首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 130 毫秒
1.
2.
3.
Three-dimensional positioning of genes in mouse cell nuclei   总被引:1,自引:1,他引:0  
To understand the regulation of the genome, it is necessary to understand its three-dimensional organization in the nucleus. We investigated the positioning of eight gene loci on four different chromosomes, including the β-globin gene, in mouse embryonic stem cells and in in vitro differentiated macrophages by fluorescence in situ hybridization on structurally preserved nuclei, confocal microscopy, and 3D quantitative image analysis. We found that gene loci on the same chromosome can significantly differ from each other and from their chromosome territory in their average radial nuclear position. Radial distribution of a given gene locus can change significantly between cell types, excluding the possibility that positioning is determined solely by the DNA sequence. For the set of investigated gene loci, we found no relationship between radial distribution and local gene density, as it was described for human cell nuclei. We did find, however, correlation with other genomic properties such as GC content and certain repetitive elements such as long terminal repeats or long interspersed nuclear elements. Our results suggest that gene density itself is not a driving force in nuclear positioning. Instead, we propose that other genomic properties play a role in determining nuclear chromatin distribution. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
5.
6.
Specific chromosomal translocations are hallmarks of many human leukemias. The basis for these translocation events is poorly understood, but it has been assumed that spatial positioning of genes in the nucleus of hematopoietic cells is a contributing factor. Analysis of the nuclear 3D position of the gene MLL, frequently involved in chromosomal translocations and five of its translocation partners (AF4, AF6, AF9, ENL and ELL), and two control loci revealed a characteristic radial distribution pattern in all hematopoietic cells studied. Genes in areas of high local gene density were found positioned towards the nuclear center, whereas genes in regions of low gene density were detected closer to the nuclear periphery. The gene density within a 2 Mbp window was found to be a better predictor for the relative positioning of a genomic locus within the cell nucleus than the gene density of entire chromosomes. Analysis of the position of MLL, AF4, AF6 and AF9 in cell lines carrying chromosomal translocations involving these genes revealed that the position of the normal genes was different from that of the fusion genes, and this was again consistent with the changes in local gene density within a 2 Mbp window. Thus, alterations in gene density directly at translocation junctions could explain the change in the position of affected genes in leukemia cells.  相似文献   

7.
Biomphalaria glabrata is a major intermediate host for the parasitic trematode Schistosoma mansoni, a causative agent of human schistosomiasis. To decipher the molecular basis of this host-parasite interaction, the Bge embryonic cell line provides a unique in vitro model system to assess whether interactions between the snail and parasite affect the cell and genome biology in either organism. The organization of the B. glabrata genome in Bge cells was studied using image analysis through positioning territories of differently sized chromosomes within cell nuclei. The snail chromosome territories are similar in morphology as well as in non-random radial positioning as those found in other derived protostome and deuterostome organisms. Specific monitoring of four gene loci, piwi, BgPrx, actin and ferritin, revealed non-random radial positioning of the genome. This indicates that specific parts of the snail genome reside in reproducible nuclear addresses. To determine whether exposure to parasite is reflected in genome organization, the interphase spatial positioning of genes was assessed after co-culturing Bge cells with either normal or irradiation attenuated miracidia for 30 min to 24 h. The loci of actin and ferritin, genes that are up-regulated in the snail when subjected to infection, were visualized by fluorescence in situ hybridisation (FISH) and their radial nuclear positions i.e. their position in the interphase nucleus with respect to the nuclear edge/envelope, mapped. Interestingly, large scale gene repositioning correlated to temporal kinetics of gene expression levels in Bge cells co-cultured with normal miracidia while irradiated parasites failed to elicit similar gene expression or gene loci repositioning as demonstrated using the ferritin gene. This indicates that normal but not attenuated schistosomes provide stimuli that evoke host responses that are reflected in the host’s nuclear architecture. We believe that this is not only the first time that gene-repositioning studies have been attempted in a mollusc but also demonstrates a parasite influencing the interphase genome organization of its host.  相似文献   

8.
9.
10.
11.
12.
3D Structure of the human genome: order in randomness   总被引:13,自引:0,他引:13  
  相似文献   

13.
14.
15.
16.
17.
The mammalian genome is highly organized within the cell nucleus. The nuclear position of many genes and genomic regions changes during physiological processes such as proliferation, differentiation, and disease. It is unclear whether disease-associated positioning changes occur specifically or are part of more global genome reorganization events. Here, we have analyzed the spatial position of a defined set of cancer-associated genes in an established mammary epithelial three-dimensional cell culture model of the early stages of breast cancer. We find that the genome is globally reorganized during normal and tumorigenic epithelial differentiation. Systematic mapping of changes in spatial positioning of cancer-associated genes reveals gene-specific positioning behavior and we identify several genes that are specifically repositioned during tumorigenesis. Alterations of spatial positioning patterns during differentiation and tumorigenesis were unrelated to gene activity. Our results demonstrate the existence of activity-independent genome repositioning events in the early stages of tumor formation.  相似文献   

18.
Higher eukaryotic genomes contain both housekeeping genes and genes of which the expression is restricted to a defined time and space. It is well established that a correlation exists between structural organization of the genome and gene expression control. The functional mechanisms underlying this correlation are still poorly understood. Here I describe several observations that are the basis of present concepts of genome organization and nuclear architecture related to functionality. Regarding the relationship between positioning and disturbed cell functionality, I describe observations showing that the proximity of selected gene loci is statistically correlated with their propensity for oncogenic translocations as well as observations of patterns occurring in neurodegenerative disorders where unstable repeats are translated into an expanded polyglutamine tract. Such observations underscore the importance to understand how genetic perturbations lead to the global reorganization of nuclear architecture, chromatin structure and widespread changes in gene expression.  相似文献   

19.
20.

Background

Different cell types have distinctive patterns of chromosome positioning in the nucleus. Although ectopic affinity-tethering of specific loci can be used to relocate chromosomes to the nuclear periphery, endogenous nuclear envelope proteins that control such a mechanism in mammalian cells have yet to be widely identified.

Results

To search for such proteins, 23 nuclear envelope transmembrane proteins were screened for their ability to promote peripheral localization of human chromosomes in HT1080 fibroblasts. Five of these proteins had strong effects on chromosome 5, but individual proteins affected different subsets of chromosomes. The repositioning effects were reversible and the proteins with effects all exhibited highly tissue-restricted patterns of expression. Depletion of two nuclear envelope transmembrane proteins that were preferentially expressed in liver each reduced the normal peripheral positioning of chromosome 5 in liver cells.

Conclusions

The discovery of nuclear envelope transmembrane proteins that can modulate chromosome position and have restricted patterns of expression may enable dissection of the functional relevance of tissue-specific patterns of radial chromosome positioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号