首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Viable human T lymphoblasts derived from the "Molt 4b" cell line have been shown to possess functional plasma membrane receptors for vasoactive intestinal polypeptide (VIP). Specific binding of 125I-VIP to these lymphoblasts is rapid, reversible and linearly dependent on the number of cells present. Analysis of binding at 17 degrees C reveals a single class of high affinity binding sites over the concentration range of 10(-7) to 10(-11) M VIP (KD = 7.3 +/- 1.3 nM). The Bmax of 0.24 +/- 0.07 nM extrapolates to 15 000 +/- 4000 sites/cell. The binding of 125I-VIP to T lymphoblasts is highly specific; secretin and glucagon, peptides of similar molecular weight which show sequence homology with VIP, are unable to competitively inhibit binding of 125I-VIP to Molt 4b lymphoblasts. VIP activates adenylate cyclase in membrane preparations from Molt 4b lymphoblasts and increases cAMP in intact cells. Half maximal activation in both membrane preparations and intact cells occurs at 5 nM VIP. This demonstration of a functional receptor for VIP suggests that the Molt 4b lymphoblastic cell line may be a useful model system in which to study neuropeptide modulation of T lymphocyte function.  相似文献   

2.
The cAMP receptor on the surface of aggregation competent Dictyostelium discoideum cells specifically binds [3H]cAMP in an oscillatory manner with a periodicity of 2 min. The oscillatory cAMP-binding component is developmentallly regulated and has the nucleotide specificity expected for recognition of chemotactic signals. The concentration dependence of the peak amplitudes of cAMP binding exhibit an apparent threshold at 10(-8) M cAMP. The threshold concentration for cAMP binding that we measure is consistent with the concentration dependence of signal relay (cAMP secretion) and the chemotactic response. The kinetic data of binding and dissociation are very rapid, consistent with the time course of oscillations in receptor capacity (affinity). Specific binding oscillations are destroyed by heat or chymotrypsin but are insensitive to trypsin or glycosidase. A plasma membrane localization of receptor is supported by enrichment of cAMP binding in a plasma membrane preparation from differentiated cells. Receptor oscillations with a 2-min period are preserved in the membrane preparations, and the peak amplitudes are increased about 10-fold consistent with the enrichment of other plasma membrane markers. The alternating change in the receptor's binding capacity for cAMP may be the basis of the relay refractory period as well as the primary oscillator involved in the generation of postreceptor events such as stimulation of adenylate cyclase, cAMP secretion, and cellular movement, all of which have been previously shown to oscillate.  相似文献   

3.
Treatment of 6-h differentiated Dictyostelium discoideum cells with the nonionic detergent Triton X-100 dissolves away membranes and soluble components, as judged by marker enzyme distributions, leaving intact a cytoskeletal residue that contains approximately 10% of the cell protein and 50% of the actin. Nitrobenzooxadiazo-phallacidin staining for F-actin and electron microscopy of detergent-extracted whole-mounts indicate that the cytoskeletons retain the size and shape of intact cells and contain F-actin in cortical meshworks. The cytoskeletons contain little if any remaining membrane material by morphological criteria, and the plasma membrane enzymes cyclic nucleotide phosphodiesterase and alkaline phosphatase are absent from the insoluble residue, which retains only 15% of the membrane concanavalin A-binding glycoproteins. This detergent-insoluble residue retains a specific [3H]cAMP-binding site with the nucleotide specificity, rapid kinetics and approximate affinity of the cAMP receptor on intact cells. Upon detergent extraction of cells, the number of cAMP-binding sites increases 20-70%. The binding site is attached to the insoluble residue whether or not the cAMP receptor is occupied at the time of detergent addition. The pH dependence for recovery of the insoluble cAMP-binding site is much sharper than that on intact cells or membranes with an optimum at pH 6.1. Conditions of pH and ionic composition that lead to disruption of the cytoskeleton upon detergent treatment also result in the loss of cAMP binding. During differentiation, the detergent- insoluble cAMP binding increases in parallel with cell surface cAMP receptors and chemotaxis to cAMP.  相似文献   

4.
The binding of agonists and antagonists to muscarinic acetylcholine receptors on intact cultured cardiac cells has been compared with the binding observed in homogenized membrane preparations. The antagonists [3H]quinuclidinyl benzilate and [3H]N-methylscopolamine bind to a single class of receptor sites on intact cells with affinities similar to those seen in membrane preparations. In contrast with the heterogeneity of agonist binding sites observed in membrane preparations, the agonist carbachol binds to a homogeneous class of low-affinity sites on intact cells with an affinity identical to that found for the low-affinity agonist site in membrane preparations in the presence of guanyl nucleotides. Kinetic studies of antagonist binding to receptors in the absence and presence of agonist did not provide evidence for the existence of a transient (greater than 30 s) high-affinity agonist site that was subsequently converted to a site of lower affinity. Nathanson N. M. Binding of agonists and antagonists to muscarinic acetylcholine receptors on intact cultured heart cells.  相似文献   

5.
The topography and functional domains of the cAMP chemotactic receptor of Dictyostelium discoideum were investigated by protease sensitivity to chymotrypsin. Proteolytic digestion of intact cells produced a 23-kDa fragment of the receptor that retained the photoaffinity label used to identify the receptor. Additionally, this fragment contained the sites phosphorylated by CAR-kinase, the enzyme that phosphorylates the ligand-occupied form of the receptor. The fragment was also found to be phosphorylated in response to cAMP stimulation of cells. Proteolytic digestion of either intact cells or membrane preparations did not appreciably alter the binding properties of the receptor, indicating that the domains which determine the cAMP binding pocket are likely to be transmembrane regions of the protein. Additionally, the sensitivity of down-regulated receptors to chymotrypsin digestion suggests that the initial loss of cAMP binding activity upon incubation of cells with high concentrations of ligand does not require receptor internalization.  相似文献   

6.
The divalent cations magnesium, calcium and manganese, and the monovalent cation, potassium, but not sodium, enhance binding of [125I]iodo-porcine follicle-stimulating hormone to follicle-stimulating hormone (FSH) receptors in membranes of porcine granulosa cells via an increase in the apparent number of binding sites. The objective of the present studies was to determine if increased binding of FSH to its receptor causes increased adenylyl cyclase activity in response to FSH, or conversely, if enhancement of the cyclase or one of its components causes increased binding, or if the two processes are modulated independently. MgCl2 and CaCl2, which both enhance binding in intact cells and in cell-free membrane preparations, had opposite effects on cyclase-MgCl2 stimulatory, CaCl2 inhibitory. In isotonic NaCl, MgCl2 did not enhance binding, but it did increase FSH-stimulated production of cyclic adenosine 3',5'-monophosphate (cAMP). NaCl did not enhance FSH binding and it did not enhance cyclase in cell-free membranes, but it did increase FSH- and forskolin-stimulated cAMP production in intact cells. In intact cells, maximally effective concentrations of MgCl2 and KCl were additive in enhancing cAMP production whereas the effects of NaCl and KCl together were synergistic. The results indicate that although cationic effects on FSH binding are not causally related to effects on cyclase, the cationic microenvironment of the granulosa cell membrane is critical to both FSH receptor and adenylyl cyclase functions.  相似文献   

7.
We investigated the binding characteristics of agonists to alpha 1- and beta-adrenergic receptors of intact liver cells, broken rat liver cell membranes, and detergent-solubilized preparations under varying experimental conditions, focusing on the different "states" of the receptor for agonists and the regulation of these states by temperature and guanine nucleotides. While only low-affinity binding of agonists to both receptor subtypes was evident in studies performed at 37 degrees C with solubilized preparations, biphasic competition curves for agonists were observed in both intact cells and membrane preparations; the majority of sites were of low affinity. In membrane preparations, the nonhydrolyzable GTP analogue Gpp(NH)p caused a rightward shift of agonist competition curves and a loss of high-affinity binding. These results are consistent with the involvement of guanine nucleotide binding proteins in both alpha 1- and beta-adrenergic transduction pathways. When competition studies were performed at 4 degrees C, receptor sites existed predominantly in the high-affinity configuration, in intact cells and membranes, as well as in soluble preparations. In contrast to the studies conducted at 37 degrees C, no Gpp(NH)p-induced conversion to the lower affinity state could be demonstrated in studies performed with membrane preparations at 4 degrees C. Thus, the high-affinity state of alpha 1- and beta-adrenergic receptors is stabilized at 4 degrees C in intact cells, membranes, and soluble preparations. After incubations had been performed at 37 degrees C, high-affinity binding of agonists could not be restored by subsequent incubation at 4 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
A binding assay has been developed to characterize beta-adrenergic receptors on intact L6 muscle cells. The affinity of beta-adrenergic receptors for the radioligand iodohydroxybenzylpindolol (IHYP) was the same in membrane preparations and in intact cells when determined by either equilibrium binding or kinetic analysis. The number of specific IHYP binding sites per cell was approximately the same on intact cells as on membranes. The pharmacological properties of antagonists indicated that the receptors on intact cells were identical to those on membranes. However, the beta-adrenergic receptors on intact cells had a 100-400 fold lower affinity at equilibrium for the agonist isoproterenol than did beta-adrenergic receptors on membranes. This low affinity of the receptor for agonists as measured by inhibition of radioligand binding in intact cells has also been observed in C6 (2) and S49 (3) cells. Our results suggest that beta receptors on intact cells after a 1 minute incubation was similar to the KD value for isoproterenol measured in membranes at equilibrium in the presence of GTP. After 1-2 minutes of exposure to a low concentration of agonist, binding of IHYP was no longer inhibited. These results suggest that agonists rapidly convert the beta receptors on intact cells to a state which has a low affinity for agonists. The affinity of the receptor for antagonists did not change during the incubation.  相似文献   

9.
The photoaffinity probe (32P) 8-N3 cAMP was used to label the cAMP binding proteins in washed ejaculated human sperm. Three saturable binding proteins were photolabeled in both intact and disrupted cells with apparent molecular weights of 55,000, 49,000 and 40,000 daltons corresponding to the regulatory subunits of type II and type I cAMP-dependent protein kinase (cAMP-PK) and to an endogenous proteolytic product of the regulatory subunits, respectively. Photoincorporation in the three proteins could be totally blocked by preincubating the cells with cAMP. Cell-free seminal plasma was found to be free of detectable (32P) 8-N3 cAMP-binding proteins. The 8-N, cAMP was also effective in stimulating endogenous cAMP-PK activity in intact and disrupted sperm. A substantial amount of (32P) 8-N3 cAMP binding to types I and II regulatory subunits and cAMP-PK activity was detected on washed intact cells. Intact cells bound 1.80 pmol of (32P) 8-N3 cAMP/mg protein and had cAMP-PK activity of 824 units/10(8) cells. Disrupted cells bound 3.95 pmol (32P) 8-N3 cAMP/mg protein and had a cAMP-PK activity of 2,206 units/10(8) cells. The data presented support the concept of two classes of cAMP receptors being differentially available to externally added (32P) 8-N3 cAMP and proteases. Cellular membrane integrity and membrane sidedness are discussed as possible explanations for the observation reported.  相似文献   

10.
We have investigated the binding of high-density lipoprotein (HDL3, d = 1.12-1.21 g/ml), and apolipoprotein E-deficient human and rat HDL, obtained by heparin-Sepharose affinity chromatography, to intact cells and membrane preparations of rat intestinal mucosal cells. Binding of 125I-labeled HDL3 to the basolateral plasma membranes was characterised by a saturable, specific process (Kd = 21 micrograms of HDL3 protein/ml, Bmax = 660 ng HDL3 protein/mg membrane protein) and E-deficient human HDL demonstrated a similar affinity for the binding site. The basolateral plasma membranes isolated from proximal and distal portion of rat small intestine showed similar binding affinities for HDL3, whereas the interaction of HDL with brush-border membranes was characterised by mainly nonspecific and nonsaturable binding. The binding of 125I-labeled HDL3 to basolateral plasma membranes was competitively inhibited by unlabeled HDL3 but less efficiently by unlabeled human LDL. The putative HDL receptor was not dependent on the presence of divalent cations but was markedly influenced by temperature and sensitive to pronase treatment. We have also demonstrated, using whole intestinal mucosal cells, that lysine and arginine-modified HDL3 inhibited binding of normal 125I-labeled HDL3 to the same extent as normal excess HDL3. These data suggest that basolateral plasma membranes of rat intestinal mucosal cells possess a specific receptor for HDL3 which contains mainly apolipoprotein A-I and A-II, and the mechanisms of recognition of HDL3 differ from those involved in binding to the B/E receptor.  相似文献   

11.
The mechanism underlying the increased insulin binding found in hepatic plasma membranes from streptozotocin-diabetic rats was evaluated by measuring insulin binding to intact and Triton X-100-soluble extracts of plasma membranes prepared from the livers of control rats and rats administered streptozotocin (85 mg/kg). In addition, to assess whether the cellular content of hepatic insulin receptors is also increased in diabetic animals, we measured insulin-binding activity in intact and soluble extracts of total hepatic cellular membrane preparations (100,000 X g cellular pellets). The data indicate that while insulin binding is increased (52 +/- 3%) in intact hepatic plasma membranes from diabetic rats compared to control rats, there is no comparable increase in insulin binding in intact total cellular membranes or in Triton X-100-soluble extracts of plasma membranes or total cellular membranes. We therefore conclude that the enhanced insulin binding found in the livers of diabetic rats is the result of a local redistribution of plasma membrane insulin receptors from cryptic to exposed sites. Finally, the data suggest the presence of a negative modulator of insulin-binding affinity in intact plasma and total cellular membranes.  相似文献   

12.
An indirect affinity chromatography procedure utilizing biotinylated lectins and designed for the specific isolation of surface glycoproteins is described. The method is illustrated with intact acute leukemic lymphoblastic cells (ALL cells) with biotin-epsilon-aminocaproyl-concanavalin A (biocap-Con A) and streptavidin-Sepharose 4B. Biocap-Con A, containing on average 27 biotin residues per tetrameric lectin molecule, is used to isolate Con A-binding glycoproteins from the surface of [35S]methionine-radiolabeled intact cells. The biocap-Con A/glycoprotein complexes, after solubilization in detergent, are retrieved on immobilized streptavidin. The surface glycoproteins isolated from intact ALL cells by this method are subjected to two-dimensional gel electrophoresis and detected by autoradiography. More than fifty Con A-binding glycoproteins can be separated from the ALL cells. These glycoproteins retrievable from the cell surface were compared to those retrieved by the indirect affinity chromatography procedure from isolated plasma membrane fractions. Certain groups of glycoproteins present in the fraction isolated from intact cells were not detected in that from the plasma membrane preparations. The advantage of using the biocap-con A/streptavidin system with intact cells rather than isolated plasma membranes for the detection of surface glycoproteins is discussed.  相似文献   

13.
A cAMP binding site present on isolated plasma membranes of aggregation-competent D.discoideum cells has been solubilized with the nonionic detergent Emulphogene BC-720. An assay has been developed based on the principle of hydrophobic chromatography, in which the detergent solubilized cAMP binding protein is immobilized on alkyl-agarose beads at low detergent concentration. This allows the necessary rapid separation of bound and free [3H]-cAMP by filtration of the beads. The kinetics and nucleotide specificity of the detergent solubilized cAMP binding protein are comparable to those of the cAMP chemotactic receptor on intact cells and plasma membranes. The alkyl-agarose bead assay may have general utility for the assay of detergent solubilized membrane receptors.  相似文献   

14.
alpha 1- and beta-adrenergic receptor properties of intact hepatocytes from adult male and female rats were evaluated in ligand binding studies using [3H]prazosin and [3H]CGP-12177 (4-(t-butylamino-2-hydroxypropoxy)-[5,7-3H]benzimidazole-2-one-HCl), a hydrophilic beta antagonist. Prior work had suggested that the response of hepatocytes from males to alpha 1-adrenergic stimulation was greater than that of cells from females. However, little sexual difference in prazosin affinity, number of binding sites or kinetics of association/dissociation with the cells was found. Epinephrine, [3H]prazosin competition for binding sites on intact cells was performed at 2 degrees C and 80-90% of agonist sites remained in a high affinity state with an epinephrine Kd comparable to that previously found in glucose release and phosphorylase alpha activation studies. Agonist Kd inferred from these competition experiments also showed no sexual dimorphism. These data suggest that the greater rise in the concentration of cytosolic free calcium and release of 45Ca from cells of males in response to epinephrine stimulation is not due to male/female alpha 1-receptor differences but, rather, may be a function of the previously observed sexual difference in cell calcium metabolism. [3H]CGP binding to hepatocytes from females was stereospecific, saturable and identified a single, high affinity site. Comparable sites were not found on cells from males, however, [3H]CGP binding to crude membrane preparations from both sexes was identical. This suggests that the loss of hepatic beta-receptor function in the adult male is due to an inaccessibility of beta-receptors at the external surface of the plasma membrane of the intact cell. Further studies with other beta-receptor ligands are being carried out to confirm these initial findings.  相似文献   

15.
In the large species of the cellular slime mold Dictyostelium , cell aggregation is regulated by extracellular cAMP. During aggregation, cAMP is released in pulses from cells in the aggregation centers and these rhythmic signals are propagated through the population by a signal relay system. In addition to triggering the relay response, the pulsatile signals also regulate the chemotactic movement of the cells and early cell differentiation. These different cellular responses to exogenous cAMP are thought to be mediated via cAMP receptors, which appear on the cell surface shortly after starvation.
Using a sensitive assay, the equilibrium binding properties of these receptors were analyzed at low cAMP concentrations. As reported earlier, Scatchard plots of cAMP binding to preaggregative amoebae of D. discoideum strain NP187 in the concentration range 2–500 nM were curvilinear suggesting either receptor heterogeneity or negative cooperative interactions. However, at cAMP concentrations below approximately 1.5 nM, the affinity of the receptors was found to decline as a function of decreasing receptor occupancy. This apparent positive cooperativity was observed with binding sites on crude plasma membranes as well as on intact cells, and it occurred at both 0°C and 22°C. Moreover, apparent positive cooperativity was a property of the receptors on all strains of D. discoideum examined and on one strain of D. purpureum . Unlike preaggregative cells, receptors on postaggregative cells often lacked this property.
The lowest concentration of cAMP pulses that can appreciably stimulate membrane differentiation in strain NP187 was found to be 0.15–1.5 nM. Since similar concentrations of exogenous cAMP have been reported to trigger minimal chemotactic and relay responses in D. discoideum , the apparent positive cooperative behavior of the cAMP receptor might function to generate a steep cellular response threshold.  相似文献   

16.
In intact LLC-PK1 cells, occupancy of vasopressin receptors (Roy, C., and Ausiello, D. A. (1981) J. Biol. Chem. 256, 3415-3522) correlated with cell cAMP production. This relationship was observed as a function of hormone dose, incubation time, and changes in receptor affinity. However, the rate of cAMP production diminished with time in intact cells exposed to high hormone concentrations, even in the presence of a phosphodiesterase inhibitor. A rapid desensitization of adenylate cyclase activity was observed in minutes upon treatment of intact cells with high hormonal concentrations. Desensitization was dose- and time-dependent. Hypertonic sodium chloride, which increased hormonal binding and cell cAMP production, prevented desensitization. The acute decrease in hormone-stimulated adenylate cyclase activity correlated with increased occupancy of low affinity binding sites. EDTA-suspended cells, which have a homogeneous population of binding sites, did not demonstrate desensitization. A proposal is made as to the consequences of this phenomenon at physiological concentrations of vasopressin.  相似文献   

17.
Previous studies have proposed that insulin increases the binding of insulin-like growth factor II (IGF-II) in isolated rat adipose cells at 24 degrees C by increasing receptor affinity (Ka). This study re-examines these observations under conditions in which receptor-ligand internalization is blocked by 1 mM KCN. In the absence of KCN, adipose cells bind 0.71 amol of IGF-II/cell with low apparent affinity (0.030 nM-1), of which greater than 75% is not accessible to trypsin. In contrast, in the presence of KCN, IGF-II binding is decreased by 95% and its apparent affinity increased to 0.21 nM-1. Moreover, greater than 60% of the bound IGF-II now is sensitive to trypsin. In either the absence or presence of KCN, approximately 20% of the cell's total IGF-II receptors are present in the plasma membranes and approximately 80% in the low density microsomes. Insulin induces a 5-fold increase in cell surface IGF-II receptors without a change in affinity when IGF-II binding is measured in the presence of KCN. Similarly, insulin increases IGF-II receptor concentration in the plasma membranes and concomitantly decreases that in the low density microsomes. Receptor affinity in these two subcellular membrane fractions is not affected by incubation of intact cells with either insulin or KCN and is similar to that observed in intact cells in the presence of KCN. Addition of KCN prior to insulin abolishes all of these effects of insulin. These data suggest that (a) the effects of KCN reflect a selective blockade of endocytosis; (b) in the absence of KCN, IGF-II binds to receptors of constant affinity that cycle between the plasma membrane and an intracellular pool resulting in an accumulation of intracellular IGF-II; (c) insulin induces an increase in IGF-II binding by causing a steady state redistribution of receptors from this intracellular pool to the plasma membrane; and (d) this redistribution in the intact cell can only be detected using Scatchard analysis when recycling of the receptors is prevented by KCN.  相似文献   

18.
Differential binding of 125I-Con A to whole cells throughout the life cycle of Dictyostelium discoideum indicates that the appearance of Con A binding proteins on the plasma membrane is under developmental regulation. Con A-Sepharose affinity chromatography of radio-iodinated plasma membrane preparations, followed by analysis with SDS-PAGE, revealed that there are at least 15 Con A binding proteins associated with the surface of 0 hr cells. Between 6 and 18 hr of development, the relative intensity of one of the bands, which corresponds to a protein of molecular weight of 150,000 daltons, increases dramatically.  相似文献   

19.
Fractions and subcellular structures were prepared from rat brain homogenate and their purity was assessed using enzyme markers, gamma-aminobutyric acid binding, DNA content, and electron microscopy. Insulin binding was highest on the plasma membrane preparations and approximately 50% less so on brain homogenate crude mitochondrial (P2), myelinated axon, and synaptosome preparations. Very low levels of binding were found on mitochondria and nuclei. Differences in binding between fractions were due to numbers of binding sites, and not variable binding affinity. There was a close relationship between insulin binding and the activity of Na/K ATPase (E.C. 3.6.1.4) in all fractions (r = 0.98). Insulin binding to the P2 was compared with plasma membrane fractions in seven brain regions, and the results demonstrated the same close relationship between insulin binding and plasma membrane content in all regions except hypothalamus. Plasma membrane insulin binding was well represented by the binding on P2 membranes in all regions except hypothalamus and brainstem. It was concluded that insulin binding is distributed evenly over the surface of brain cells and is not increased on nerve endings.  相似文献   

20.
Abstract

The binding characteristics of 3-quinuclidinyl benzilate (QNB) to strips of intact tissue and to isolated plasma membrane fraction (PM) from rabbit urinary bladder were studied. QNB binding to both preparations was of high affinity and low capacity. The equilibrium dissociation constants (KD) for binding to tissue strips and PM were 2.2 and 0.045 nM respectively. Muscarinic antagonists inhibited QNB binding more effectively than agonists. Ca-antagonist D-600, but not nifedipine caused an inhibition of QNB binding to PM. Vanadate, ouabain or N-ethylmelaimide had no significant effect on QNB binding. In contrast to the binding in PM, binding in the intact tissue was reduced by K-depolarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号