse I(NCX) in ventricular myocytes were obviously increased after giving 10, 20 μmol/L VER, with the current density of I(Na.P) increasing from (-0.22 ± 0.12) to (-0.61 ± 0.13) and (-2.15 ± 0.14) pA/pF (P < 0.01, n = 10) at -20 mV, and that of reverse I(NCX) increasing from (1.62 ± 0.12) to (2.19 ± 0.09) and (2.58 ± 0.11) pA/pF (P < 0.05, n = 10) at +50 mV. After adding 4 μmol/L tetrodotoxin (TTX), current density of I(Na.P) and reverse I(NCX) returned to (-0.07 ± 0.14) and (1.69 ± 0.15) pA/pF (P < 0.05, n = 10). Another specific blocker of I(Na.P), ranolazine (RAN), could obviously inhibit VER-increased I(Na.P) and reverse I(NCX). After giving 2.5 μmol/L VER, the maximal contraction rate of ventricular myocytes increased from (-0.91 ± 0.29) to (-1.53 ± 0.29) μm/s (P < 0.01, n = 7), the amplitude of contraction increased from (0.10 ± 0.04) to (0.16 ± 0.04) μm (P < 0.05, n = 7), and the baseline of calcium transients (diastolic calcium concentration) increased from (1.21 ± 0.08) to (1.37 ± 0.12) (P < 0.05, n = 7). After adding 2 μmol/L TTX, the maximal contraction rate and amplitude of ventricular myocytes decreased to (-0.86 ± 0.24) μm/s and (0.09 ± 0.03) μm (P < 0.01, n = 7) respectively. And the baseline of calcium transients reduced to (1.17 ± 0.09) (P < 0.05, n = 7). VER (20 μmol/L) could extend action potential duration at 50% repolarization (APD(50)) and at 90% repolarization (APD(90)) in ventricular myocytes from (123.18 ± 23.70) to (271.90 ± 32.81) and from (146.94 ± 24.15) to (429.79 ± 32.04) ms (P < 0.01, n = 6) respectively. Early afterdepolarizations (EADs) appeared in 3 out of the 6 cases. After adding 4 μmol/L TTX, APD(50) and APD(90) were reduced to (99.07 ± 22.81) and (163.84 ± 26.06) ms (P < 0.01, n = 6) respectively, and EADs disappeared accordingly in 3 cases. It could be suggested that: (1) As a specific agonist of the I(Na.P), VER could result in I(Na.P) increase and intracellular Na(+) overload, and subsequently intracellular Ca(2+) overload with the increase of reverse I(NCX). (2) The VER-increased I(Na.P) could further extend the action potential duration (APD) and induce EADs. (3) TTX could restrain the abnormal VER-induced changes of the above-mentioned indexes, indicating that these abnormal changes were caused by the increase of I(Na.P). Based on this study, it is concluded that as the I(Na.P) agonist, VER can enhance reverse I(NCX) by increasing I(Na.P), leading to intracellular Ca(2+) overload and APD abnormal extension.  相似文献   

7.
8.
Restenosis may develop in response to cytokine activation and smooth muscle cell proliferation. Ginkgo biloba extract (EGb) has been used to treat cardiovascular and cerebrovascular diseases. In the present study, the effects of EGb on the growth of cultured vascular smooth muscle cells (VSMC), as well as on the expression of interleukin-1beta (IL-1beta) and the intimal response in balloon-injured arteries of cholesterol-fed rabbits, were investigated. Using bromodeoxyuridine incorporation as an index of cell proliferation, EGb was found to inhibit serum-induced mitogenesis of cultured rat aorta VSMC in a dose-dependent manner. In vivo, EGb and probucol ( positive control) reduced the atheroma area in thoracic aortas of male New Zealand white rabbits fed a 2% cholesterol diet for 6 weeks with balloon denudation of the abdominal aorta being performed at the end of the third week. Intimal hyperplasia, expressed as the intimal/medial area ratio, in the abdominal aortas was significantly inhibited in the both the EGb group (0.61 +/- 0.06) and the probucol group (0.55 +/- 0.03) compared to the C group (0.87 +/- 0.02). In the balloon-injured abdominal aorta, both EGb and probucol significantly reduced IL-1beta mRNA and protein expression and the percentage of proliferating cells. The inhibitory effects of EGb on the intimal response might be attributed to its antioxidant capacity. EGb may have therapeutic potential for the prevention of restenosis after angioplasty.  相似文献   

9.
10.
The anti-inflammatory cytokine IL-10 inhibits intimal hyperplasia after stent implantation via a powerful inactivation of monocytes. We tested the hypothesis that IL-10 may also inhibit vascular smooth muscle cell (SMC) activation via the inhibition of the NF-kappaB/I-kappaB system. The IL-10 receptor was detected in rat SMCs in vitro and in vivo. In LPS-stimulated rat SMCs, 1 ng/ml recombinant murine IL-10 (mIL-10) reduced I-kappaBalpha and I-kappaBbeta degradation, NF-kappaB activation, as well as the expression of the NF-kappaB-dependent gene IL-6 by 32%, 31%, 75%, and 19%, respectively (P < 0.05 for all). Similar results were obtained in vivo 6 h and 4 days after balloon abrasion of the rat aorta, a model in which intimal hyperplasia results essentially from SMC activation. Moreover, mIL-10 reduced SMC proliferation and migration in vitro (by 60% for both, P < 0.0001), resulting in reduced SMC proliferation and intimal growth 14 days after balloon abrasion of the rat aorta (by 76% and 75%, respectively; P < 0.005). In conclusion, mIL-10 has a direct inhibitory effect on SMCs in vitro and in vivo. This effect is mediated in part by NF-kappaB inactivation and may participate in the overall protective effect of IL-10 on postangioplasty restenosis.  相似文献   

11.
We previously reported the results of an experimental paradigm in which tetrodotoxin (TTX) was chronically infused by miniosmotic pump into the rat suprachiasmatic nuclei (SCN) (Schwartz et al., 1987). Although TTX reversibly blocked photic entrainment and overt expression of the circadian drinking rhythm, the circadian pacemaker in the SCN continued to oscillate unperturbed by the toxin, and we concluded that Na(+)-dependent action potentials are not a part of the SCN pacemaker's internal timekeeping mechanism. In the research reported in the present paper, we used our paradigm to chronically infuse other agents, in order to evaluate the validity of this interpretation further. (1) Infusion of 50% procaine into the SCN of blinded rats resulted in a disorganized circadian drinking rhythm during the infusion, after which behavioral rhythmicity returned without apparent phase shift. In intact rats, procaine reduced the phase-resetting action of a reversed light-dark cycle imposed during the infusion. Thus, the effects of voltage-dependent Na+ channel blockade by a local anesthetic resemble those produced by TTX. (2) Infusion of high (20 mM) K+ or 100 microM veratridine into the SCN of blinded rats resulted in an apparent phase advance of the circadian drinking rhythm by over 4 hr. The phase-shifting effect of veratridine was blocked by simultaneous infusion of 1 microM TTX. Thus, membrane depolarization or direct activation of voltage-dependent Na+ channels can affect the pacemaker's oscillation. Our infusion paradigm can detect alterations of rhythm phase, and the lack of phase shift after TTX or procaine infusion is not an artifact of an insensitive method.  相似文献   

12.
The Na(+) current component I(Ca(TTX)) is functionally distinct from the main body of Na(+) current, I(Na). It was proposed that I(Ca(TTX)) channels are I(Na) channels that were altered by bathing media containing Ca(2+), but no, or very little, Na(+). It is known that Na(+)-free conditions are not required to demonstrate I(Ca(TTX).) We show here that Ca(2+) is also not required. Whole-cell, tetrodotoxin-blockable currents from fresh adult rat ventricular cells in 65 mm Cs(+) and no Ca(2+) were compared to those in 3 mM Ca(2+) and no Cs(+) (i.e., I(Ca(TTX))). I(Ca(TTX)) parameters were shifted to more positive voltages than those for Cs(+). The Cs(+) conductance-voltage curve slope factor (mean, -4.68 mV; range, -3.63 to -5.72 mV, eight cells) is indistinguishable from that reported for I(Ca(TTX)) (mean, -4.49 mV; range, -3.95 to -5.49 mV). Cs(+) current and I(Ca(TTX)) time courses were superimposable after accounting for the voltage shift. Inactivation time constants as functions of potential for the Cs(+) current and I(Ca(TTX)) also superimposed after voltage shifting, as did the inactivation curves. Neither of the proposed conditions for conversion of I(Na) into I(Ca(TTX)) channels is required to demonstrate I(Ca(TTX)). Moreover, we find that cardiac Na(+) (H1) channels expressed heterologously in HEK 293 cells are not converted to I(Ca(TTX)) channels by Na(+)-free, Ca(2+)-containing bathing media. The gating properties of the Na(+) current through H1 and those of Ca(2+) current through H1 are identical. All observations are consistent with two non-interconvertable Na(+) channel populations: a larger that expresses little Ca(2+) permeability and a smaller that is appreciably Ca(2+)-permeable.  相似文献   

13.
We investigated the effects of pressure overload hypertrophy on inward sodium (I Na) and calcium currents (I Ca) in single left ventricular myocytes to determine whether changes in these current systems could account for the observed prolongation of the action potential. Hypertrophy was induced by pressure overload caused by banding of the abdominal aorta. Whole-cell patch clamp experiments were used to measure tetrodotoxin (TTX)-sensitive inward currents. The main findings were that I Ca density was unchanged whereas I Na density after stepping from -80 to -30 mV was decreased by 30% (-9.0 +/- 1.16 pA pF(-1) in control and -6.31 +/- 0.67 pA pF(-1) in hypertrophy, p < 0.05, n = 6). Steady-state activation/inactivation variables of I Na, determined by using double-pulse protocols, were similar in control and hypertrophied myocytes, whereas the time course of fast inactivation of I Na was slowed (p < 0.05) in hypertrophied myocytes. In addition, action potential clamp experiments were carried out in the absence and presence of TTX under conditions where only Ca2+ was likely to enter the cell via TTX-sensitive channels. We show for the first time that a TTX-sensitive inward current was present during the plateau phase of the action potential in hypertrophied but not control myocytes. The observed decrease in I Na density is likely to abbreviate rather than prolong the action potential. Delayed fast inactivation of Na+ channels was not sustained throughout the voltage pulse and may therefore merely counteract the effect of decreased I Na density so that net Na+ influx remains unaltered. Changes in the fast I Na do not therefore appear to contribute to lengthening of the action potential in this model of hypertrophy. However, the presence of a TTX-sensitive current during the plateau could potentially contribute to the prolongation of the action potential in hypertrophied cardiac muscle.  相似文献   

14.
Electrophysiological properties of human adipose tissue-derived stem cells   总被引:2,自引:0,他引:2  
Human adipose tissue-derived stem cells (hASCs) represent a potentially valuable cell source for clinical therapeutic applications. The present study was designed to investigate properties of ionic channel currents present in undifferentiated hASCs and their impact on hASCs proliferation. The functional ion channels in hASCs were analyzed by whole-cell patch-clamp recording and their mRNA expression levels detected by RT-PCR. Four types of ion channels were found to be present in hASCs: most of the hASCs (73%) showed a delayed rectifier-like K(+) current (I(KDR)); Ca(2+)-activated K(+) current (I(KCa)) was detected in examined cells; a transient outward K(+) current (I(to)) was recorded in 19% of the cells; a small percentage of cells (8%) displayed a TTX-sensitive transient inward sodium current (I(Na.TTX)). RT-PCR results confirmed the presence of ion channels at the mRNA level: Kv1.1, Kv2.1, Kv1.5, Kv7.3, Kv11.1, and hEAG1, possibly encoding I(KDR); MaxiK, KCNN3, and KCNN4 for I(KCa); Kv1.4, Kv4.1, Kv4.2, and Kv4.3 for I(to) and hNE-Na for I(Na.TTX). The I(KDR) was inhibited by tetraethyl ammonium (TEA) and 4-aminopyridine (4-AP), which significantly reduced the proliferation of hASCs in a dose-dependent manner (P < 0.05), as suggested by bromodeoxyurindine (BrdU) incorporation. Other selective potassium channel blockers, including linopiridine, iberiotoxin, clotrimazole, and apamin also significantly inhibited I(KDR). TTX completely abolished I(Na.TTX). This study demonstrates for the first time that multiple functional ion channel currents such as I(KDR), I(KCa), I(to), and I(Na.TTX) are present in undifferentiated hASCs and their potential physiological function in these cells as a basic understanding for future in vitro experiments and in vivo clinical investigations.  相似文献   

15.
Two types of voltage-dependent Ca(2+) channels have been identified in heart: high (I(CaL)) and low (I(CaT)) voltage-activated Ca(2+) channels. In guinea pig ventricular myocytes, low voltage-activated inward current consists of I(CaT) and a tetrodotoxin (TTX)-sensitive I(Ca) component (I(Ca(TTX))). In this study, we reexamined the nature of low-threshold I(Ca) in dog atrium, as well as whether it is affected by Na(+) channel toxins. Ca(2+) currents were recorded using the whole-cell patch clamp technique. In the absence of external Na(+), a transient inward current activated near -50 mV, peaked at -30 mV, and reversed around +40 mV (HP = -90 mV). It was unaffected by 30 microM TTX or micromolar concentrations of external Na(+), but was inhibited by 50 microM Ni(2+) (by approximately 90%) or 5 microM mibefradil (by approximately 50%), consistent with the reported properties of I(CaT). Addition of 30 microM TTX in the presence of Ni(2+) increased the current approximately fourfold (41% of control), and shifted the dose-response curve of Ni(2+) block to the right (IC(50) from 7.6 to 30 microM). Saxitoxin (STX) at 1 microM abolished the current left in 50 microM Ni(2+). In the absence of Ni(2+), STX potently blocked I(CaT) (EC(50) = 185 nM) and modestly reduced I(CaL) (EC(50) = 1.6 microM). While TTX produced no direct effect on I(CaT) elicited by expression of hCa(V)3.1 and hCa(V)3.2 in HEK-293 cells, it significantly attenuated the block of this current by Ni(2+) (IC(50) increased to 550 microM Ni(2+) for Ca(V)3.1 and 15 microM Ni(2+) for Ca(V)3.2); in contrast, 30 microM TTX directly inhibited hCa(V)3.3-induced I(CaT) and the addition of 750 microM Ni(2+) to the TTX-containing medium led to greater block of the current that was not significantly different than that produced by Ni(2+) alone. 1 microM STX directly inhibited Ca(V)3.1-, Ca(V)3.2-, and Ca(V)3.3-mediated I(CaT) but did not enhance the ability of Ni(2+) to block these currents. These findings provide important new implications for our understanding of structure-function relationships of I(CaT) in heart, and further extend the hypothesis of a parallel evolution of Na(+) and Ca(2+) channels from an ancestor with common structural motifs.  相似文献   

16.
Antioxidants that prevent low density lipoproteins (LDL) from oxidation may inhibit atherosclerosis and post-angioplasty restenosis. Salvia miltiorrhiza (SM) has been shown to inhibit LDL oxidation and reduce atherosclerosis in cholesterol-fed rabbits. The effects of SM on neointimal hyperplasia and monocyte chemotactic protein-1 (MCP-1) expression after balloon injury were studied. Male New Zealand white rabbits were fed a 2% cholesterol diet together with daily SM (4.8 gm/kg body wt.) treatment (SM; n=10) or without SM as a control (C; n=9) for 6 weeks. Probucol-treated (0.6 gm/kg body wt.) rabbits (P; n=9) were used as a positive control group. A balloon injury of the abdominal aorta was performed at the end of the third week. Aortas were harvested at the end of 6 weeks. The plasma cholesterol levels were lowered in SM group. The neointimal hyperplasia in abdominal aortas was significantly inhibited in SM group [neointima/media area ratio: 0.63+/-0.05 (SM) versus 0.78+/-0.05 (C); P < 0.05] and in P group [0.45+/-0.02 (P) versus 0.78+/-0.05 (C); P < 0.05] when compared with C group. SM treatment significantly reduced MCP-1 mRNA and protein expression in balloon-injured abdominal aorta. These inhibitory effects on intimal response after balloon injury might be attributed to antioxidant capacity and cholesterol lowering effect of SM. SM treatment may offer some protection against post-angioplasty restenosis.  相似文献   

17.
18.
Renal dopamine receptor function and ion transport inhibition are impaired in essential hypertension. We recently reported that caveolin-1 (CAV1) and lipid rafts are necessary for normal D(1)-like receptor-dependent internalization of Na-K-ATPase in human proximal tubule cells. We now hypothesize that CAV1 is necessary for the regulation of urine sodium (Na(+)) excretion (U(Na)V) and mean arterial blood pressure (MAP) in vivo. Acute renal interstitial (RI) infusion into Sprague-Dawley rats of 1 μg·kg?1·min?1 fenoldopam (FEN; D(1)-like receptor agonist) caused a 0.46 ± 0.15-μmol/min increase in U(Na)V (over baseline of 0.29 ± 0.04 μmol/min; P < 0.01). This increase was seen in Na(+)-loaded rats, but not in those under a normal-sodium load. Coinfusion with β-methyl cyclodextrin (βMCD; lipid raft disrupter, 200 μg·kg?1·min?1) completely blocked this FEN-induced natriuresis (P < 0.001). Long-term (3 day) lipid raft disruption via continuous RI infusion of 80 μg·kg?1·min?1 βMCD decreased renal cortical CAV1 expression (47.3 ± 6.4%; P < 0.01) and increased MAP (32.4 ± 6.6 mmHg; P < 0.001) compared with vehicle-infused animals. To determine whether the MAP rise was due to a CAV1-dependent lipid raft-mediated disruption, Na(+)-loaded rats were given a bolus RI infusion of CAV1 siRNA. Two days postinfusion, cortical CAV1 expression was decreased by 73.6 ± 8.2% (P < 0.001) and the animals showed an increase in MAP by 17.4 ± 2.9 mmHg (P < 0.01) compared with animals receiving scrambled control siRNA. In summary, acute kidney-specific lipid raft disruption decreases CAV1 expression and blocks D(1)-like receptor-induced natriuresis. Furthermore, chronic disruption of lipid rafts or CAV1 protein expression in the kidney induces hypertension.  相似文献   

19.
Expression of CD1a protein defines a human dendritic cell (DC) subset with unique functional activities. We aimed to study the expression of the Nav1.7 sodium channel and the functional consequences of its activity in CD1a(-) and CD1a(+) DC. Single-cell electrophysiology (patch-clamp) and quantitative PCR experiments performed on sorted CD1a(-) and CD1a(+) immature DC (IDC) showed that the frequency of cells expressing Na(+) current, current density, and the relative expression of the SCN9A gene encoding Nav1.7 were significantly higher in CD1a(+) cells than in their CD1a(-) counterparts. The activity of Nav1.7 results in a depolarized resting membrane potential (-8.7 ± 1.5 mV) in CD1a(+) IDC as compared with CD1a(-) cells lacking Nav1.7 (-47 ± 6.2 mV). Stimulation of DC by inflammatory signals or by increased intracellular Ca(2+) levels resulted in reduced Nav1.7 expression. Silencing of the SCN9A gene shifted the membrane potential to a hyperpolarizing direction in CD1a(+) IDC, resulting in decreased cell migration, whereas pharmacological inhibition of Nav1.7 by tetrodotoxin sensitized the cells for activation signals. Fine-tuning of IDC functions by a voltage-gated sodium channel emerges as a new regulatory mechanism modulating the migration and cytokine responses of these DC subsets.  相似文献   

20.
Voltage-gated Na+ channels (VGSCs), predominantly the ‘neonatal’ splice form of Nav1.5 (nNav1.5), are upregulated in metastatic breast cancer (BCa) and potentiate metastatic cell behaviours. VGSCs comprise one pore-forming α subunit and one or more β subunits. The latter modulate VGSC expression and gating, and can function as cell adhesion molecules of the immunoglobulin superfamily. The aims of this study were (1) to determine which β subunits were expressed in weakly metastatic MCF-7 and strongly metastatic MDA-MB-231 human BCa cells, and (2) to investigate the possible role of β subunits in adhesion and migration. In both cell lines, the β subunit mRNA expression profile was SCN1B (encoding β1) ? SCN4B (encoding β4) > SCN2B (encoding β2); SCN3B (encoding β3) was not detected. MCF-7 cells had much higher levels of all β subunit mRNAs than MDA-MB-231 cells, and β1 mRNA was the most abundant. Similarly, β1 protein was strongly expressed in MCF-7 and barely detectable in MDA-MB-231 cells. In MCF-7 cells transfected with siRNA targeting β1, adhesion was reduced by 35%, while migration was increased by 121%. The increase in migration was reversed by tetrodotoxin (TTX). In addition, levels of nNav1.5 mRNA and protein were increased following β1 down-regulation. Stable expression of β1 in MDA-MB-231 cells increased functional VGSC activity, process length and adhesion, and reduced lateral motility and proliferation. We conclude that β1 is a novel cell adhesion molecule in BCa cells and can control VGSC (nNav1.5) expression and, concomitantly, cellular migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号