首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. The distal inner medullary collecting duct (IMCD) is critical in the urinary concentrating process, in part because it is the site of vasopressin (AVP)-regulated permeability to urea. The purpose of these experiments was to develop a cell culture model of the IMCD on permeable structure and to characterize the responsiveness to AVP. Rat IMCD cells were grown to confluence on collagen-coated Millipore filters glued onto plastic rings. To assess the time required to achieve confluence, the transepithelial resistance was measured periodically and was found to be stable after 2 weeks, at a maximal value of 595 ± 22 ω cm2. In separate monolayers the effect of AVP on inulin and urea permeability was determined. While inulin permeability was unchanged after AVP, urea permeability increased from 6.0 ± 0–4 to peak values of 16.0 ± 3–8(10nM),23.1 ± 3–9(1 μM)and28 1 ± 4–9(10μM) X 10-6cms-1 ( n = 24). In 10 other monolayers, after the addition of 1 mM 8-Br-cAMP, urea permeability increased from 5.1 ±0–3 to 8.1 ± 1–6 times 10-6 cm s-1 and, after 8-Br-cAMP +3-isobutyl-l-methylxanthine, to 12.2 ± 0–7 times 10-6 cms-1. We conclude that rat IMCD cells grown in culture exhibit the characteristics of a 'tight' epithelium. Inulin and urea permeability are not different in the absence of AVP, consistent with high resistance junctional complexes. Furthermore, IMCD cells retain the capacity for AVP-regulated urea permeability, a characteristic feature of this nephron segment in vivo.  相似文献   

2.
The distal inner medullary collecting duct (IMCD) is critical in the urinary concentrating process, in part because it is the site of vasopressin (AVP)-regulated permeability to urea. The purpose of these experiments was to develop a cell culture model of the IMCD on permeable structure and to characterize the responsiveness to AVP. Rat IMCD cells were grown to confluence on collagen-coated Millipore filters glued onto plastic rings. To assess the time required to achieve confluence, the transepithelial resistance was measured periodically and was found to be stable after 2 weeks, at a maximal value of 595 +/- 22 omega cm2. In separate monolayers the effect of AVP on inulin and urea permeability was determined. While inulin permeability was unchanged after AVP, urea permeability increased from 6.0 +/- 0.4 to peak values of 16.0 +/- 3.8 (10 nM), 23.1 +/- 3.9 (1 microM) and 28.1 +/- 4.9 (10 microM) x 10(-6) cm s-1 (n = 24). In 10 other monolayers, after the addition of 1 mM 8-Br-cAMP, urea permeability increased from 5.1 +/- 0.3 to 8.1 +/- 1.6 x 10(-6) cm s-1 and, after 8-Br-cAMP + 3-isobutyl-1-methylxanthine, to 12.2 +/- 0.7 x 10(-6) cm s-1. We conclude that rat IMCD cells grown in culture exhibit the characteristics of a 'tight' epithelium. Inulin and urea permeability are not different in the absence of AVP, consistent with high resistance junctional complexes. Furthermore, IMCD cells retain the capacity for AVP-regulated urea permeability, a characteristic feature of this nephron segment in vivo.  相似文献   

3.
Regulation of Ras signaling by the cell cycle.   总被引:6,自引:0,他引:6  
It is well known that upregulation of Ras activity can promote cell-cycle progression. Now recent studies indicate that a reciprocal relationship also exists; that is, the consequences of Ras signaling are dependent upon cell-cycle position. In quiescent cells stimulated with growth factors, one Ras effector, phosphatidylinositol-3-kinase, is activated twice as cells transition from G(0) into G(1) phase, and then later in G(1) phase. It is only during the later stages of G(1) phase that PI3K activity promotes entry into S-phase. In cycling cells, Ras activity is enhanced throughout the cell cycle, but is able to stimulate cyclin D1 elevation only during G(2) phase.  相似文献   

4.
5.
Thymocytes must transit at least two distinct developmental checkpoints, governed by signals that emanate from either the pre-T cell receptor (pre-TCR) or the TCR to the small G protein Ras before emerging as functional T lymphocytes. Recent studies have shown a role for the Ras guanine exchange factor (RasGEF) Sos1 at the pre-TCR checkpoint. At the second checkpoint, the quality of signaling through the TCR is interrogated to ensure the production of an appropriate T cell repertoire. Although RasGRP1 is the only confirmed RasGEF required at the TCR checkpoint, current models suggest that the intensity and character of Ras activation, facilitated by both Sos and RasGRP1, will govern the boundary between survival (positive selection) and death (negative selection) at this stage. Using mouse models, we have assessed the independent and combined roles for the RasGEFs Sos1, Sos2, and RasGRP1 during thymocyte development. Although Sos1 was the dominant RasGEF at the pre-TCR checkpoint, combined Sos1/RasGRP1 deletion was required to effectively block development at this stage. Conversely, while RasGRP1 deletion efficiently blocked positive selection, combined RasGRP1/Sos1 deletion was required to block negative selection. This functional redundancy in RasGEFs during negative selection may act as a failsafe mechanism ensuring appropriate central tolerance.  相似文献   

6.
In the inner ear, Notch signaling has been proposed to specify the sensory regions, as well as regulate the differentiation of hair cells and supporting cell within those regions. In addition, Notch plays an important role in otic neurogenesis, by determining which cells differentiate as neurons, sensory cells and non-sensory cells. Here, I review the evidence for the complex and myriad roles Notch participates in during inner ear development. A particular challenge for those studying ear development and Notch is to decipher how activation of a single pathway can lead to different outcomes within the ear, which may include changes in the intrinsic properties of the cell, Notch modulation, and potential non-canonical pathways.  相似文献   

7.
The discovery that Ras proteins are modified by enzymes restricted to the endoplasmic reticulum and Golgi apparatus and that, at steady state, a significant pool of Ras is localized on the Golgi has led to the hypothesis that Ras can become activated on and signal from intracellular membranes. Fluorescent probes capable of showing when and where in living cells Ras becomes activated together with studies of Ras proteins stringently tethered to intracellular membranes have confirmed this hypothesis. Thus, recent studies of Ras have contributed to the rapidly expanding field of compartmentalized signaling.  相似文献   

8.
9.
When Ras signaling reaches the mediator   总被引:1,自引:0,他引:1  
  相似文献   

10.
Abstract

Ras and Rap proteins are closely related small guanosine triphosphatase (GTPases) that share similar effector-binding domains but operate in a very different signaling networks; Ras has a dominant role in cell proliferation, while Rap mediates cell adhesion. Ras and Rap proteins are regulated by several shared processes such as post-translational modification, phosphorylation, activation by guanine exchange factors and inhibition by GTPase-activating proteins. Sub-cellular localization and trafficking of these proteins to and from the plasma membrane are additional important regulatory features that impact small GTPases function. Despite its importance, the trafficking mechanisms of Ras and Rap proteins are not completely understood. Chaperone proteins play a critical role in trafficking of GTPases and will be the focus of the discussion in this work. We will review several aspects of chaperone biology focusing on specificity toward particular members of the small GTPase family. Understanding this specificity should provide key insights into drug development targeting individual small GTPases.  相似文献   

11.
12.
Ras isoforms are membrane bound proteins that differentially localize to the plasma membrane and subcellular compartments within the cell. Whilst the cell surface is the main site for Ras activity the extent to which intracellular pools contribute to Ras function is debated. We have generated Ras chimeras targeting Ras to the ER, Golgi, mitochondria and endosomes to compare the capacity of each of these locations to support activity equivalent to normal Ras function. We find that all locations are capable of regulating the MAP kinase and Akt pathways. Furthermore, whilst endomembranous Ras pools show location-specific competence to support proliferation and transformation, Golgi-Ras is as potent as N-Ras.  相似文献   

13.
Phase-partitioning studies of the euryhaline bacterium Halomonas elongata demonstrated that the hydrophobic-hydrophilic nature of the cell surface changed as the bacterium grew in different NaCl concentrations. Mid-log-phase cells grown in a high (3.4 M) NaCl concentration were more hydrophilic than were cells grown in a low (0.05 M) NaCl concentration. Mid-log-phase cells from defined medium containing 3.4 M NaCl normally produced a hydrophobicity reading of only 14 (hexadecane hydrophobicity = 100), while corresponding cells from defined medium containing 0.05M NaCl gave a hydrophobicity reading of 90. Compared with cells grown in low salt concentrations, cells grown in high salt concentrations were more hydrophilic at all stages of growth. Rapid suspension of log-phase cells grown in 1.37 M NaCl into a 0.05 or 3.4 M NaCl solution produced no detectable rapid changes in surface hydrophobicity. These data suggest that as H. elongata adapts to different NaCl concentrations, it alters the affinity of its outermost cell surface to water.  相似文献   

14.
15.
Ras signaling in prostate cancer progression   总被引:7,自引:0,他引:7  
  相似文献   

16.
17.
To study the mechanism of the inhibitory effects of Sef (similar expression to fgf genes) on Ras/mitogen-activated protein kinase (MAPK) signaling pathway, we observed cellular localization of this protein. Immunofluorescent staining results show that Sef locates in the vesicles of the cytoplasm without bFGF treatment but co-localizes with Ras on the plasma membrane (PM) in response to bFGF stimulation. The coimmunoprecipitation assay demonstrates that Sef interacts with Ras or RasG12V, respectively. We observed that Sef inhibited FGF induced, but not RasG12V mediated, signal transduction. We propose that Sef interacted with Ras in the inhibition of Ras/MAPK signaling pathway.  相似文献   

18.
In order to investigate the pathogenesis of medullary nephrocalcinosis, rabbit inner medullary collecting duct cells were grown in media containing different Ca++, PTH and pH levels. It was found that high Ca++ (7.8mM) only reduced growth slightly and that crystalline deposits were found under the cells. This suggests that high Ca++ is not severely toxic to the cells but can lead to deposition of calcium beneath the basement membrane. PTH did not effect cell growth even in the presence of high Ca++ implying that it has an indirect effect on tubular cells in medullary nephrocalcinosis associated with hyperparathyroidism. In renal tubular acidosis these cells are subjected to a persistently high urinary pH and low interstitial pH. Raising the pH reduced the cell growth in normal Ca++ medium whereas lowering the pH increased cell growth in vitro. Our results show that nephrocalcinosis is not due to the direct effect of raised pericellular Ca++ or PTH alone and that persistently alkaline tubular fluid may play a role.  相似文献   

19.
20.
Role of Ras and Mapks in TGFbeta signaling   总被引:9,自引:0,他引:9  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号