首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Song  Ping  Huang  Baoqi  Zhang  Sen  Zhang  Ke  Yuan  Kai  Ji  Xiaojun  Ren  Lujing  Wen  Jianping  Huang  He 《Applied microbiology and biotechnology》2018,102(24):10729-10742
Applied Microbiology and Biotechnology - Pneumocandin B0, the precursor of the antifungal drug caspofungin, is a secondary metabolite of the fungus Glarea lozoyensis. In this study, we investigated...  相似文献   

2.
3.
Novel proline 3-hydroxylase (P3H) and proline 4-hydroxylase (P4H) activities that convert free l-proline to both trans 3- and trans 4-hydroxy- l-proline were detected in protein extracts of the anamorphic fungus Glarea lozoyensis. The enzymatic conversion of l-proline to trans 3- and trans 4-hydroxy- l-proline was strictly dependent on alpha-ketoglutarate, ascorbate, and dithiothreitol. Ferrous iron was required for optimal P3H and P4H activity. These substrate and co-factor requirements indicate these enzyme activities belong to the class of 2-oxoglutarate-dependent dioxygenases. Both P3H and P4H were inhibited by zinc and other trace metals. The addition of proline to the fermentation medium resulted in an increase in the specific activity of P4H and a decrease in the synthesis of pneumocandin C(0). Additionally, the synthesis of trans 3- and trans 4-hydroxy- l-proline in vivo was affected differently by the proline concentration in the medium. This result suggested that two enzymes may be responsible for the regio- and stereospecific hydroxylation of l-proline.  相似文献   

4.
【目的】采用响应面法优化丝状真菌Glarea lozoyensis SIIA-F1108发酵生产纽莫康定B_0培养基,提高发酵产量;通过氮源优化,降低发酵液菌体浓度,改善发酵过程的溶氧水平。【方法】采用Plackett-Burman设计和响应面法进行培养基优化,筛选出对纽莫康定B_0产量具有显著影响的因素;通过最陡爬坡实验及Box-Behnken设计,并利用Design-Expert软件对实验数据进行回归分析,得到优化的发酵培养基配方;通过对优化培养基中氮源组分进行全因子实验,最终得到高产量和低菌体浓度发酵培养基。【结果】实验数据表明:甘露醇、脯氨酸和葡萄糖对纽莫康定B_0产量影响最大;最佳浓度分别为甘露醇167.3 g/L、脯氨酸26.1 g/L、葡萄糖28.5 g/L。采用优化后的培养基进行摇瓶发酵,纽莫康定B_0产量达到了1 840 mg/L,较优化前提高了42%,与预测结果一致。用硫酸铵部分替换棉籽饼粉后,发酵液菌体浓度降低,在100 L发酵罐上对优化后的结果做了进一步的验证,纽莫康定B_0产量达到1 980 mg/L。【结论】模型预测值与实验值有较高吻合度,具备较高可信度和显著性,发酵产量提高了42%,响应面实验设计和分析方法能够有效地用于丝状真菌Glarea lozoyensis SIIA-F1108产纽莫康定B_0发酵培养基进行优化。通过调整培养基中的氮源组成,降低了发酵液菌体浓度,改善了发酵过程的溶氧水平。  相似文献   

5.
6.
The filamentous fungus Glarea lozoyensis produces a novel, pharmaceutically important pneumocandin (B(0)) that is used to synthesize a lipopeptide which demonstrates cidal activity against clinically relevant pathogens. A range of unwanted pneumocandin analogs are also produced by the organism. To maintain the unwanted impurities to acceptable levels upon scaleup, a good understanding of the impact of chemical and physical environment on the cell physiology is required, which benefits downstream processing. Pilot-scale studies were performed to determine the impact of dissolved oxygen, temperature, pH, and carbon dioxide on the process. Experiments included multiple fermenters (up to seven) at 0.07 and 0.8 m(3) scale using single source medium sterilization and inoculum. Gas blending was used to separate effects of dissolved oxygen from agitation. The process was significantly influenced by dissolved oxygen level. The critical dissolved oxygen tension (C(crit)) for growth was below 2% air saturation. The C(crit) for production of pneumocandin B(0) was 20% air saturation, with a significant reduction of the specific production rate below this value. In contrast, low dissolved oxygen levels produced a substantial increase of pneumocandins B(1), B(5), and E(0), while high dissolved oxygen levels produced a disproportionate increase of D(5). This sensivity to dissolved oxygen was independent of agitation within a power range of 2-15 kW/m(3). Broth viscosity was impacted below 10% dissolved oxygen, suggesting an effect on morphology. The process was shown to be sensitive to temperature but relatively insensitive to pH and carbon dioxide (in the exhaust gas) within the ranges studied. This scaledown analysis explained phenomena seen at pilot scale and helped define operating boundary conditions for successful scale up to 19 m(3).  相似文献   

7.
The scale up of the novel, pharmaceutically important pneumocandin (B(0)), from the filamentous fungus Glarea lozoyensis was successfully completed from pilot scale (0.07, 0.8, and 19 m(3)) to production scale (57 m(3)). This was accomplished, despite dissimilar reactor geometry, employing a combination of scale-up criteria, process sensitivity studies, and regime analysis using characteristic time constants for both oxygen mass transfer and bulk mixing. Dissolved oxygen tension, separated from the influence of agitation by gas blending at the 0.07 m(3)-scale, had a marked influence on the concentrations of pneumocandin analogs with different levels of hydroxylation, and these concentrations were used as an indicator of bulk mixing upon scale up. The profound impact of dissolved oxygen tension (DOT) (low and high levels) on analog formation dictated the use of constant DOT, at 80% air saturation, as a scale-up criterion. As a result k(L)a, Oxygen uptake rate (OUR) and hence the OTR were held constant, which were effectively conserved across the scales, while the use of other criterion such as P(g)/V(L), or mixing time were less effective. Production scale (57 m(3)) mixing times were found to be faster than those at 19 m(3) due to a difference in liquid height/tank diameter ratio (H(L)/D(T)). Regime analysis at 19 and 57 m(3) for bulk mixing (t(c)) and oxygen transfer (1/k(L)a) showed that oxygen transfer was the rate-limiting step for this highly shear thinning fermentation, providing additional support for the choice of scale-up criterion.  相似文献   

8.
A combination of microbial strain improvement and statistical optimization is investigated to maximize pneumocandin B0 production from Glarea lozoyensis ATCC 74030. Atmospheric and room temperature plasma (ARTP) was used to enhance G. lozoyensis ATCC 74030 in pneumocandin B0 yield. Mutant strain G. lozoyensis Q1 exhibited 1.39-fold increase in pneumocandin B0 production to 1134 mg/L when compared with the parent strain (810 mg/L). Further, the optimized medium provided another 1.65-fold in final pneumocandin B0 concentration to 1873 mg/L compared to the original medium. The results of this study indicated the combined application of a classical mutation and medium optimization can improve effectively pneumocandin B0 production from G. lozoyensis and could be a tool to improve other secondary metabolites production by fungal strains.  相似文献   

9.
The filamentous fungus Glarea lozoyensis produces a novel, pharmaceutically important pneumocandin (B0) that is used to synthesize a polypeptide, which demonstrates fungicidal activity against clinically relevant pathogens. The scale-up of the pneumocandin fermentation requires an understanding of the rheological properties of the broth and the factors that influence flow behavior. A systematic approach for characterizing the rheological properties using a standard methodology is presented here. An appropriate rheometer was chosen and the effects of shear rate ramping, broth handling, creep and yield testing were examined. The fed-batch fermentation used a soluble production medium that allowed the relationship between biomass and rheological properties to be studied up to the 19-m3 scale. The morphologically heterogeneous broth demonstrated time-dependent shear thinning behavior with thixotropy and a yield stress. The flow curves were described by the power law model, with flow behavior of 0.35-0.4 and consistency index up to 10 Pa.sn. The use of a cup and bob rheometer was preferable to alternative techniques, including turbine and spindle systems defined by Mitschka's technique. The consistency index and flow behavior were shown to have a non-linear relationship with biomass concentrations up to 140 g/L. The consistency index continually increased with biomass during the fermentation, while the flow behavior initially decreased rapidly and then remained at low values for the remainder of the batch cultivation. The consistency index and yield stress were influenced by temperature, osmotic pressure, and pH, while the flow behavior remained independent of these factors.  相似文献   

10.
[目的] Glarea lozoyensis是抗真菌药物卡泊芬净的产生菌,其突变菌株ATCC 74030的线粒体基因组已被报道。我们此前的研究发现诱变剂能引起该菌某些细胞核基因的突变,但诱变剂是否也能引起线粒体DNA序列的改变并不清楚。[方法] 组装野生型菌株ATCC 20868的线粒体基因组,并与发表的突变型菌株ATCC 74030的线粒体基因组进行比较。通过PCR验证野生和突变菌株线粒体基因组间表现差异之处,并利用正确的线粒体基因组序列进行新的分析。[结果] 我们成功组装出野生型菌株ATCC 20868的线粒体基因组,通过比较其与发表的ATCC 74030的线粒体基因组序列,发现存在6处单核苷酸变异位点和2处具有长度差异的区域。然而,随后的PCR验证和序列比较并没有发现2个菌株间存在这些差异。最初观察到的碱基差异是因为发表的ATCC 74030线粒体基因组存在序列错误。有趣的是,在Glarea lozoyensis的线粒体基因组中,我们发现存在3个具有内含子的tRNA基因和1个rnpB基因。同时,该菌线粒体基因组中存在多种重复序列,在其线粒体和细胞核基因组间也存在明显的DNA片段重复事件。[结论] 诱变剂没有引起G. lozoyensis线粒体DNA的任何改变;发表的ATCC 74030的线粒体基因组存在序列错误。我们报道G. lozoyensis正确的线粒体基因组序列,并且发现该菌线粒体和细胞核基因组间频繁的基因交流。  相似文献   

11.
Pneumocandins produced by the fungus Glarea lozoyensis are acylated cyclic hexapeptides of the echinocandin family. Pneumocandin B0 is the starting molecule for the first semisynthetic echinocandin antifungal drug, caspofungin acetate. In the wild-type strain, pneumocandin B0 is a minor fermentation product, and its industrial production was achieved by a combination of extensive mutation and medium optimization. The pneumocandin biosynthetic gene cluster was previously elucidated by a whole-genome sequencing approach. Knowledge of the biosynthetic cluster suggested an alternative way to produce exclusively pneumocandin B0. Disruption of GLOXY4, encoding a nonheme, α-ketoglutarate-dependent oxygenase, confirmed its involvement in l-leucine cyclization to form 4S-methyl-l-proline. The absence of 4S-methyl-l-proline abolishes pneumocandin A0 production, and 3S-hydroxyl-l-proline occupies the hexapeptide core''s position 6, resulting in exclusive production of pneumocandin B0. Retrospective analysis of the GLOXY4 gene in a previously isolated pneumocandin B0-exclusive mutant (ATCC 74030) indicated that chemical mutagenesis disrupted the GLOXY4 gene function by introducing two amino acid mutations in GLOXY4. This one-step genetic manipulation can rationally engineer a high-yield production strain.  相似文献   

12.
Micafungin, a semisynthetic derivative of the cyclic hexapeptide FR901379 produced by Coleophoma empetri fermentation, is the only O-sulfonated echinocandin-type antifungal drug. However, the detailed formation mechanism of O-sulfonate group, whether before or after the assembly of hexapeptide, remains elusive. Here, we confirmed that O-sulfonylation occurs after hexapeptide assembly as a kind of postmodification in the biosynthesis of FR901379. The released cyclic hexapeptide was hydroxylated by cytochrome P450 McfP and successively sulfonated by sulfotransferase McfS. And other three echinocandin sulfotransferases were identified through genome mining by using McfS as a sequence probe. Moreover, pneumocandin B0, the precursor of caspofungin, could be O-sulfonated by heterologously introducing the McfP-McfS into the pneumocandin B0-producing species Glarea lozoyensis. The water-solubility of sulfonated pneumocandin B0 is 4000 times higher than that of pneumocandin B0. The revealed O-sulfonation mechanism will provide new insights into the design and production of novel sulfonated echinocandins by metabolic engineering.  相似文献   

13.
Frozen bagged seed inoculum was prepared, thawed and tested for seven cultures. Thawing techniques were developed and other key influences on thawing rate were quantified; seed bag thawing without a water bath rarely required more than 4 to 5 h and was as short as 0.5 to 1 h for lower fill volume bags. Testing included growth of bagged seed as a function of bag fill volume (0.5, 1.0, 2.0, and 3.5 L), comparison of culture age at time of bagging, growth of bagged versus laboratory-prepared seed, productivity of production cultures derived from bagged versus laboratory-prepared seed, growth of bagged seed as a function of volume percent glycerol added at time of bagging, and growth of bagged seed as a function of frozen storage time and temperature. For each culture tested, conditions were developed such that seed tanks inoculated with bagged seed showed only minimal delay in attaining the target oxygen uptake rate (OUR) relative to seed tanks inoculated with laboratory-prepared inoculum. Although the bag fill volume did influence culture growth in some cases, bag fill volumes required were reasonable (typically 2.0 to 3.5 L) compared with laboratory seed inoculum volumes of 2.0 L. In the most remarkable example, frozen bagged seed was prepared from a second-stage seed-tank cultivation of Glarca lozoyensis, then thawed and inoculated into first-stage seed medium. It grew to the desired OUR in a similar timeframe as laboratory-prepared inoculum inoculated into first-stage seed medium. Thus, the frozen bagged seed replaced an existing laboratory inoculum preparation period of 7 days without an appreciable delay in either of the two subsequent seed-tank growth stages. Furthermore, productivities were found to be comparable for bagged-seed-derived and laboratory-seed-derived production cultivations for four different fermentation processes.  相似文献   

14.
Robust in situ biochemical monitoring is essential for the development of substrate feed control to optimize fermentation processes. The scale up of the fermentation for the fungus Glarea lozoyensis can benefit from such technology to improve the yield of the pharmaceutically important pneumocandin of interest and control the levels of unwanted analogues. A new in situ probe, using a diamond attenuated total reflection element, was evaluated at pilot scale for the quantitative measurement of fermentation analytes using Fourier transform mid-IR spectrometry. The new technology was shown to be stable, unaffected by reactor operation conditions of agitation, airflow, and backpressure, but sensitive to temperature control. Both glucose and phosphate were simultaneously monitored during a seed fermentation at 280 L pilot scale using complex medium with detection to 0.1 g/L for both analytes. Fructose, glutamate, and proline were monitored at 75 L scale using production media with detection limits of 0.1, 0.5, and 0.5 g/L respectively. Partial least squares calibration/prediction models were created for analytes of interest using off-line reference measurements and specific spectral regions. Good fits were obtained between off-line measurements and those predicted by in situ mid-IR. Standard errors of prediction (SEP) for glucose (range 18-0.1 g/L) and phosphate (range 11-7.5 g/L) were 0.16 and 1.8 g/L respectively with mean percentage errors (MPEs) around 2.5%. SEP values for the production process: fructose (range 20-0.1 g/L), glutamate (8-0.5 g/L), and proline (12-0.5 g/L) were 0.44, 0.6, and 0.5 g/L respectively with MPEs of 2.2, 5.3, and 10.1%. The technology effectively demonstrates quantitative multicomponent analysis of fermentation processes using in situ monitoring.  相似文献   

15.
Deamidation of the asparaginyl-glycyl sequence   总被引:2,自引:0,他引:2  
The deamidation of Ac-Asn-Gly-NHMe and Ac-Isn-Gly-NHMe has been studied as a model for the facile deamidation of the Asn-Gly sequence in proteins. At alkaline pH, the product in each case is an identical mixture of Ac-alpha-Asp-Gly-NHMe (approximately 22%) and Ac-beta-Asp-Gly-NHMe (approximately 78%) as determined by n.m.r. spectroscopy. Because this same ratio is obtained from both Ac-Asn-Gly-NHMe and Ac-Isn-Gly-NHMe, the postulated mechanism, that deamidation proceeds through a cyclic imide intermediate, is confirmed. Unlike peptides of aspartyl esters, cyclization does not occur under nonaqueous conditions or at low pH in aqueous solution.  相似文献   

16.
A high total pneumocandin titer (B0 + C0) with a low percentage of the structural isomer pneumocandin C0 was achieved by carrying out fermentations of Glarea lozoyensis at a high residual fructose concentration (125 g/l initial). When the fermentation was carried out at a low residual fructose concentration (40 g/l initial), pneumocandin production increased by 34%. However, a disproportionate increase in the level of pneumocandin C0 synthesized (250% increase vs 30% increase for pneumocandin B0) was observed. Midcycle addition of 150 mM NaCl or 116 mM Na2SO4 to low residual fructose fermentations returned the titer and isomer levels to those seen for the high residual fructose fermentation. The increase in pneumocandin C0 synthesis under low residual fructose conditions appears to be linked to the increase in the synthesis of trans-4 hydroxyproline, with the synthesis of trans-3 hydroxyproline remaining unaffected. This suggests that the formation of pneumocandin C0 is the result of a misincorporation of trans-4 hydroxyproline instead of trans-3 hydroxyproline by the pneumocandin peptide synthetase, and that the amount of trans-4 hydroxyproline formed dictates the frequency of this misincorporation. Received: 16 February 2000 / Revised: 17 May 2000 / Accepted: 8 June 2000  相似文献   

17.
MOTIVATION: Separation of protein sequence regions according to their local information complexity and subsequent masking of low complexity regions has greatly enhanced the reliability of function prediction by sequence similarity. Comparisons with alternative methods that focus on compositional sequence bias rather than information complexity measures have shown that removal of compositional bias yields at least as sensitive and much more specific results. Besides the application of sequence masking algorithms to sequence similarity searches, the study of the masked regions themselves is of great interest. Traditionally, however, these have been neglected despite evidence of their functional relevance. RESULTS: Here we demonstrate that compositional bias seems to be a more effective measure for the detection of biologically meaningful signals. Typical results on proteins are compared to results for sequences that have been randomized in various ways, conserving composition and local correlations for individual proteins or the entire set. It is remarkable that low-complexity regions have the same form of distribution in proteins as in randomized sequences, and that the signal from randomized sequences with conserved local correlations and amino acid composition almost matches the signal from proteins. This is not the case for sequence bias, which hence seems to be a genuinely biological phenomenon in contrast to patches of low complexity.  相似文献   

18.
The function of amino-terminal pro-specific peptides (propeptides), sequences often found on intermediate precursor forms of secreted proteins, is poorly understood. Human preproparathyroid hormone (prepro-PTH), a precursor protein containing such a propeptide, is initially synthesized as a precursor containing a 25-amino acid signal sequence, a 6-amino acid propeptide, and the 84-amino acid mature secreted peptide. Cloned cDNA encoding prepro-PTH and synthetic oligonucleotides were used to generate a mutant missing precisely the pro-specific sequences. The effects of this deletion on signal sequence function and on secretion per se were assessed after expression of the mutant cDNA in intact cells and in a cell-free translation system using synthetic mRNA in the presence of microsomal membranes. The mutant precursor protein was inefficiently translocated and cleaved, and cleavage occurred both at the normal site and within the signal sequence. Thus, for the eukaryotic protein prepro-PTH, sequences immediately downstream and separate from the classically defined signal sequence facilitate accurate and efficient signal function.  相似文献   

19.
The antifungal echinocandin lipopeptide, acrophiarin, was circumscribed in a patent in 1979. We confirmed that the producing strain NRRL 8095 is Penicillium arenicola and other strains of P. arenicola produced acrophiarin and acrophiarin analogues. Genome sequencing of NRRL 8095 identified the acrophiarin gene cluster. Penicillium arenicola and echinocandin-producing Aspergillus species belong to the family Aspergillaceae of the Eurotiomycetes, but several features of acrophiarin and its gene cluster suggest a closer relationship with echinocandins from Leotiomycete fungi. These features include hydroxy-glutamine in the peptide core instead of a serine or threonine residue, the inclusion of a non-heme iron, α-ketoglutarate-dependent oxygenase for hydroxylation of the C3 of the glutamine, and a thioesterase. In addition, P. arenicola bears similarity to Leotiomycete echinocandin-producing species because it exhibits self-resistance to exogenous echinocandins. Phylogenetic analysis of the genes of the echinocandin biosynthetic family indicated that most of the predicted proteins of acrophiarin gene cluster exhibited higher similarity to the predicted proteins of the pneumocandin gene cluster of the Leotiomycete Glarea lozoyensis than to those of the echinocandin B gene cluster from A. pachycristatus. The fellutamide gene cluster and related gene clusters are recognized as relatives of the echinocandins. Inclusion of the acrophiarin gene cluster into a comprehensive phylogenetic analysis of echinocandin gene clusters indicated the divergent evolutionary lineages of echinocandin gene clusters are descendants from a common ancestral progenitor. The minimal 10-gene cluster may have undergone multiple gene acquisitions or losses and possibly horizontal gene transfer after the ancestral separation of the two lineages.  相似文献   

20.
The solvent accessibility of each residue is predicted on the basis of the protein sequence. A set of 338 monomeric, non-homologous and high-resolution protein crystal structures is used as a learning set and a jackknife procedure is applied to each entry. The prediction is based on the comparison of the observed and the average values of the solvent-accessible area. It appears that the prediction accuracy is significantly improved by considering the residue types preceding and/or following the residue whose accessibility must be predicted. In contrast, the separate treatment of different secondary structural types does not improve the quality of the prediction. It is furthermore shown that the residue accessibility is much better predicted in small than in larger proteins. Such a discrepancy must be carefully considered in any algorithm for predicting residue accessibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号