首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 530 毫秒
1.
Organisms present in methanogenic freshwater lake sediments from the vicinity of Athens, Georgia, were adapted to mineralize 2,4-dichlorophenol. Repeated addition of 0.5 to 2.7 mmol/liter of phenol, and later of 0.5–6.2 mmol/liter p-hydroxybenzoate (p-OHB), to such enrichments led to the conversion of p-OHB to phenol at a rate of up to 100 mmol p-OHB per liter per day. Subsequently, a spore-forming, obligately anaerobic bacterium, strain JW/Z-1, was isolated which transformed p-OHB to phenol and 3,4-dihydroxybenzoate (3,4-OHB) to catechol (1,2-dihydroxybenzene) stoichiometrically without further metabolism of the phenols. The strain did not transform benzoate, 4-chlorophenol, 2,4-dichlorophenol, 4-chlorobenzoate, o- and m-hydroxybenzoate, 2,4- and 3,5-dihydroxybenzoate, 2,3,4- and 3,4,5-trihydroxybenzoate, or 4-aminobenzoate. Yeast extract was required for growth of strain JW/Z-1 and only high concentrations of casein hydrolysate or tryptone could substitute it, to some extent. Except for sodium acetate, and some amino acids together with a 20-fold increased concentration of vitamins, no single carbohydrate or defined organic compound has been found to support growth of this strain in the presence (or in the absence) of 0.2 to 0.5% (w/v) yeast extract. The fermentation products during growth on yeast extract indicated that the metabolism of amino acid degradation was the major source for growth. The decarboxylating activity was inducible by p-OHB for the decarboxylation of p-OHB, and at a lower rate for 3,4-OHB, and by 3,4-OHB only for 3,4-OHB, suggesting that two different enzyme systems exist. The addition of the aromatic amino acids phenol or benzoate did not induce the decarboxylation activity in cultures growing with yeast extract. Growth was observed at temperatures ranging from 12–41°C (Topt, 33–34°C) and at pH-values ranging from 6.0–10.0 (pHopt, 7.2–8.2). The shortest doubling time observed for strain JW/Z-1 was 3.2 hours.  相似文献   

2.
Catalytic reaction of the 2', 3'-dialdehyde analog of TPN (oTPN) with pig heart TPN-dependent isocitrate dehydrogenase in the presence of the substrate manganous isocitrate results in the formation of the dialdehyde derivative of TPNH (oTPNH). In the absence of the substrate, modification by oTPN leads to a progressive inactivation of the enzyme. The dependence of the pseudo-first order rate constants on the reagent concentration indicates the formation of a reversible complex with the enzyme prior to covalent modification (kmax = 5.5 X 10(-2) min-1; K1 = 290 microM). Reaction of [14C]oTPN with the enzyme results in the incorporation of 2 mol of oTPN/mol of peptide chain. No appreciable protection against either inactivation or incorporation by the natural ligands TPN and TPNH was obtained, suggesting different modes of binding of the analog in the presence and absence of the substrate isocitrate. Enzymatically synthesized oTPNH has been isolated and demonstrated to act as an affinity label for a TPNH-binding site of isocitrate dehydrogenase. The inactivation process exhibits saturation kinetics (kmax = 2.67 X 10(-3) min-1; K1 = 33 microM). Protection against activity loss, as well as a decrease in incorporation from 2 to 1 eq of [14C]oTPNH bound/peptide chain was observed in the presence of 1 mM TPNH. From the TPNH concentration dependence of the inactivation rate by oTPNH, a dissociation constant of 3.4 microM is calculated for TPNH, indicating binding of the analog to a specific TPNH-binding site on the enzyme. Although dialdehyde derivatives are frequently assumed to form Schiff bases with proteins, the evidence presented suggests the formation of morpholino derivatives as the products of the covalent reaction of isocitrate dehydrogenase with the dialdehyde derivatives of TPN and TPNH. The new reagent, oTPNH, may serve as an affinity label for other dehydrogenases.  相似文献   

3.
Sequential anaerobic degradation of 2,4-dichlorophenol in freshwater sediments   总被引:12,自引:0,他引:12  
2,4-Dichlorophenol (2,4-DCP) was anaerobically degraded in freshwater lake sediments. From observed intermediates in incubated sediment samples and from enrichment cultures, the following sequence of transformations was postulated. 2,4-DCP is dechlorinated to 4-chlorophenol (4-CP), 4-CP is dechlorinated to phenol, phenol is carboxylated to benzoate, and benzoate is degraded via acetate to methane and CO2; at least five different organisms are involved sequentially. The rate-limiting step was the transformation of 4-CP to phenol. Sediment-free enrichment cultures were obtained which catalyzed only the dechlorination of 2,4-DCP, the carboxylation of phenol, and the degradation of benzoate, respectively. Whereas the dechlorination of 2,4-DCP was not inhibited by H2, the dechlorination of 4-CP, and the transformation of phenol and benzoate were. Low concentrations of 4-CP inhibited phenol and benzoate degradation. Transformation rates and maximum concentrations allowing degradation were determined in both freshly collected sediments and in adapted samples: at 31 degrees C, which was the optimal temperature for the dechlorination, the average adaptation time for 2,4-DCP, 4-CP, phenol, and benzoate transformations were 7, 37, 11 and 2 days, respectively. The maximal observed transformation rates for these compounds in acclimated sediments were 300, 78, 2, 130, and 2,080 micromol/liter(-1)/day(-1), respectively. The highest concentrations which still allowed the transformation of the compound in acclimated sediments were 3.1 m/M 2,4-DCP, 3.1 mM 4-CP, 13 mM phenol, and greater than 52 mM benzoate. The corresponding values were lower for sediments which had not been adapted for the transformation steps.  相似文献   

4.
2,4-Dichlorophenol (2,4-DCP) was anaerobically degraded in freshwater lake sediments. From observed intermediates in incubated sediment samples and from enrichment cultures, the following sequence of transformations was postulated. 2,4-DCP is dechlorinated to 4-chlorophenol (4-CP), 4-CP is dechlorinated to phenol, phenol is carboxylated to benzoate, and benzoate is degraded via acetate to methane and CO2; at least five different organisms are involved sequentially. The rate-limiting step was the transformation of 4-CP to phenol. Sediment-free enrichment cultures were obtained which catalyzed only the dechlorination of 2,4-DCP, the carboxylation of phenol, and the degradation of benzoate, respectively. Whereas the dechlorination of 2,4-DCP was not inhibited by H2, the dechlorination of 4-CP, and the transformation of phenol and benzoate were. Low concentrations of 4-CP inhibited phenol and benzoate degradation. Transformation rates and maximum concentrations allowing degradation were determined in both freshly collected sediments and in adapted samples: at 31 degrees C, which was the optimal temperature for the dechlorination, the average adaptation time for 2,4-DCP, 4-CP, phenol, and benzoate transformations were 7, 37, 11 and 2 days, respectively. The maximal observed transformation rates for these compounds in acclimated sediments were 300, 78, 2, 130, and 2,080 micromol/liter(-1)/day(-1), respectively. The highest concentrations which still allowed the transformation of the compound in acclimated sediments were 3.1 m/M 2,4-DCP, 3.1 mM 4-CP, 13 mM phenol, and greater than 52 mM benzoate. The corresponding values were lower for sediments which had not been adapted for the transformation steps.  相似文献   

5.
3,4-Pentadienoyl-CoA, an allenic substrate analog, is a potent inhibitor of the flavoprotein pig-kidney general acyl-CoA dehydrogenase. The analog reacts very rapidly (k = 2.4 X 10(3) min-1) with the native oxidized enzyme to form a covalent flavin adduct probably involving the isoalloxazine position N-5. This species is inactive, but activity may be regained by two pathways. The allenic thioester can be displaced (k = 0.3 min-1) by a large excess of octanoyl-CoA substrate upon reversal of covalent adduct formation. Alternatively, the enzyme inactivator adduct slowly decomposes (t1/2 = 75 min) to form the strongly thermodynamically favoured 2,4-diene and catalytically active, oxidized enzyme. During this latter process 15-20% of the activity is irreversibly lost probably due to covalent modification of the protein. These data suggest that 3,4-pentadienoyl-CoA should be considered a suicide substrate of the acyl-CoA dehydrogenase. The mechanism of the reactions, and in particular the 3,4----2,4 tautomerization, are consistent with a catalytic sequence initiated by abstraction of an alpha-hydrogen as a proton.  相似文献   

6.
Dihydrofolate reductase from chicken liver has a single sulfhydryl group which reacts stoichiometrically and specifically with a wide variety of organic mercury compounds to yield an enzyme derivative which exhibits up to 10-fold the activity of the unmodified form when measured at pH 6.5, the optimum for the modified enzyme. The sulfhydryl group is apparently not at the active site since a 25-fold excess of either major cosubstrate, dihydrofolate or TPNH, affects neither the rate nor extent of the modification reaction. The reaction is essentially instantaneous and yields an enzyme with altered kinetic properties for all the substrate pairs examined (TPNH/dihydrofolate, TPNH/ folate, and DPNH/dihydrofolate) when tested near their pH optima. V values increased 3- to 10-fold when TPNH was cofactor; Km values increased 10- to 15-fold for the TPNH/dihydrofolate pair. The mercurial-activated enzyme, unlike the native form, exhibits a markedly increased sensitivity to heat, proteolysis, and the ionic environment, losing approximately 50% of its activity under conditions where there is no loss of activity in the native form. However, substrates can afford protection, the order of effectiveness being identical with the relative affinities of the substrates for the native enzyme (Subramanian, S., and Kaufman, B. T. (1978) Proc. Nat. Acad. Sci. USA75, 3201). Thus, dihydrofolate, with the largest binding constant is the most efficient, protecting completely against trypsin digestion when present at a 1:1 ratio with enzyme. Heating the mercury enzyme in the absence of substrates gives rise to a stable but altered conformation characterized by a time course which shows marked hysteresis. The striking similarity of the properties of the mercurial-activated dihydrofolate reductase to the reductase activated by 4 m urea, a reagent known to affect the tertiary structure of proteins, suggests that covalent binding of organic mercurials to the sulfhydryl group results in a similar conformational change characterized by a marked facilitation of the dihydrofolate reductase reaction.  相似文献   

7.
R S Ehrlich  R F Colman 《Biochemistry》1975,14(22):5008-5016
The binding of TPNH to native and chemically modified pig heart TPN-dependent isocitrate dehydrogenase was studied by the techniques of ultrafiltration and fluorescence enhancement. A single site (per peptide chain) was found for TPNH with a dissociation constant (KD = 1.45 muM) that is quantitatively comparable to the Michaelis constant. The oxidized coenzyme, TPN+, weakens the binding of TPNH. The substrate manganous isocitrate also inhibits the binding of TPNH and, reciprocally, TPNH inhibits the binding of manganous isocitrate, suggesting that binding to the reduced coenzyme and substrate sites is mutually exclusive. Ultrafiltration experiments with carbonyl [14C]TPN+ revealed the existence of two sites with a dissociation constant (49 muM) more than ten times higher than the Michaelis constant. This observation excludes a random mechanism for isocitrate dehydrogenase or a sequential mechanism in which TPN+ binds first. Four chemically modified isocitrate dehydrogenases have been prepared: enzyme inactivated by reaction of a single methionyl residue with iodoacetate, by modification of a glutamyl residue by glycinamide (in the presence of a water soluble carbodiimide), by reaction of four cysteines successively with 5,5'-dithiobis(2-nitrobenzoic acid) and potassium cyanide, or by addition of two cysteine residues to N-ethylmaleimide. These enzymes were tested for their ability to bind TPN+, TPNH, and manganous isocitrate. In the cases of the cysteinyl and glutamyl-modified enzymes, inactivation appears to be due primarily to loss of the ability to bind the substrate manganous isocitrate. In constrast, the methionyl residue may participate in the coenzyme binding site or, more likely, may be involved in a step in catalysis subsequent to binding.  相似文献   

8.
R S Ehrlich  R F Colman 《Biochemistry》1976,15(18):4034-4041
The interaction of manganous ions with pig heart triphosphopyridine nucleotide (TPN) specific isocitrate dehydrogenase has been studied by kinetic experiments and by direct ultrafiltration measurements of manganous ion binding. At low metal ion concentrations, a lag is observed in the time-dependent production of reduced triphosphopyridine nucleotide (TPNH) that can be eliminated by adding 20 muM TPNH to the initial reaction mixture. A plot of 1/upsilon vs. 1/ (Mn2+) obtained at relatively high TPNH concentrations (20 muM) is linear and yields of Km value of 2 muM for metal ion, which is comparable to the direct binding constant measured in the presence of isocitrate. A similar plot at low TPNH concentrations (2 muM) reveals a biphasic relationship: at high metal concentrations the points are collinear with those obtained at high levels of TPNH, but at low metal concentrations that line is characterized by a Km of 19 muM for Mn2+. A difference in the deuterium oxide solvent isotope effect on Vmax observed with 20 muM TPNH as compared with 2 muM TPNH suggests that at high TPNH concentrations or high manganous ion concentrations the rate-limiting step is the dehydrogenation of isocitrate, while at low manganous ion concentrations and low TPNH concentrations, the slow step is the decarboxylation of enzyme-bound oxalosuccinate. Evidence to support this hypothesis is provided by the sensitivity to isocitrate concentration of the Km for total manganese measured in the presence of 20 muM TPNH that contrasts with the relative insensitivity to isocitrate of the Km measured at 2 muM TPNH and low manganous ion concentration. Direct measurements of oxalosuccinate decarboxylation reveal that the Vmax and the Km for manganous ion are influenced by the presence of oxidized or reduced TPN with the Km being lowest (5-7 muM) in the presence of TPNH. The dependence of the Km for manganous ion on the presence of substrate, TPN, and TPNH, is responsible for the variation with conditions in the rate-determining step. The enzyme binds only 1 mol of metal ion and 1 mol of isocitrate/mol of protein under all conditions. The pH dependence of the binding of free manganous ion, free isocitrate, and manganous-isocitrate complex indicates differences in the interaction of these species with isocitrate dehydrogenase. These results can be described in terms of two functions for manganous ion in the reactions catalyzed by isocitrate dehydrogenase, each of which requires a distinct binding site for metal ion: in the dehydrogenation step, Mn2+ facilitates the binding of the substrate isocitrate, and in the decarboxylation step it may stabilize the enolate of alpha-ketoglutarate which is generated.  相似文献   

9.
Z He  J Wiegel 《Journal of bacteriology》1996,178(12):3539-3543
A 3,4-dihydroxybenzoate decarboxylase (EC 4.1.1.63) from Clostridium hydroxybenzoicum JW/Z-1T was purified and partially characterized. The estimated molecular mass of the enzyme was 270 kDa. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis gave a single band of 57 kDa, suggesting that the enzyme consists of five identical subunits. The temperature and pH optima were 50 degrees C and pH 7.0, respectively. The Arrhenius energy for decarboxylation of 3,4-dihydroxybenzoate was 32.5 kJ . mol(-1) for the temperature range from 22 to 50 degrees C. The Km and kcat for 3,4-dihydroxybenzoate were 0.6 mM and 5.4 x 10(3) min(-1), respectively, at pH 7.0 and 25 degrees C. The enzyme optimally catalyzed the reverse reaction, that is, the carboxylation of catechol to 3,4-dihydroxybenzoate, at pH 7.0. The enzyme did not decarboxylate 2-hydroxybenzoate, 3-hydroxybenzoate, 4-hydroxybenzoate, 2,3-dihydroxybenzoate, 2,4-dihydroxybenzoate, 2,5-dihydroxybenzoate, 2,3,4-trihydroxybenzoate, 3,4,5-trihydroxybenzoate, 3-F-4-hydroxybenzoate, or vanillate. The decarboxylase activity was inhibited by 25 and 20%, respectively, by 2,3,4- and 3,4,5-trihydroxybenzoate. Thiamine PPi and pyridoxal 5'-phosphate did not stimulate and hydroxylamine and sodium borohydride did not inhibit the enzyme activity, indicating that the 3,4-dihydroxybenzoate decarboxylase is not a thiamine PPi-, pyridoxal 5'-phosphate-, or pyruvoyl-dependent enzyme.  相似文献   

10.
Pseudomonas putida NCIMB 11767 oxidized phenol, monochlorophenols, several dichlorophenols and a range of alkylbenzenes (C1–C6) via an inducible toluene dioxygenase enzyme system. Biphenyl and naphthalene were also oxidized by this enzyme. Growth on toluene and phenol induced the meta-ring-fission enzyme, catechol 2,3-oxygenase, whereas growth on benzoate, which did not require expression of toluene dioxygenase, induced the ortho-ringcleavage enzyme, catechol 1,2-oxygenase. Monochlorobenzoate isomers and 2,3,5-trichlorophenol were gratuitous inducers of toluene dioxygenase, whereas 3,4-dichlorophenol was a fortuitous oxidation substrate of the enzyme. The organism also grew on 2,4- and 2,5-dichloro isomers of both phenol and benzoate, on 2,3,4-trichlorophenol and on 1-phenylheptane. During growth on toluene in nitrogen-limited chemostat culture, expression of both toluene dioxygenase and catechol 2,3-oxygenase was positively correlated with increase in specific growth rate (0.11–0.74 h-1), whereas the biomass yield coefficient decreased. At optimal dilution rates, the predicted performance of a 1-m3 bioreactor supplied with 1 g nitrogen l-1 for removal of toluene was 57 g day-1 and for removal of trichloroethylene was 3.4 g day-1. The work highlights the oxidative versatility of this bacterium with respect to substituted hydrocarbons and shows how growth rate influences the production of competent cells for potential use as bioremediation catalysts. Received: 26 June 1995 / Received revision: 4 September 1995 / Accepted: 20 September 1995  相似文献   

11.
Corynebacterium glutamicum assimilated phenol, benzoate, 4-hydroxybenzoate p-cresol and 3,4-dihydroxybenzoate. Ring cleavage was by catechol 1,2-dioxygenase when phenol or benzoate was used and by protocatechuate 3,4-dioxygenase when the others were used as substrate. The locus ncg12319 of its genome was cloned and expressed in Escherichia coli. Enzyme assays showed that ncg12319 encodes a catechol 1,2-dioxygenase. This catechol 1,2-dioxygenase was purified and accepted catechol, 3-, or 4-methylcatechols, but not chlorinated catechols, as substrates. The optimal temperature and pH for catechol cleavage catalyzed by the enzyme were 30 degrees C and 9, respectively, and the Km and Vmax were determined to be 4.24 micromol l(-1) and 3.7 micromol l(-1) min(-1) mg(-1) protein, respectively.  相似文献   

12.
When dihydrofolate reductase from a methotrexate-resistant strain of Escherichia coli B, MB 1428, is treated with approximately a 5 mol ratio of N-bromosuccinimide (NBS) to enzyme at pH 7.2 and assayed at the same pH, there is a 40% loss of activity due to the modification of 1 histidine residue and possibly 1 methionine residue before oxidation of tryptophan occurs. The initial modification is accompanied by a shift of the pH for maximal enzymatic activity from pH 7.2 to pH 5.5 Upon further treatment with N-bromosuccinimide, the activity is gradually reduced from 60 to 0% as tryptophan residues become oxidized. An NBS to enzyme mole ratio of approximately 20 results in 90% inactivation of the enzyme. When the enzyme is titrated with NBS in 6 M guanidine HCl, 5 mol of tryptophan react per mol of enzyme, a result in agreement with the total tryptophan content as determined by magnetic circular dichroism. The 40% NBS-inactivated sample posses full binding capacity for methotrexate and reduced triphosphopyridine nucleotide, and the Km values for dihydrofolate and TPNH are the same as for the native enzyme. After 90% inactivation, only half of the enzyme molecules bind methotrexate, and the dissociation constant for methotrexate is 40 nM as compared to 4 nM for native enzyme in solutions of 0.1 M ionic strength, pH 7.2 Also, TPNH is not bound as tightly to the modified enzyme-methotrexate complex as to the unmodified enzyme-methotrexate complex. Circular dichroism studies indicate the 90% NBS-inactivated enzyme has the same alpha helix content as the native enzyme but less beta structure, while the 40% inactivated enzyme is essentially the same as the native enzyme. Protection experiments were complicated by the fact that NBS reacts with the substrates and cofactors of the enzyme. Although protection of specific residues was not determined, it was clear that TPNH was partially protected from NBS reaction when bound to the enzyme, and the enzyme, and the enzyme was not inactivated by NBS until the TPNH had reacted.  相似文献   

13.
Nine new β-resorcylic acid derivatives, (15S)-de-O-methyllasiodiplodin ( 1 ), (13S,15S)-13-hydroxy-de-O-methyllasiodiplodin ( 2 ), (14S,15S)-14-hydroxy-de-O-methyllasiodiplodin ( 3 ), (13R,14S,15S)-13,14-dihydroxy-de-O-methyllasiodiplodin ( 4 ), ethyl (S)-2,4-dihydroxy-6-(8-hydroxynonyl)benzoate ( 5 ), ethyl 2,4-dihydroxy-6-(8-hydroxyheptyl)benzoate ( 6 ), ethyl 2,4-dihydroxy-6-(4-methoxycarbonylbutyl)benzoate ( 7 ), 3-(2-ethoxycarbonyl-3,5-dihydroxyphenyl)propionic acid ( 8 ), and isobutyl (S)-2,4-dihydroxy-6-(8-hydroxynonyl)benzoate ( 9 ), together with a known ethyl 2,4-dihydroxy-6-(8-oxononyl)benzoate ( 10 ) were obtained from Lasiodiplodia theobromae GC-22. The structures of these compounds were elucidated by extensive spectroscopic analyses. Compounds 1 , 3 , and 6 showed growth inhibitory effects against Digitaria ciliaris. Conversely, treatment with compounds 5 , 6 , 7 , 9 , and 10 stimulated elongation activity toward the root of Lactuca sativa. These data expand the repertoire of new β-resorcylic acid derivatives that may function as lead compounds in the synthesis of new agrochemical agents.  相似文献   

14.
Heterologous expression of the putative open reading frame MJ0303 of Methanococcus jannaschii provided a recombinant protein catalysing the formation of the riboflavin precursor, 6,7-dimethyl-8-ribityllumazine, by condensation of 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione and 3,4-dihydroxy-2-butanone 4-phosphate. Steady state kinetic analysis at 37 degrees C and pH 7.0 indicated a catalytic rate of 11 nmol.mg-1.min-1; Km values for 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione and 3,4-dihydroxybutanone 4-phosphate were 12.5 and 52 micro m, respectively. The enzyme sediments at an apparent velocity of about 12 S. Sedimentation equilibrium analysis indicated a molecular mass around 1 MDa but was hampered by nonideal solute behaviour. Negative-stained electron micrographs showed predominantly spherical particles with a diameter of about 150 A. The data suggest that the enzyme from M. jannaschii can form capsids with icosahedral 532 symmetry consisting of 60 subunits.  相似文献   

15.
The synthesis and anti-inflammatory activity of 4,5-dihydroxy-3-methyl-1H-pyrazolo[3,4-c]pyridazine (4), 4,5-dichloro-3-methyl-1H-pyrazolo[3,4-c]pyridazine (5), 4,-benzoyloxy-3-methyl-1-benzoyl-1H-pyrazolo[3,4-c]pyridazin-5yl benzoate (6), 3-methyl-N4,N5-bis(4-methylphenyl)-1H-pyrazolo[3,4-c]pyridazine-4,5-diamine (7), 4[[5-(4-carboxyanilino)-3-methyl-1H-pyrazolo[3,4-c]pyridazin-4yl]amino]benzoic acid (8), N-[5-(benzoylamino)-3-methyl-1H-pyrazolo[3,4-c]pyridazin-4-yl]benzamide (9) and 3-methyl-N4,N5-bis[4-(1H-benzimidazol-2yl)phenyl]-1H-pyrazolo[3,4-c]pyridazine-4,5-diamine (10) are being reported.  相似文献   

16.
The putative catalytic domain of an open reading frame from Plasmodium falciparum with similarity to the ispF gene of Escherichia coli specifying 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase was expressed in a recombinant E. coli strain. The recombinant protein was purified to homogeneity and was found to catalyze the formation of 2C-methyl-D-erythritol 2,4-cyclodiphosphate from 4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate at a rate of 4.3 micromol x mg(-1) x min(-1). At lower rates, the recombinant protein catalyzes the formation of 2-phospho-2C-methyl-D-erythritol 3,4-cyclophosphate from 4-diphosphocytidyl-2C-methyl-D-erythritol 2-phosphate and the formation of 2C-methyl-D-erythritol 3,4-cyclophosphate from 4-diphosphocytidyl-2C-methyl-D-erythritol. Divalent metal ions such as magnesium or manganese are required for catalytic activity. The enzyme has a pH optimum at pH 7.0. Recombinant expression of the full-length open reading frame afforded insoluble protein that could not be folded in vitro. The enzyme is a potential target for antimalarial drugs directed at the nonmevalonate pathway of isoprenoid biosynthesis.  相似文献   

17.
Dioxygenases induced during benzoate degradation by the actinobacterium Rhodococcus wratislaviensis G10 strain degrading haloaromatic compounds were studied. Rhodococcus wratislaviensis G10 completely degraded 2 g/liter benzoate during 30 h and 10 g/liter during 200 h. Washed cells grown on benzoate retained respiration activity for more than 90 days, and a high activity of benzoate dioxygenase was recorded for 10 days. Compared to the enzyme activities with benzoate, the activity of benzoate dioxygenases was 10-30% with 13 of 35 substituted benzoate analogs. Two dioxygenases capable of cleaving the aromatic ring were isolated and characterized: protocatechuate 3,4-dioxygenase and catechol 1,2-dioxygenase. Catechol inhibited the activity of protocatechuate 3,4-dioxygenase. Protocatechuate did not affect the activity of catechol 1,2-dioxygenase. A high degree of identity was shown by MALDI-TOF mass spectrometry for protein peaks of the R. wratislaviensis G10 and Rhodococcus opacus 1CP cells grown on benzoate or LB. DNA from the R. wratislaviensis G10 strain was specifically amplified using specific primers to variable regions of genes coding αand β-subunits of protocatechuate 3,4-dioxygenase and to two genes of theR. opacus 1CP coding catechol 1,2-dioxygenase. The products were 99% identical with the corresponding regions of the R. opacus 1CP genes. This high identity (99%) between the genes coding degradation of aromatic compounds in the R. wratislaviensis G10 and R. opacus 1CP strains isolated from sites of remote location (1400 km) and at different time (20-year difference) indicates a common origin of biodegradation genes of these strains and a wide distribution of these genes among rhodococci.  相似文献   

18.
Pseudocumene (1,2,4-trimethylbenzene) and 3-ethyltoluene were found to serve as growth substrates for Pseudomonas putida (arvilla) mt-2, in addition to toluene, m-xylene, and p-xylene as previously described. Similar observations were made with several additional P. putida strains also capable of growth with toluene and the xylenes. Additional substrates which supported the growth of these organisms included 3,4-dimethylbenzyl alcohol, 3,4-dimethylbenzoate, and 3-ethylbenzoate. P. putida mt-2 cells grown either with toluene or pseudocumene rapidly oxidized toluene, pseudocumene, and 3-ethyltoluene as well as 3,4-dimethylbenzoate, 3-ethylbenzoate, 3,4-dimethylcatechol, and 3-ethylcatechol. Cell extracts from similarly grown P. putida mt-2 cells catalyzed a meta fission of 3,4-dimethylcatechol and 3-ethylcatechol to compounds having the spectral properties of 2-hydroxy-5-methyl-6-oxo-2,4-heptadienoate and 2-hydroxy-6-ox-2,4-octadienoate, respectively. The further metabolism of these intermediates was shown to be independent of oxidized nicotinamide adenine dinucleotide (NAD+) and resulted in the formation of essentially equimolar amounts of pyruvate, indicating that each ring fission product was degraded via the hydrolytic branch of the meta fission pathway. Treatment of cells with N-methyl-N'-nitro-N-nitrosoguanidine led to the isolation of a mutant, which when grown with succinate in the presence of pseudocumene or 3-ethyltoluene accumulated 3,4-dimethylcatechol or 3-ethylcatechol. Cells unable to utilize toluene, m-xylene, and p-xylene, obtained by growth in benzoate, also lost the ability to utilize pseudocumene and 3-ethyltoluene. The ability to utilize these substrates could be reacquired by incubation with a leucine auxotroph otherwise able to grow on all of the aromatic substrates.  相似文献   

19.
A cDNA sequence from Schizosaccharomyces pombe with similarity to 6,7-dimethyl-8-ribityllumazine synthase was expressed in a recombinant Escherichia coli strain. The recombinant protein is a homopentamer of 17-kDa subunits with an apparent molecular mass of 87 kDa as determined by sedimentation equilibrium centrifugation (it sediments at an apparent velocity of 5.0 S at 20 degrees C). The protein has been crystallized in space group C2221. The crystals diffract to a resolution of 2.4 A. The enzyme catalyses the formation of 6,7-dimethyl-8-ribityllumazine from 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione and 3,4-dihydroxy- 2-butanone 4-phosphate. Steady-state kinetic analysis afforded a vmax value of 13 000 nmol.mg-1.h-1 and Km values of 5 and 67 microm for 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione and 3,4-dihydroxy-2-butanone 4-phosphate, respectively. The enzyme binds riboflavin with a Kd of 1.2 microm. The fluorescence quantum yield of enzyme-bound riboflavin is < 2% as compared with that of free riboflavin. The protein/riboflavin complex displays an optical transition centered around 530 nm as shown by absorbance and CD spectrometry which may indicate a charge transfer complex. Replacement of tryptophan 27 by tyrosine or phenylalanine had only minor effects on the kinetic properties, but complexes of the mutant proteins did not show the anomalous long wavelength absorbance of the wild-type protein. The replacement of tryptophan 27 by aliphatic amino acids substantially reduced the affinity of the enzyme for riboflavin and for the substrate, 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione.  相似文献   

20.
C D'Silva  C H Williams  V Massey 《Biochemistry》1986,25(19):5602-5608
O-(2,4-Dinitrophenyl)hydroxylamine is a rapid active-site-directed inhibitor of D-amino acid oxidase: modification results in specific incorporation of an amine group into an accessible nucleophilic residue with concomitant release of 2,4-dinitrophenol. The reaction is prevented by the competitive inhibitor benzoate, indicating an active-site-directed reaction. A stoichiometry of 1-1.5 mol of amine residues per enzyme bound flavin adenine dinucleotide monomer was observed at pH 7.0. Amino acid and sequence analyses show that His-217 is not the target of the modification reaction. Dependence of the modification on pH, model studies on functional groups present on amino acids, and thiolysis studies on aminated enzyme collectively indicate that the modification is located on a methionine residue at or near the active site of the enzyme. Aminated enzyme, although spectrally similar to native enzyme, exhibits a 7-9-nm blue shift in the 455-nm flavin absorption. Benzoate perturbs the spectrum of aminated enzyme, but binding relative to native enzyme is much weaker (Kd ca. 300 times greater at pH 8.0).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号