首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Intracellular recordings were made from the dorsal longitudinal muscle of Manduca sexta to determine the effects of development and octopamine on the excitatory junction potential (EJP) produced in response to electrical stimulation of the motor nerve. Observations were made on pharate moths during the last 3 days before eclosion and on adults. In saline, the highest values for EJP amplitude and maximum rate of rise and for resting membrane potential are reached on the nineteenth day of the pupal period, the day the animal ecloses; adult values are slightly lower. In animals of all ages tested, DL-octopamine (5 X 10(-6) M) increases EJP amplitude and maximum rate of rise. Increases in amplitude are greater in animals at stage day 17 and 18 than in animals at stage day 19 and adult. Octopamine has no effect on EJP rise time (onset to peak) or recovery time (peak of EJP to 70% recovery). Octopamine causes a hyperpolarization of about 6 mV. The results show that developmental changes in synapse properties are paralleled only in part by changes induced by octopamine. Both development and octopamine increase EJP amplitude and maximum rate of rise, and neither alter rise time. EJP recovery time changes with development but not in response to octopamine. Forskolin (10(-4) M) mimics the effects of octopamine on day 17 animals. EJP amplitude and maximum rate of rise are increased by forskolin, and rise time and recovery time are unaffected. Forskolin, like octopamine, causes a 6 mV hyperpolarization of the muscle fiber. These results suggest that octopaminergic modulation at the Manduca sexta dorsal longitudinal neuromuscular junction may be mediated by changes in intracellular levels of cyclic AMP.  相似文献   

2.
The effects of alpha-adrenoceptor agonists and antagonists on contractions of the ABRM of M. edulis were examined. Naphazoline (10(-11)-10(-7)M) as well as octopamine potentiated both contractions in response to ACh and to repetitive electrical stimulation with brief pulses, while clonidine (10(-12)-10(-6)M), imidazole (10(-4)-10(-3)M) and tolazoline (10(-6)-10(-4)M) potentiated only the contraction in response to repetitive electrical stimulation. Potentiating actions of octopamine and naphazoline on ACh contraction were blocked by tolazoline but were little affected by clonidine and imidazole. Potentiating after-effect of repetitive electrical stimulation on subsequent ACh-contraction was not affected by clonidine and imidazole but was blocked by tolazoline. These results suggest that in the ABRM there are probably at least two classes of alpha-like receptors for octopamine; one may be on the muscle fibres and the other may be on the excitatory nerve terminals. Activation of the latter class of receptors may result in enhancement of ACh release from the terminals.  相似文献   

3.
Evidence for octopaminergic modulation of an insect visceral muscle   总被引:4,自引:0,他引:4  
Two dorsal unpaired median neurons (DUMOV1 and DUMOV2) lying in the posterior region of the VIIth abdominal ganglion of Locusta migratoria have axons which project to the muscles of the oviducts. This study reports the presence of octopamine within isolated DUMOV cell bodies, as well as in the oviducal nerve and innervated oviducal muscle. Individual cell bodies were pooled and found to contain about 0.34 pmol of octopamine per cell body giving an approximate value of 1.27 mM octopamine. Octopamine is concentrated within the area of oviducal muscle which receives DUMOV axons. Pharmacological studies reveal that the amplitude of neurally-evoked contractions of the oviducal muscle is reduced in a dose-dependent manner by octopamine, with threshold lying between 5 X 10(-10) M and 7 X 10(-9) M. The receptors for this response show a specificity for octopamine and synephrine, with an order of potency being octopamine = synephrine greater than metanephrine greater than tyramine greater than dopamine. The presence of octopamine throughout this neural pathway, coupled with the demonstration of octopaminergic modulation of muscular contraction, supports the hypothesis that octopamine serves a physiological role in this visceral system.  相似文献   

4.
Intracellular recordings of excitatory junction potentials (EJPs) and miniature EJPs (MEJPs) were made from the dorsal longitudinal muscle of Manduca sexta to determine the sites of action of octopamine. MEJPs increased in amplitude and frequency as the moth developed during the 3 days before eclosion. DL-Octopamine (5 X 10(-6) M) increased the amplitude of excitatory junction potentials in both immature moths (one day before eclosion) and adults. Octopamine (10(-5) M) also increased the amplitude and frequency of MEJPs from immature animals (one and two days before eclosion) but had the opposite effect on adults and pharate adults ready to eclose. Treatment with octopamine (10(-5) M) resulted in a decrease in input resistance and a hyperpolarization in both immature and adult muscle fibers. The results suggest that octopamine acts both presynaptically and postsynaptically but that the increase in the amplitude of the evoked response is due primarily to influences on presynaptic processes.  相似文献   

5.
The effect of octopamine on the neuromuscular junction of the mealworm (Tenebrio molitor) was examined. Octopamine potentiated excitatory junctional potentials (EJPs) recorded intracellularly and extracellularly from ventral longitudinal muscle fibers. The potentiating action of octopamine was blocked in the presence of the alpha-adrenergic blocking agent, phentolamine, but not in the presence of another alpha-blocker, phenoxybenzamine, or the beta-blockers propranolol and dichloroisoproterenol. The resting membrane potential, membrane input resistance, reversal potential of EJP, glutamate potentials, and spontaneous miniature EJPs were found to be unaffected by octopamine. In contrast, quantal contents estimated by the extracellularly recorded EJP failures were greatly increased by octopamine. These results suggest that octopamine acted on the presynaptic terminals via alpha-adrenoceptor-like receptors (octopamine receptors) at the Tenebrio neuromuscular junctions to enhance the transmitter release associated with the motor nerve impulses.  相似文献   

6.
Isomers of octopamine were tested for in vitro alpha-adrenergic stimulation of aortic smooth muscle of spontaneously hypertensive rats (SHR). In order to test the response of alpha 1-adrenoceptors to meta-, para-, and ortho-octopamine, alpha 2-adrenoceptors were blocked with 10(-7) M yohimbine, and to measure the response of alpha 2-adrenoceptors the alpha 1-adrenoceptors were blocked with 10(-7) M prazosin. The contractile response of aortic smooth muscle of SHR to stimulation by phenylephrine, m-, p-, and o-isomers of octopamine in the presence of yohimbine was not appreciably altered. However, administration of prazosin severely attenuated the response of muscles of these compounds indicating that like phenylephrine, the isomers of octopamine stimulate mainly alpha 1-adrenoceptors. The attenuation of contractile response to isomers of octopamine in the presence of prazosin was not as pronounced as in the case of phenylephrine. The comparative potencies of phenylephrine, m-, p-, and o-octopamine in the presence of 10(-7) M prazosin were 1:1.2:2.5:0.75, respectively. Thus, it appears that the isomers of octopamine, especially para- and meta-octopamine, play a much more important role in the physiology of vascular smooth muscle than has been thus far perceived.  相似文献   

7.
Neuromuscular transmission in an insect visceral muscle   总被引:2,自引:0,他引:2  
The electrical properties of the muscles of locust oviduct have been examined using intracellular recordings. The muscle cells are both dye and electrically coupled. They possess a wide array of spontaneous electrical activity ranging from slow oscillations of membrane potential to action potentials. In addition to possessing spontaneous electrical activity, certain regions of the oviduct are under motor control. The amplitude of evoked excitatory junction potentials (EJPs) increased step wise revealing innervation from a maximum of three motor units. These EJPs underwent summation and facilitation, and reached a critical threshold at which point the membrane revealed an active response. Bath applied glutamate, aspartate, proctolin, and octopamine were tested for their ability to alter resting potential and EJPs. L-glutamate (1.6 X 10(-5) M and above) produced a dose-dependent depolarization of membrane potential accompanied by a reduction in amplitude of EJPs. Although L-aspartate resulted in similar effects, the concentrations required were higher than those for glutamate. Proctolin (6.3 X 10(-11) M-6.0 X 10(-9) M) resulted in a dose-dependent depolarization but had little or no effect on amplitude of EJPs. Application of D, L-octopamine (3.2 X 10(-5) M-1.7 X 10(-4) M) induced a small hyperpolarization and a reduction in amplitude of EJP. It is suggested that contractions of locust oviduct appear to be regulated by a combination of a classical neurotransmitter such as glutamate, along with the neuromodulators octopamine and proctolin.  相似文献   

8.
1. The behaviour of the ouabain-insensitive Na efflux in barnacle muscle fibres towards dl-octopamine has been investigated.2. It is found that these fibres are quite often sensitive to external application of octopamine. A concentration as low as 10−9 M is effective.3. The kinetic results indicate that the stimulatory response develops within 5–10 min of exposure of the fibre to octopamine and is transitory in nature.4. The response to octopamine is greater in size in the presence of l-isoamyl-3-isobutylxanthine (IAX) than in the presence of l-propyl-3-methyl-7-(5-hydroxyhexyl)-xanthine (PMX). But neither IAX nor PMX stops the response from decaying.5. The response to octopamine is highly dependent on the presence of external Ca2+.6. The provisional conclusion is that the barnacle muscle fibre may be a useful preparation for studying the hormonal function of octopamine.  相似文献   

9.
The modulatory action of DL-octopamine on the multicellular femoral chordotonal organ (fCO) of the stick insect Cuniculina impigra was examined using extracellular recordings from the fCO nerve and intracellular recordings from single sensory neurons. To determine the octopaminergic effect on position, velocity and/or acceleration sensitivity of mechanoreceptors direct mechanical stimulations with defined parameters were applied to the fCO apodeme. The spontaneous activity in the fCO nerve was enhanced in a dose-dependent manner by octopamine (threshold at 5 × 10?7 M). This was based on enhanced activity of position sensitive neurons as the fCO activity for all position stimuli was shifted to higher values. Intracellular recordings of single sensory cells showed that velocity-sensitivity of single sensory cells was not altered by octopamine. Similarly, the response of fCO afferents to ramp-and-hold stimuli revealed that acceleration sensitivity was unaffected by octopamine. The observed alterations in the fCO activity indicate that responses to static stimuli are enhanced while responses to motion stimuli are not affected by octopamine. These findings suggest that the octopaminergic modulation of the fCO may affect the animals' posture and those leg movements that rely on position information.  相似文献   

10.
Tyramine-like immunoreactivity was identified in neurons of the VIIIth abdominal ganglion and in axons projecting to the spermatheca of adult females of Locusta migratoria. Tyramine-like immunoreactive processes were also found throughout all regions of the spermatheca and tyramine-like immunoreactive bipolar or multipolar neurons were present on the spermathecal sac. HPLC coupled with electrochemical detection revealed more tyramine than octopamine present in spermathecal tissue. Electrical stimulation of the ventral ovipositor nerve resulted in a significant increase in calcium-dependent release of tyramine from the spermatheca. Both tyramine and octopamine increase the frequency and basal tonus of spermathecal contractions in a dose-dependent manner, with octopamine having a lower threshold. When tyramine is applied along with a half maximal octopamine dose, there is an additive effect on contractions of the spermatheca with slight synergistic effects at lower doses of tyramine. High concentrations of tyramine (10(-4)M) stimulated increases in cyclic AMP levels of the spermatheca; an effect blocked by phentolamine. Phentolamine has a higher affinity (and thus a lower IC(50) value congruent with5.6x10(-8)M) than yohimbine (IC(50) congruent with1.1x10(-4)M) in reducing tyramine-induced spermathecal contractions. Taken together, these results suggest that tyramine may be a co-transmitter with octopamine at the spermatheca, with both neuroactive chemicals acting on an octopamine receptor.  相似文献   

11.
From lower concentrations (from 10(-7) to 10(-5) M) ethaverine reduces the maximal following frequency (MFF) of isolated guinea-pig's right atrium during its electrical driving at increasing frequencies. On the other hand, papaverine assumes a variable effect according to its concentration: increase (10(-7) M) or decrease (10(-6) M) of MFF. Modifications of MFF are related with those of atrial effective refractory period (ERP). These results show that ethaverine induces a lengthening of ERP whereas papaverine reduces or increases ERP. These observations are discussed comparatively with previous personal data on anesthetized dogs (Lacroix et al.) and with local anesthetic properties of ethaverine.  相似文献   

12.
Octopamine modulates the sensitivity of silkmoth pheromone receptor neurons   总被引:6,自引:0,他引:6  
Effects of octopamine and its antagonist epinastine on electrophysiological responses of receptor neurons of Antheraea polyphemus specialised to the pheromone components (E,Z)-6,11-hexadecadienyl acetate and (E,Z)-6,11-hexadecadienal were investigated. Injections of octopamine and epinastine into the moths had no effect on the transepithelial potential of the antennal-branch preparation nor on the spontaneous nerve impulse frequency in either type of receptor neuron. However, in the presence of continuous low-intensity pheromone stimulation, octopamine significantly increased the nerve impulse frequency in the acetate receptor neuron, but not in the aldehyde receptor neuron. Octopamine and epinastine had no significant effect on the receptor potential amplitudes elicited in both receptor neuron types by pheromone stimulation. However, the peak nerve impulse frequency in the response of both receptor neuron types to pheromone was significantly affected: decreased by epinastine and increased by octopamine over a broad range of pheromone concentrations. In control experiments, injection of physiological saline did not significantly alter the peak nerve impulse frequency. The effect of octopamine was established within 1 h after injection and persisted for about 4 h. The possibility of a direct action of octopamine on the nerve impulse generation by the receptor neurons is discussed. Accepted: 8 January 2000  相似文献   

13.
The biogenic amine octopamine and the pentapeptide proctolin are two important neuroactive chemicals that control contraction of the oviducts of the African locust Locusta migratoria. The physiological responses and signal transduction pathways used by octopamine and proctolin have been well characterized in the locust oviducts and this therefore provides the opportunity to examine the interaction between these two pathways. Octopamine, via the intracellular messenger adenosine 3',5'-cyclic monophosphate (cyclic AMP), inhibits contraction of the oviducts, while proctolin, via the phosphoinositol pathway, stimulates contraction. We have examined the physiological response of the oviducts to combinations of octopamine and proctolin and also looked at how combinations of these affect one of the main intracellular mediators of the octopamine response, namely cyclic AMP. It was found that application of octopamine to the oviducts led to a dose-dependent reduction in tonus of the muscle and also a decrease in the amplitude and frequency of spontaneous phasic contractions. Octopamine-induced relaxation was enhanced in the presence of the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX). Octopamine was also able to inhibit proctolin-induced contractions of the oviducts in a dose-dependent manner. A 10(-9) M proctolin-induced contraction was inhibited by 83% in the presence of 10(-5) M octopamine, and was completely inhibited in the presence of 10(-5) M octopamine plus 5x10(-4) M IBMX. Octopamine led to a dose-dependent increase in cyclic AMP content as measured by radioimmunoassay. In the presence of 10(-9) M proctolin, this octopamine-induced increase in cyclic AMP was reduced by as much as 60%. Proctolin also caused a dose-dependent decrease in the cyclic AMP elevation produced by 5x10(-6) M octopamine. These results indicate that octopamine and proctolin can antagonize each other's physiological response when added in combination, and that proctolin is able to modulate the response of the oviducts to octopamine by influencing cyclic AMP levels.  相似文献   

14.
A concentration-dependent localization of octopamine-sensitive adenylate cyclase activity has been demonstrated in skeletal muscle of the locust, Schistocerca gregaria, using an histochemical technique. In the intermediate speed contracting muscle fibres from the fan region of the extensor-tibiae muscle of the locust hindleg, low concentrations of DL-octopamine (10(-8) M) induce reaction product preferentially in the sarcoplasmic reticular component of the dyads. At slightly higher concentrations (10(-7) and 10(-6) M) lower amounts of diffuse reaction product are also found in the non-dyad sarcoplasmic reticulum and at the sarcolemmal membrane, with occasional amounts of a less diffuse, punctuate product in the transverse tubule (T-tubule) component of the dyads. At higher concentrations (10(-5) and 10(-3) M) the predominant product is the dense, plaque-like accumulations of reaction product in the T-tubule component of the dyads. The results are discussed in terms of the likely physiological significance of the accumulation of reaction product in these different locations.  相似文献   

15.
Essential oil constituents were tested for their neurophysiological effects in Periplaneta americana and Blaberus discoidalis. Eugenol depressed spontaneous and stimulus-evoked impulses recorded extracellularly in the abdominal nerve cord, with an almost complete block of spikes at 2 x 10(-3) M. Geraniol and citral had similar depressive effects but increased spontaneous firing at lower doses (threshold 2.5 x 10(-4) M). Similar effects occurred in dorsal unpaired median (DUM) neurons, recorded intracellularly in the isolated terminal abdominal ganglion of P. americana. Spontaneous firing was progressively reduced by increasing concentrations of eugenol, whereas geraniol and citral produced biphasic effects (excitation at 10(-4) M, depression at 2 x 10(-3) M). All three oils decreased excitability of silent DUM neurons that were depolarised by applied current, but eugenol (at 10(-3) M) also changed the firing pattern from single spikes to bursts driven by plateau potentials. All oils reduced spike undershoot. Low doses of citral and geraniol (threshold ca. 10(-4) M) reversibly increased the frequency of spontaneous foregut contractions and abolished them at 2 x 10(-3) M (together with response to electrical stimulation). Eugenol reversibly reduced spontaneous activity at 10(-4) M and above. Eugenol has been reported to exert its insecticidal properties via a low-dose activation of octopamine receptors. In our studies, however, octopamine was found to have opposing effects to eugenol on DUM neurons and foregut activity (excitatory in both). Furthermore, eugenol did not affect the response to octopamine in DUM neurons. These results suggest that reported effects of eugenol were on a different sub-type of octopamine receptor.  相似文献   

16.
Incubation of bovine luteal cells with the alternative pathway catecholamines octopamine, synephrine and deoxyadrenaline at concentrations of 10(-6) to 10(-3) M enhanced the production of progesterone (P less than 0.05). Tryamine did not alter basal progesterone production (P greater than 0.05). Addition of noradrenaline and adrenaline at concentrations of 10(-4) to 10(-7) M significantly elevated the production of progesterone (P less than 0.05). The steroidogenic response to noradrenaline and adrenaline was greater than that for octopamine, synephrine and deoxyadrenaline (P less than 0.05). Response to both primary (10(-6) M) and alternative (10(-4) M) pathway catecholamines was inhibited by propranolol (10(-5) M, P less than 0.05) but not phentolamine (10(-5) M, P greater than 0.05). These results demonstrate that octopamine, synephrine and deoxyadrenaline can affect steroidogenesis by bovine luteal cells, and their action is mediated by beta-adrenergic receptors.  相似文献   

17.
J W Gole  G L Orr  R G Downer 《Life sciences》1983,32(26):2939-2947
Chlordimeform (CDM) and demethylchloridimeform (DCDM) mimic the action of octopamine in elevating adenylate cyclase activity in intact nerve cords of the American cockroach, Periplaneta americana. At a concentration of 1 x 10(-5)M, DCDM (13.5x increase within 20 minutes) is a more potent effector of the response than CDM (3x increase within 20 minutes), but both compounds show less efficacy than octopamine (23.5x increase within 15 minutes). DCDM also mimics the stimulatory effect of octopamine on adenylate cyclase activity in nerve cord homogenates whereas CDM has no demonstrable effect on this preparation. The octopamine- and DCDM-induced responses are competitively inhibited by phentolamine (1 x 10(-6)M) and cyproheptadine (1 x 10(-6)M) but not by propranolol (1 x 10(-6)M). DCDM and CDM inhibit the octopamine-induced activation of adenylate cyclase by 33% and 44% respectively. The results are discussed in light of the proposal that DCDM serves as a partial agonist and CDM as an antagonist of the octopamine receptor.  相似文献   

18.
Using the double sucrose gap, we have examined the role of K+ channels in the cholinergic depolarizations in response to field stimulation and acetylcholine (Ach) in canine trachealis. Acetylcholine-like depolarization per se decreased electrotonic potentials from hyperpolarizing currents. The net effect of acetylcholine (10(-6) M) depolarization on membrane conductance was a small increase after the depolarization was compensated by current clamp. Reversal potentials for acetylcholine depolarization and for the excitatory junction potential (EJP) were determined by extrapolation to be 20-30 mV positive to the resting potential, previously shown to be approximately -55 mV. They were shifted positively by tetraethylammonium ion (TEA) at 20 mM or Ba2+ at 1 mM. TEA or Ba2+ initially depolarized the membrane and increased membrane resistance. Repolarization of the membrane restored any reductions in EJP amplitudes associated with depolarization. After 15 min, the membrane potential partially repolarized, and acetylcholine-induced depolarization and contractions were then increased by TEA. 4-Aminopyridine depolarized the membrane but decreased membrane resistance. Apamin (10(-6) M), charybdotoxin (10(-7) M), and glybenclamide (10(-5) M) each failed to significantly depolarize membranes, increase membrane resistance, or reduce EJP amplitudes or depolarization to 10(-6) M Ach. Glybenclamide reduced depolarizations to added acetylcholine slightly. TEA occasionally reduced the EJP markedly, but this was shown to be most likely a prejunctional effect mediated by norepinephrine release. TEA alone among K(+)-channel blockers slowed the onset and the time courses of the EJP as well as the acetylcholine-induced depolarization. K(+)-channel closure cannot be a complete explanation of acetylcholine-induced membrane effects on this tissue. Acetylcholine must have increased the conductance of an ion with a reversal potential positive to the resting potential in addition to any effect to close K+ channels.  相似文献   

19.
Both octopamine and proctolin potentiate nerve-evoked skeletal muscle contractions in the horseshoe crab, Limulus. The threshold concentration for octopamine was 10?9 to 10?8M, while for proctolin it was 3 × 10?9M. Norepinephrine and dopamine produced effects similar to octopamine but at higher thresholds; tyramine and serotonin were ineffective. Octopamine caused significant increases in amplitudes of excitatory postsynaptic potentials (epsps) of muscle fibers, but had little effect on muscle fiber input resistance or membrane potential. Also, octopamine did not affect depolarization of muscle fibers and subsequent contraction due to the direct action of exogenously applied glutamate. These results suggest that octopamine potentiates nerve-evoked contractions primarily by facilitating release of neuromuscular transmitter. At concentrations above 10?7M, however, octopamine sometimes caused muscle spikes in response to motoneuron stimulation, a finding that suggests that octopamine may also have some postsynaptic action. Proctolin potentiated the muscle contractions evoked by glutamate but had little effect on glutamate-evoked muscle fiber depolarization, muscle fiber input resistance, or membrane potential. Thus, proctolin appears to act directly on skeletal muscle to enhance contractility. The proctolin-induced potentiations of contraction were sometimes accompanied by modest increases in epsp amplitude, so that unlike lobster skeletal and Limulus cardiac neuromuscular preparations, proctolin may have a secondary direct synaptic effect. Both octopamine and proctolin have been found in Limulus cardiac ganglion. This potential access to the hemolymph and the relatively low threshold concentrations needed for physiological action suggest that octopamine and proctolin could function as hormonal modulators of neuromuscular function in Limulus.  相似文献   

20.
The site of neuromuscular blockade induced by clindamycin and lincomycin was studied on isolated nerve and nerve-muscle preparations. Clindamycin (3.6 X 10(-3) M) but not lincomycin (up to 1.5 X 10(-2) M) had a local anaesthetic effect on a frog desheathed nerve preparation. Clindamycin (8 X 10(-4) M) and lincomycin (4 X 10(-3) M) depressed the response of the rat diaphragm to nerve stimulation and to direct muscle stimulation in parallel. This indicated that the predominant neuromuscular blocking effect of these antibiotics was due to an effect on the muscle. Clindamycin was fivefold more potent than lincomycin in this effect, and the unionized form of both drugs was the active form. Lincomycin (4 X 10(-3) M) but not clindamycin (8 X 10(-4) M) also had some depressant effect on nerve-muscle transmission as indicated by the interaction of the effects of the antibiotics and d-tubocurarine. The significance of these findings is discussed in relation to the acute clinical toxicity of these antibiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号