首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a context of environmental risk assessment of nuclear 79Se radionuclide, the impact of low Se-selenite concentrations (0.008 and 8 mg kg−1) on bacterial communities of two soils, a silty clay loam and a sandy soil, was investigated over a 6-month incubation time. This Se-selenite was partially labelled with 75Se. The state of the Se-impacted bacterial communities was analyzed through total bacterial counts, DNA fingerprints (ARISA profiles) and metabolic profiling (carbon substrate utilization patterns). Furthermore, the genetic diversity of bacterial populations involved in Se volatilization was evaluated by tpm (thiopurine methyltransferase gene) profiling. Emissions of 75Se and CaCl2-extractable 75Se were measured by γ-spectrometry and scintillation analysis. Se-selenite inputs changed transiently the substrate utilization patterns of bacterial communities but did not affect the other indicators. Se volatilization was at its highest level just after adding Se-selenite and for about 1 week. This volatilization was proportional to the added Se-selenite concentrations. It was 100-fold higher in silty clay loam, even though Se bioavailability was reduced in this soil. The soils were amended with crushed grass 3 months after the addition of Se-selenite. This organic amendment affected the organization of bacterial communities and increased the Se-volatilizing activities of both soils. Original soil organic carbon and bacterial diversity and activities seemed responsible for the different levels of Se emissions observed in soils. tpm lineages, encoding Se methyltransferases, were detected in both soils, confirming the broad distribution of tpm-harbouring bacteria and their probable role in the emissions of volatile Se. Five distinct groups of tpm were recorded per soil, with tpmI lineage being detected throughout the incubation period. This study demonstrates the ability of bacterial communities at volatilizing Se concentrations inferior to geochemical backgrounds and suggests that a probable transfer of nuclear Se will occur through volatilization after an environmental spill.  相似文献   

2.
Biological volatilization of selenium (Se) in contaminated areas represents an environmentally friendly phytoremediation approach. Implementation of phytovolatilization technology for the remediation of Se-contaminated soils or sediments is oftentimes limited by its low remediation efficiency under field conditions. This greenhouse study determined the feasibility of manipulating soil organic content and hydraulic conditions in a soil–pickleweed (Salicornia bigelovii) system for the enhancement of Se volatilization. Based on annual shoot biomass production rate under field conditions (approximately 1.5 kg m−2), the addition of pickleweed shoot tissues to the soil surface resulted in 2.2-fold more biogenic volatile Se than the control, up to 251.6 ± 140.5 μg m−2 d−1. Selenium volatilization was significantly reduced at a soil water potential of −25 kPa, but substantially increased after re-irrigation to 0 kPa. In a 42-day experiment, the rate of Se volatilization was significantly correlated with soil water potential (P < 0.0001). Findings from this study demonstrate that Se volatilization be substantially enhanced by amending soil with pickleweed residues and by creating wetting and drying cycles that can be monitored with soil water potential probes in the field.  相似文献   

3.

Microbial volatilization of selenium (Se) may be an effective bioremediation technique to remove Se from dewatered sediments. In this laboratory study, soil management parameters (wetting and drying cycles, aeration, mixing, aggregate size, and water quality) were assessed for their influence upon Se volatilization. Selenium volatilization rates were higher under continuously moist conditions (—33 kPa) compared with wetting and drying cycles. After 6 months of incubation, a continuously moist seleniferous soil had lost approximately 21% of the Se inventory, whereas the same soil incubated under wetting and drying cycles had dissipated 7% of the total Se. Incubation under anoxia (N2 atmosphere) increased evolution of dimethyl selenide (DMSe) 1.4‐fold compared with aerated conditions. When soil samples were incubated under static versus continuously mixed conditions, the latter treatment enhanced volatilization 1.8‐fold. This was attributed to increased availability of the Se to the methylating soil microbiota. The optimum aggregate size to promote volatilization of Se was 0.53 mm when compared to 0.15, 1, and 2 mm. The application of saline well water (7.5 dS m‐1) over 6 months, compared with deionized water, had little effect on volatilization rates of Se from a highly saline (22 dS mr‐1) seleniferous dewatered sediment. Each of these parameters should be considered in promoting volatilization of Se as a bioremediation approach in the cleanup of seleniferous sediments.  相似文献   

4.
Leaching of nitrate (NO3 ) below the root zone and gaseous losses of nitrogen (N) such as ammonia (NH3) volatilization, are major mechanisms of N loss from agricultural soils. New techniques to minimize such losses are needed to maximize N uptake efficiency and minimize production costs and the risk of potential N contamination of ground and surface waters. The effects of cellulose (C), clinoptilolite zeolite (CZ), or a combination of both (C+CZ) on NH3 volatilization and N transformation in a calcareous Riviera fine sand (loamy, siliceous, hyperthermic, Arenic Glossaqualf) from a citrus grove were investigated in a laboratory incubation study. Ammonia volatilization from NH4NO3 (AN), (NH4)2SO4(AS), and urea (U) applied at 200 mg N kg–1 soil decreased by 2.5-, 2.1- and 0.9-fold, respectively, with cellulose application at 15 g kg–1 and by 4.4-, 2.9- and 3.0-fold, respectively, with CZ application at 15 g kg–1 as compared with that from the respective sources without the amendments. Application of cellulose plus CZ (each at 15 g kg–1) was the most effective in decreasing NH3 volatilization. Application of cellulose increased the microbial biomass, which was responsible for immobilization of N, and thus decreased volatilization loss of NH3–N. The effect of CZ, on the other hand, may be due to increased retention of NH4 in the ion-exchange sites. The positive effect of interaction between cellulose and CZ amendment on microbial biomass was probably due to improved nutrient retention and availability to microorganisms in the soil. Thus, the amendments provide favorable conditions for microbial growth. These results indicate that soil amendment of CZ or CZ plus organic materials such as cellulose has great potential in reducing fertilizer N loss in sandy soils.  相似文献   

5.
Summary In an incubation study addition of green manure caused a reduction in the ammonia volatilized initially from both sodic and reclaimed soils but extensive volatilization occurred from the sodic soil, amended with green manure, after the tenth day till the conclusion of the experiment after 9 weeks. Volatilization from the reclaimed soil was much less. There was a slight build up of organic carbon and ammoniacal nitrogen in both the soils though greater in the reclaimed soil. More of nitrate and nitrite accumulated in the sodic soil.  相似文献   

6.

Aims

A comparison was performed between plant species to determine if extractable, rather than total soil Se, is more effective at predicting plant Se accumulation over a full growing season.

Methods

Durum wheat (Triticum turgidum L.) and spring canola (Brassica napus L.) were sown in potted soil amended with 0, 0.1, 1.0, or 5.0 mg kg?1 Se as SeO4 2? or SeO3 2?. In addition, SeO4 2?-amended soils were amended with 0 or 50 mg kg?1 S as SO4 2?. Soils were analyzed for extractable and total concentration of Se ([Se]). Twice during the growing season plants were harvested and tissue [Se] was determined.

Results

Plants exposed to SeO3 2? accumulated the least Se. Fitted predictive models for whole plant accumulation based on extractable soil [Se] were similar to models based on total [Se] in soil (R2?=?0.73 or 0.74, respectively) and selenium speciation and soil [S] were important soil parameters to consider. As well, soil S amendments limited Se toxicity.

Conclusions

Soil quality guidelines (SQGs) based on extractable Se should be considered for risk assessment, particularly when Se speciation is unknown. Predictive models to estimate plant Se uptake should include soil S, a modifier of Se accumulation.  相似文献   

7.
Intensive practices in forest soils result in dramatic nitrogen (N) losses, particularly ammonia (NH3) volatilization, to adjacent environmental areas. A soil column experiment was conducted to evaluate the effect of bamboo biochar on NH3 volatilization from tea garden and bamboo forest soils. The results showed that biochar amendment effectively reduced NH3 volatilization from tea garden and bamboo forest soil by 79.2% and 75.5%, respectively. The soil pH values increased by 0.53-0.61 units after biochar application. The NH4+-N and total N of both soils were 13.8-29.7% and 34.0-41.9% higher under the biochar treatments than under the control treatment, respectively. In addition, the soil water contents of the two biochar-amended soils were significantly higher (P < 0.05), by 10.7-12.5%, than that of the soils without biochar amendment. Therefore, biochar mitigates NH3 volatilization from the tested forest soils, which was due to the increases in soil NH4+-N, total N and water contents after biochar amendment. Our main findings suggest that biochar addition is an effective management option for sustainable forest management.  相似文献   

8.
Cadmium (Cd) concentration in field-grown tobacco leaves usually ranges from < 0.5 to 5 mg Cd kg–1 dry matter (DM). Reducing bioavailability of soil Cd by adding amendments to the soil could be suitable to mitigate Cd uptake by tobacco plants. However, little is known on the effect of inorganic amendments on agricultural soils with low Cd concentrations. Therefore, we performed a pot experiment with tobacco plants that were grown during 56 days in two neutral to alkaline agricultural soils with low total Cd concentrations (soil 1 = 0.4, soil 2 = 0.7 mg kg–1). Both soils were amended or not with 1 or 5% of sepiolite, zeolite, hydroxyapatite and apatite II™. Major and trace elements were measured in mid-stalk position leaves. Soil metals were measured in a DTPA soil extraction to assess the effect of the amendments on metal bioavailability. Some amendments significantly reduced Cd concentration in tobacco leaves, but the effect differed between the two soils tested. In soil 1, the use of zeolite at the 1% dose was the most efficient, reducing the average Cd concentration from 0.6 to 0.4 mg kg–1. In soil 2, the 5% hydroxyapatite treatment led to the maximal reduction in Cd concentration (50%), with an average final Cd concentration in leaves of 0.7 mg kg–1 (control: 1.5 mg kg–1). There was a dose effect for some amendments in soil 2 (containing more Cd), suggesting a reduced efficiency of the amendment at the lowest addition rate. DTPA extractable Cd and Zn measured at the end of the pot experiment were correlated to the metal concentrations in tobacco leaves suggesting that (1) the reduction in leaf Cd concentration was due to a reduction in metal availability to tobacco and (2) DTPA may be a suitable extractant to estimate Cd availability to tobacco plants in these two soils. In addition, a batch experiment was performed with the same soils to test a larger number of amendments, including the four tested in the pot experiment. Results were compared to those of the pot experiment to assess whether a batch experiment may predict the efficiency of an amendment on a given soil. It gave results compatible with those from the pot experiment except for the sepiolite and highlighted the broad range of potential amendments available for heavy metal remediation in crop plants.  相似文献   

9.
Bañuelos  G.S.  Zambrzuski  S.  Mackey  B. 《Plant and Soil》2000,224(2):251-258
This two-part study compared the efficacy of different plant species to extract Se from soils irrigated with Se-laden effluent. The species used were: Brassica napus L. (canola), Brassica juncea Czern L. and Coss (Indian mustard), and Hordeum vulgare L. (barley). In Study 1 we irrigated the plants with a saline effluent containing 0.150 mg Se L–1, while in Study 2, the same species were planted in a saline soil selenized with 2 mg Se L–1. Plants were simultaneously harvested 120 days after planting. In Study 1, there were only slight effects of treatment on dry matter (DM) yield. Plant Se concentrations averaged 21 g Se g–1DM for the Brassica species, and 4.0 g Se g–1 DM for barley. Total Se added to soils via effluent decreased by 40% for Brassica species and by 20% for barley. In Study 2, total DM decreased for all species grown in saline soils containing Se. Plant Se concentrations averaged 75 g g–1 DM for Brassica species and 12 g Se g–1 DM for barley. Total Se added to soils prior to planting decreased by 40% for Brassica species and up to 12% for barley. In both studies, plant accumulation of Se accounted for at least 50% of the Se removed in soils planted to Brassica and up to 20% in soils planted to barley. Results show that although the tested Brassica species led to a significant reduction in Se added to soil via use of Se-laden effluent, additional plantings are necessary to further decrease Se content in the soil.  相似文献   

10.
Summary Ammonia volatilization losses measured from soils at seven sites in the Serengeti National Park, Tanzania during the 1986 growing season ranged from 2.78±0.49% to 25.03±1.34% of nitrogen applied. Although peak ammonia losses ranged from 0.071±0.018 to 0.404±0.040 g N m-2 h-1, rates dropped to zero within four days, and calculations reveal that volatilization losses represent minor fluxes in the context of the system's nitrogen cycling. Volatilization losses were inversely correlated with grazing intensity experienced by a site, and it appears that large ungulates themselves contribute to nutrient conservation throught indirect interactive effects on system processes.  相似文献   

11.
Summary One of the major concerns in central California (San Joaquin Valley) is the level of selenium (Se) in evaporation ponds containing agricultural drainage water. The objective of this work was to determine if volatilization of Se could be used as a bioremediation program to detoxify a saline seleniferous sediment of a dewatered evaporation pond. The dewatered sediment was rototilled, divided into subplots, and amended with various organic materials including citrus (orange) peel, cattle manure, barley straw and grape pomance. Some of the subplots were fertilized with nitrogen [(NH4)2SO4] and zinc (ZnSO4). Selenium volatilization was monitored in the field with a flux chamber system utilizing alkaline peroxide to trap the gas. Overall, the greatest emission of gaseous Se was recorded in the summer months and the lowest emission during the winter months. The background emission of volatile Se averaged 3.0 g Se h–1 m–2. The most effective organic amendment was cattle manure with an avg. Se emission of 54 g Se h–1 m–2. Composite soil samples from each subplot (upper 15 cm) were analyzed for total Se on a monthly interval during the course of this field study. After 22 months, the application of water plus tillage alone removed 32.2% of the Se content while the cattle manure treatment removed 57.8%. Among the parameters which enhanced volatilization of Se were an available C source, aeration, moisture, and high temperatures. This field study indicates promising results in detoxifying seleniferous sediments via microbial volatilization once environmental conditions have been optimized.  相似文献   

12.
The amounts of ammonia volatilized, following the application of cattle urine to 22 soils, were measured in the laboratory during an incubation period of 10 days. The urine contained 12.0 g N dm-3 and was applied to small columns of soil at a rate equivalent to 26.5 g N m-2. The soils were from fields of both grassland and arable cultivation and varied widely in properties. Ammonia volatilization ranged from 6.8 to 41.3% of the total urinary N, with a mean value of 26.4%. The soil property most closely related to the extent of volatilization was cation exchange capacity (CEC), and this was so whether all 22 soils were considered together or whether the 14 grassland and 8 arable soils were considered separately. In general, the higher the CEC the less the amount of ammonia volatilized. However, for a given value of CEC, volatilization tended to be greater from a grassland than from an arable soil. The pH of a soil/urine mixture measured after 24 hours was also quite closely correlated with the amount of ammonia volatilized, but the initial pH and titratable acidity of the soil were poorly correlated with ammonia volatilization. ei]H Marschner ei]H Lambers  相似文献   

13.
Impact of sulphur fertilisation on crop response to selenium fertilisation   总被引:1,自引:0,他引:1  
UK wheat (Triticum aestivum L.) has a low selenium (Se) concentration and agronomic biofortification with Se is a proposed solution. A possible limitation is that UK wheat is routinely fertilised with sulphur (S), which may affect uptake of Se by the crop. The response of wheat to Se and S fertilisation and residual effects of Se were determined in field trials over 2 consecutive years. Selenium fertilisation at 20 g ha?1 as sodium selenate increased grain Se by four to seven fold, up to 374 µg Se kg?1. Sulphur fertilisation produced contrasting effects in 2 years; in year 1 when the crop was not deficient in S, grain Se concentration was significantly enhanced by S, whereas in year 2 when crop yield responded significantly to S fertilisation, grain Se concentration was decreased significantly in the S-fertilised plots. An incubation experiment showed that addition of sulphate enhanced the recovery of selenate added to soils, probably through a suppression of selenate transformation to other unavailable forms in soils. Our results demonstrate complex interactions between S and Se involving both soil and plant physiological processes; S can enhance Se availability in soil but inhibit selenate uptake by plants. Furthermore, no residual effect of Se fertiliser applied in year 1 was found on the following crop.  相似文献   

14.
Biological volatilization of iodine from seawaters was studied using a radiotracer technique. Seawater samples were incubated aerobically in serum bottles with radioactive iodide tracer (125I), and volatile organic and inorganic iodine were collected with activated charcoal and silver wool trap, respectively. Iodine was volatilized mainly as organic iodine, and inorganic iodine volatilization was not observed. Influence of light intensity on the volatilization was determined, but no significant differences were observed under light (70,000 lux) and dark conditions. The effect of the chemical form of iodine on the volatilization was determined, and the results suggested that volatilization preferentially occurs from iodide (I?) but not from iodate (IO3 ?). Volatilization did not occur when the samples were autoclaved or filtered through a 0.22-μm pore size membrane filter. Incubation of the samples with antibiotics caused decreased volatilization. Conversely, enhanced volatilization was observed when the samples were incubated with yeast extract. Fifty-nine marine bacterial strains were then randomly isolated from marine environments, and their iodine-volatilizing capacities were determined. Among these, 19 strains exhibited significant capacities for volatilizing iodine. 16S ribosomal RNA gene comparisons indicated that these bacteria are members of Proteobacteria (α and γ subdivisions) and Cytophaga-Flexibacter-Bacteroides group. One of the strains, strain C-19, volatilized 1 to 2% of total iodine during cultivation, and the gaseous organic iodine was identified as methyl iodide (CH3I). These results suggest that organic iodine volatilization from seawaters occurs biologically, and that marine bacteria participate in the process. Considering that volatile organic iodine emitted from the oceans causes atmospheric ozone destruction, biological iodine volatilization from seawater is of great importance. Our results also contribute to prediction of movement and diffusion of long-lived radioactive iodine (129I) in the environment.  相似文献   

15.
Disposal of saline irrigation wastewater in hydrologically closed sinks in the semi-arid western U.S. has concentrated selenium-rich salts to hazardous levels and phytoextraction, along with plant-enhanced volatilization of methyl-selenides, is an active area of research. Here, we provide an overview of our ongoing studies of Stanleya pinnata (Brassicaceae), a previously unstudied candidate that is a primary accumulator (hyperaccumulator) of Se that is widespread and broadly adapted in the western U.S. When grown in sand culture under uniform greenhouse conditions, 16 populations representing S. pinnata's broad biogeographical range differed in shoot Se concentration by 1.4- to 3.6-fold, and the shoot concentrations were positively correlated with the indigenous soil Se levels at the collection sites. Thus, S. pinnata exhibits significant ecotypic variation in Se accumulation. All populations accumulated SeO4 2- preferentially over SO4 2- consistent with S. pinnata's classification as a primary Se accumulator, while hydroponically-grown Brassica juncea consistently accumulated sulfate preferentially over selenate. The Se in S. pinnata shoots was predominately in the soluble amino-acid pool, which may serve as direct precursor to volatile forms such as dimethyldiselenide; inorganic forms (e.g. selenate) dominated in B. juncea. Preliminary results suggest that S. pinnata may volatilize unusually large quantities of Se when grown at high sulfate concentrations, an unexpected result not heretofore reported in any species. In a sand–culture experiment, S. pinnata exhibited excellent tolerance of excess boron, but only moderate tolerance of salinity, and superior genotypes will likely be needed for phytoremediation of highly salinized soils and sediments. Stanleya pinnata is a perennial that responded favorably to repeated cuffing in the greenhouse, a trait that could prove valuable in field-scale phytoremediation. Environmental concerns about Se are common in the western USA, and S. pinnata is a potentially useful species for phytoremediation due to its broad adaptation to western soils and environments, and its uptake, metabolism and volatilization of Se.  相似文献   

16.
Bioremediation of hydrocarbon (HC) contaminated soils is most effective in aerobic conditions. Despite the fact that mass transfer of oxygen is an important process parameter, the effect of this parameter on solid-phase bioremediation has received limited attention. In this study, the combined effect of temperature and aeration on the bioremediation of low organic content coarse-grained soils, freshly contaminated with diesel, was investigated in solid-phase bench-scale bioreactors. Total HC and carbon range soil concentrations, volatilization, and microbial activity were monitored throughout the six-month experiments at two temperatures (7 and 22°C) and at two aeration rates (13 and 45 mL·s?1). Total HC removal reached between 48 and 83%. Generally, removal increased proportionally with temperature and aeration rates, and decreased proportionally with HC compounds molecular weight. Both biodegradation and volatilization played important roles in removal in all treatments. The high aeration rate enhanced microbial activity in soil. Enhancement was believed to be due to increased mass transfer of oxygen from the soil gas to the soil solution, where microbial activity occurs. However, high aeration also enhanced volatilization, especially at 22°C where 51% of HCs were lost to volatilization. High aeration rate enhanced biodegradation of compounds > nC15 without promoting their excessive volatilization.  相似文献   

17.
In the humid tropics, legumes are harvested and surface applied as mulch or incorporated as green manure. Studies on N dynamics and budgets from these systems report unaccounted losses of N. Ammonia volatilization may account for a significant percentage of these unexplained N deficits. The main objectives of this study were to: 1) determine the rate and amount of ammonia volatilization from organic amendments, both incorporated (green manure) and unincorporated (mulch), 2) compare ammonia volatilization of organic amendments on both acid (unlimed) and limed soils, and 3) correlate quality, i.e. polyphenolic and lignin concentration and carbon-to-nitrogen ratio, of the organic amendments with ammonia volatilization and net N mineralization. In an incubation experiment, ammonia volatilization losses and net N mineralization were measured from fresh leaflets of 10 legumes over a three-week period. Ammonia volatilization losses for the 10 species ranged from 3.4 to 11.8% of the total N applied in the organic amendment. Lignin content was negatively correlated to ammonia volatilization. Ammonia volatilized from mulches but not green manures, on both unlimed and limed soils, suggesting that ammonia volatilization is a surface phenomenon and not affected by soil pH. Net N mineralization was affected by species and soil pH, but was unaffected by placement (green manure or mulch). For the farmer in low-input agriculture where N tends to be limiting, volatilization losses of N from legume mulch systems could be on the same order of magnitude as crop removal.  相似文献   

18.
The fate of [14C]heptachlor in Saitama soil and the degradation of [14C]heptachlor in four Japanese field soils over 112 d after application were investigated. Heptachlor was degraded mainly to cis-heptachlor epoxide by a biotic process and to 1-hydroxychlordene by an abiotic process in the field soils. Volatilization of heptachlor and cis-heptachlor epoxide from the soil was observed over the experimental period. The amount of 1-hydroxychlordene produced in the soils appeared to be related to the soil water contents. Because heptachlor and heptachlor epoxides are predicted to volatilize to the atmosphere and to persist in soils, these compounds are thought to spread among Japanese environmental compartments even after a ban on their use.  相似文献   

19.
免耕稻田氮肥运筹对土壤NH3挥发及氮肥利用率的影响   总被引:2,自引:0,他引:2  
马玉华  刘兵  张枝盛  郑大  周亮  曹凑贵  李成芳 《生态学报》2013,33(18):5556-5564
通过大田试验,设置5种不同的施肥比例(基肥:分蘖肥:拔节肥:穗肥-2:2:3:3(R1)、3:2:2:3(R2)、4:2:2:2(R3)、4:3:1:2(R4)与0:0:0:0(CK)),研究氮肥运筹对稻田NH3挥发和氮肥利用率的影响。结果表明,(1)相对于不施肥,施肥显著提高了稻田NH3挥发量。氮肥施用后,NH3挥发损失量占施氮量的6.2%-8.5%,其中,以分蘖期NH3挥发损失量最大,齐穗期次之,苗期和拔节期最小。施肥处理间,处理R1稻田累积NH3挥发量最小,显著低于其它施肥处理,比处理R2、R3和R4分别低9.1%(P<0.05)、10.9%(P<0.05)和17.7%(P<0.05)。(2)相关分析表明,田面水NH4+、pH值和土壤NH4+和pH值均与稻田土壤NH3挥发通量呈显著或者极显著相关;(3)处理R1水稻氮肥利用率相对于处理R2、R3和R4增加了28.4%(P<0.05)、55.4%(P<0.05)和74.9%(P<0.05)。研究表明,氮肥后移能有效降低免耕稻田NH3挥发,提高水稻的氮肥利用率。  相似文献   

20.
The effect of plant roots on selenium (Se) mobility in soil was studied by a large-scale pot experiment in order to understand the environmental behavior of Se in agricultural soils under plant growth conditions. Soybean plants (Glycine max (L.) Merrill) were grown in a greenhouse for 84 d. The concentrations of Se and major elements (K, Ca, Mg, Na, and Al) in the soil solutions and in the plants were measured at different growth periods. Concentrations of Se and major cations in soil solution decreased as the soybean plants grew, while the concentrations of Al increased. It was assumed that the soybean roots released H+ with the uptake of cations; consequently, due to the acidification of the rhizosphere, Al3+ was released starting from the soil solid phase. The decreased Se concentration in the soil solution should be due to the enhancement of Se sorption onto the soil solid phase. The increase of Se sorption level in the rhizosphere was examined in a small-scale pot experiment. The soil–soil solution distribution coefficient of Se (K d-Se) was observed as an index of Se sorption level. K d-Se clearly increased in the rhizosphere soil after cultivation. The effects of pH and Al3+ in the rhizosphere on Se sorption were assessed by K d-Se measurements at different levels of HCl and AlCl3. In this third experiment, a decrease in pH increased K d-Se values, but no specific effect was observed on Se sorption due to increased Al3+. These results show that the Se mobility in agricultural soil could be decreased by plant roots under plant growth conditions due to enhanced Se sorption in the rhizosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号