首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Angiotensinogen (AGT) is mainly expressed in glial cells in close proximity to renin-expressing neurons in the brain. We previously reported that glial-specific overexpression of ANG II results in mild hypertension. Here, we tested the hypothesis that glial-derived AGT plays an important role in blood pressure regulation in hypertensive mice carrying human renin (hREN) and human AGT transgenes under the control of their own endogenous promoters. To perform a glial-specific deletion of AGT, we used an AGT transgene containing loxP sites (hAGT(flox)), so the gene can be permanently ablated in the presence of cre-recombinase expression, driven by the glial fibrillary acidic protein (GFAP) promoter. Triple transgenic mice (RAC) containing a: 1) systemically expressed hREN transgene, 2) systemically expressed hAGT(flox) transgene, and 3) GFAP-cre-recombinase were generated and compared with double transgenic mice (RA) lacking cre-recombinase. Liver and kidney hAGT mRNA levels were unaltered in RAC and RA mice, as was the level of hAGT in the systemic circulation, consistent with the absence of cre-recombinase expression in those tissues. Whereas hAGT mRNA was present in the brain of RA mice (lacking cre-recombinase), it was absent from the brain of RAC mice expressing cre-recombinase, confirming brain-specific elimination of AGT. Immunohistochemistry revealed a loss of AGT immunostaining glial cells throughout the brain in RAC mice. Arterial pressure measured by radiotelemetry was significantly lower in RAC than RA mice and unchanged from nontransgenic control mice. These data suggest that there is a major contribution of glial-AGT to the hypertensive state in mice carrying systemically expressed hREN and hAGT genes and confirm the importance of a glial source of ANG II substrate in the brain.  相似文献   

2.
Hypertension is a serious risk factor for cardiovascular disease, and the angiotensinogen (AGT) gene locus is associated with human essential hypertension. The human AGT (hAGT) gene has an A/G polymorphism at -6, and the -6A allele is associated with increased blood pressure. However, transgenic mice containing 1.2 kb of the promoter with -6A of the hAGT gene show neither increased plasma AGT level nor increased blood pressure compared with -6G. We have found that the hAGT gene has three additional SNPs (A/G at -1670, C/G at -1562, and T/G at -1561). Variants -1670A, -1562C, and -1561T almost always occur with -6A, and variants -1670G, -1562G, and -1561G almost always occur with -6G. Therefore, the hAGT gene may be subdivided into either -6A or -6G haplotypes. We show that these polymorphisms affect the binding of HNF-1α and glucocorticoid receptor to the promoter, and a reporter construct containing a 1.8-kb hAGT gene promoter with -6A haplotype has 4-fold increased glucocorticoid-induced promoter activity as compared with -6G haplotype. In order to understand the physiological significance of these haplotypes in an in vivo situation, we have generated double transgenic mice containing either the -6A or -6G haplotype of the hAGT gene and the human renin gene. Our ChIP assay shows that HNF-1α and glucocorticoid receptor have stronger affinity for the chromatin obtained from the liver of transgenic mice containing -6A haplotype. Our studies also show that transgenic mice containing -6A haplotype have increased plasma AGT level and increased blood pressure as compared with -6G haplotype. Our studies explain the molecular mechanism involved in association of the -6A allele of the hAGT gene with hypertension.  相似文献   

3.
4.
5.
Angiotensinogen (AGT), mainly produced in the liver, is the precursor of angiotensin II, an important regulator of blood pressure and electrolyte homeostasis. We previously showed, in hepatoma-derived HepG2 cells that a hepatocyte nuclear factor 4 (HNF4) potentiated human AGT (hAGT) promoter activity and identified its binding sites (termed regions C and J) in the hAGT promoter region. We also showed in transgenic mouse (TgM) that the hAGT is abundantly expressed in the kidney where the level of endogenous mouse AGT (mAGT) expression is low. To elucidate molecular mechanisms of the AGT gene activation in the kidney, we first investigated the HNF4 and AGT expression in the mouse kidney. Northern blot, in situ hybridization and immunohistochemical analyses revealed that the hAGT and HNF4 were both expressed in the proximal tubular (PT) cells of the kidney. We then transfected the hAGT reporter constructs into immortalized mouse PT (mProx) cells and found that regions C and J contributed additively to the HNF4-potentiated hAGT promoter activity. Curiously, no obvious HNF4 binding motif was found in the corresponding region of the mAGT promoter and co-transfected HNF4 failed to activate this promoter in neither HepG2 nor mProx cells. These results suggest that the high-level hAGT expression in the TgM kidney is, at least in part, due to a presence of high-affinity HNF4 binding sites in its promoter.  相似文献   

6.
The existence of a local renin angiotensin system (RAS) of the kidney has been established. Angiotensinogen (AGT), renin, angiotensin-converting enzyme (ACE), angiotensin receptors, and high concentrations of luminal angiotensin II have been found in the proximal tubule. Although functional data have documented the relevance of a local RAS, the dualism between biosynthesis and endocytotic uptake of its components and their cellular processing has been incompletely understood. To resolve this, we have selectively analyzed their distribution, endocytosis, transcytosis, and biosynthesis in the proximal tubule. The presence of immunoreactive AGT, restricted to the early proximal tubule, was due to its retrieval from the ultrafiltrate and storage in endosomal and lysosomal compartments. Cellular uptake was demonstrated by autoradiography of radiolabeled AGT and depended on intact endocytosis. AGT was identified as a ligand of the multiple ligand-binding repeats of megalin. AGT biosynthesis was restricted to the proximal straight tubule, revealing substantial AGT mRNA expression. Transgenic AGT overexpression under the control of an endogenous promoter was also restricted to the late proximal tubule. Proximal handling of renin largely followed the patterns of AGT, whereas its local biosynthesis was not significant. Transcytotic transport of AGT in a proximal cell line revealed a 5% recovery rate after 1 h. ACE was expressed along late proximal brush-border membrane, whereas ACE2 was present along the entire segment. Surface expression of ACE and ACE2 differed as a function of endocytosis. Our data on the localization and cellular processing of RAS components provide new aspects of the functional concept of a “self-contained” renal RAS.  相似文献   

7.
Previous physiological and biochemical studies suggest the existence of an endogenous renin-angiotensin system (RAS) in the kidney. However, these data cannot exclude the contribution of the circulating RAS. Proof of the local synthesis of RAS components in the kidney has been obtained recently through the use of molecular biological techniques. Using Northern blot analysis, we have demonstrated the intrarenal expression of renin, angiotensinogen, and angiotensin-converting enzyme messenger RNAs. Employing in situ hybridization histochemistry, we have localized the intrarenal tissue sites of renin and angiotensinogen messenger RNA synthesis. Renin gene expression was found in cells of the juxtaglomerular apparatus. Angiotensinogen mRNA was primarily produced in the proximal convoluted tubule with lesser amounts in glomerular tufts and vasculature. These findings led us to hypothesize that the proximal tubule is a major site of renal Ang II synthesis and that locally synthesized Ang II might directly modulate tubular function. Both genes are subject to feedback regulation. Our studies showed that Ang II exerted a stimulatory effect on angiotensinogen but a negative feedback effect on renin gene expression. Dietary NaCl restriction stimulated the expression of both genes, although the onset of renin gene activation required more prolonged sodium chloride restriction. Furthermore, our data indicated that the sodium cation, irrespective of the anion, was primarily important in regulating renal angiotensinogen mRNA levels. Our studies also showed altered intrarenal renin or angiotensinogen expressions in pathophysiological states, e.g. in experimental heart failure and the spontaneously hypertensive rat. Taken together, these data support the existence of a intrarenal RAS and suggest its potential roles in the regulation of renal function in health and disease.  相似文献   

8.
Cell type-specific expression of the human renin gene.   总被引:2,自引:0,他引:2  
We have previously produced transgenic mice carrying the human renin gene, whose expression is regulated in a tissue-specific manner. In the present study, we further characterized expression of the transgene. Northern blot analysis showed that the human renin gene is expressed in the kidney but not in the liver of two lines of transgenic mice with 10 and 50 copies of the transgene, suggesting that the integrated copy number of the human renin gene does not influence the dominant-renal expression pattern. Immunohistochemical study using a monoclonal antibody specific for human renin demonstrated that expression of human renin in the transgenic mouse kidney is confined to the epithelioid juxtaglomerular cells. Transfection experiments indicated that the chloramphenicol acetyltransferase fusion gene containing the 3-kb upstream sequences of the renin gene is activated only in human epithelioid embryonic 293 cells derived from kidney but not in human HepG2 cells from liver. These findings suggest that transfer of the cloned renin gene into mice and in vitro cultured cell lines can give rise to cell type-specific expression.  相似文献   

9.
10.
Imig JD  Zhao X  Orengo SR  Dipp S  El-Dahr SS 《Peptides》2003,24(8):1141-1147
Angiotensin converting enzyme (ACE) inhibition leads to increased levels of bradykinin, cyclooxygenase-2 (COX-2), and renin. Since bradykinin stimulates prostaglandin release, renin synthesis may be regulated through a kinin-COX-2 pathway. To test this hypothesis, we examined the impact of bradykinin B2 receptor (B2R) gene disruption in mice on kidney COX-2 and renin gene expression. Kidney COX-2 mRNA and protein levels were significantly lower in B2R-/- mice by 40-50%. On the other hand, renal COX-1 levels were similar in B2R-/- and +/+ mice. Renal renin protein was 61% lower in B2R-/- compared to B2R+/+ mice. This was accompanied by a significant reduction in renin mRNA levels in B2R-/- mice. Likewise, intrarenal angiotensin I levels were significantly lower in B2R-/- mice compared to B2R+/+ mice. In contrast, kidney angiotensin II levels were not different and averaged 261+/-16 and 266+/-15fmol/g in B2R+/+ and B2R-/- mice, respectively. Kidney angiotensinogen, AT1 receptor and ACE activity were not different between B2R+/+ and B2R-/- mice. The results of these studies demonstrate suppression of renal renin synthesis in mice lacking the bradykinin B2R and support the notion that B2R regulation of COX-2 participates in the steady-state control of renin gene expression.  相似文献   

11.
All components of the renin angiotensin system necessary for ANG II generation and action have been reported to be present in renal proximal convoluted tubules. Given the close relationship between renal sodium handling and blood pressure regulation, we hypothesized that modulating the action of ANG II specifically in the renal proximal tubules would alter the chronic level of blood pressure. To test this, we used a proximal tubule-specific, androgen-dependent, promoter construct (KAP2) to generate mice with either overexpression of a constitutively active angiotensin type 1A receptor transgene or depletion of endogenous angiotensin type 1A receptors. Androgen administration to female transgenic mice caused a robust induction of the transgene in the kidney and increased baseline blood pressure. In the receptor-depleted mice, androgen administration to females resulted in a Cre recombinase-mediated deletion of angiotensin type 1A receptors in the proximal tubule and reduced blood pressure. In contrast to the changes observed at baseline, there was no difference in the blood pressure response to a pressor dose of ANG II in either experimental model. These data, from two separate mouse models, provide evidence that ANG II signaling via the type 1A receptor in the renal proximal tubule is a regulator of systemic blood pressure under baseline conditions.  相似文献   

12.
Effects of locally formed angiotensin II on renal hemodynamics   总被引:1,自引:0,他引:1  
The kidney produces angiotensin II (AngII) by conversion of both locally formed and systemically delivered angiotensin I (AngI). The latter may be physiologically significant because the kidney can convert 20-25% of systemically delivered AngI. To determine possible differences between the effects of circulating and locally converted AngII, we compared the renal responses to renal arterial infusions of AngI and AngII in equiconstrictor doses. Both reduced the renal blood flow and increased the filtration fraction; it is important that the AngI infusions consistently reduced glomerular filtration rates (GFR), which indicates effects proximal to or at the glomerulus. Micropuncture experiments revealed that AngI infusions reduced proximal tubular and peritubular capillary pressures and the single-nephron GFR; glomerular capillary pressure was not altered significantly. AngI infusions increased both pre- and postglomerular resistances and reduced the glomerular filtration coefficient. In other studies designed to estimate net intrarenal AngII generation, it was determined that the kidney degrades about 90% of arterially delivered AngII. Thus, most of the AngII in renal venous blood was formed intrarenally. Local production of AngII was enhanced, in association with increased renin release, after reductions in renal arterial pressure. Such increases in intrarenal AngII production may contribute to the AngII-dependent changes in renal vascular resistance that occur in conditions where the renin-angiotensin system is stimulated.  相似文献   

13.
14.
Mast cells are associated with inflammation and fibrosis. Whether they protect against or contribute to renal fibrosis is unclear. Based on our previous findings that mast cells can express and secrete active renin, and that angiotensin (ANG II) is profibrotic, we hypothesized that mast cells play a critical role in tubulointerstitial fibrosis. We tested this hypothesis in the 14-day unilateral ureteral obstruction (UUO) model in rats and mast cell-deficient (MCD) mice (WBB6F1-W/Wv) and their congenic controls (CC). In the 14-day UUO rat kidney, mast cell number is increased and they express active renin. Stabilizing mast cells in vivo with administration of cromolyn sodium attenuated the development of tubulointerstitial fibrosis, which was confirmed by measuring newly synthesized pepsin-soluble collagen and blind scoring of fixed trichrome-stained kidney sections accompanied by spectral analysis. Fibrosis was absent in UUO kidneys from MCD mice unlike that observed in the CC mice. Losartan treatment reduced the fibrosis in the CC UUO kidneys. The effects of mast cell degranulation and renin release were tested in the isolated, perfused kidney preparation. Mast cell degranulation led to renin-dependent protracted flow recovery. This demonstrates that mast cell renin is active in situ and the ensuing ANG II can modulate intrarenal vascular resistance in the UUO kidney. Collectively, the data demonstrate that mast cells are critical to the development of renal fibrosis in the 14-day UUO kidney. Since renin is present in human kidney mast cells, our work identifies potential targets in the treatment of renal fibrosis.  相似文献   

15.
Urate is the final metabolite of purine in humans. Renal urate handling is clinically important because under-reabsorption or underexcretion causes hypouricemia or hyperuricemia, respectively. We have identified a urate-anion exchanger, URAT1, localized at the apical side and a voltage-driven urate efflux transporter, URATv1, expressed at the basolateral side of the renal proximal tubules. URAT1 and URATv1 are vital to renal urate reabsorption because the experimental data have illustrated that functional loss of these transporter proteins affords hypouricemia. While mutations affording enhanced function via these transporter proteins on urate handling is unknown, we have constructed kidney-specific transgenic (Tg) mice for URAT1 or URATv1 to investigate this problem. In our study, each transgene was under the control of the mouse URAT1 promoter so that transgene expression was directed to the kidney. Plasma urate concentrations in URAT1 and URATv1 Tg mice were not significantly different from that in wild-type (WT) mice. Urate excretion in URAT1 Tg mice was similar to that in WT mice, while URATv1 Tg mice excreted more urate compared with WT. Our results suggest that hyperfunctioning URATv1 in the kidney can lead to increased urate reabsorption and may contribute to the development of hyperuricemia.  相似文献   

16.
Angiotensin (ANG) II-dependent hypertension is characterized by increases in intrarenal ANG II levels, derangement in renal hemodynamics, and augmented tubular sodium reabsorptive capability. Increased nephron expression of renin-angiotensin system components, such as angiotensinogen by proximal tubule cells and renin by collecting duct principal cells, has been associated with an augmented ability of the kidney to form ANG II in hypertensive states. However, the contribution of de novo intrarenal ANG II production to the development and maintenance of ANG II-dependent hypertension remains unclear. The present study was performed to determine the effects of selective intrarenal renin inhibition on whole kidney hemodynamics and renal excretory function in Cyp1a1-Ren2 rats with ANG II-dependent malignant hypertension in the absence of the confounding influence of associated reductions in mean arterial pressure (MAP). Male Cyp1a1-Ren2 transgenic rats were induced to develop malignant hypertension, anesthetized, and surgically prepared for intrarenal administration of the direct renin inhibitor aliskiren (0.01 mg/kg). Following acute aliskiren treatment, urine flow and sodium excretion increased (10.5 ± 1.1 to 15.9 ± 1.9 μl/min, P < 0.001; 550 ± 160 to 1,370 ± 320 neq/min, P < 0.001, respectively) and ANG II excretion decreased (120 ± 30 to 63 ± 17 fmol/h, P < 0.05). There were no significant changes in MAP, glomerular filtration rate, estimated renal plasma flow, plasma ANG II levels, or protein excretion. The present findings demonstrate that selective renal renin inhibition elicits diuretic and natriuretic responses in Cyp1a1-Ren2 rats with ANG II-dependent malignant hypertension. Elevated intraluminal ANG II levels likely act to augment tubular reabsorptive function and, thereby, contribute to the elevated blood pressure in Cyp1a1-Ren2 rats with ANG II-dependent malignant hypertension.  相似文献   

17.
Urate is the final metabolite of purine in humans. Renal urate handling is clinically important because under-reabsorption or underexcretion causes hypouricemia or hyperuricemia, respectively. We have identified a urate-anion exchanger, URAT1, localized at the apical side and a voltage-driven urate efflux transporter, URATv1, expressed at the basolateral side of the renal proximal tubules. URAT1 and URATv1 are vital to renal urate reabsorption because the experimental data have illustrated that functional loss of these transporter proteins affords hypouricemia. While mutations affording enhanced function via these transporter proteins on urate handling is unknown, we have constructed kidney-specific transgenic (Tg) mice for URAT1 or URATv1 to investigate this problem. In our study, each transgene was under the control of the mouse URAT1 promoter so that transgene expression was directed to the kidney. Plasma urate concentrations in URAT1 and URATv1 Tg mice were not significantly different from that in wild-type (WT) mice. Urate excretion in URAT1 Tg mice was similar to that in WT mice, while URATv1 Tg mice excreted more urate compared with WT. Our results suggest that hyperfunctioning URATv1 in the kidney can lead to increased urate reabsorption and may contribute to the development of hyperuricemia.  相似文献   

18.
19.
为探讨collectrin在人类疾病中的作用 ,利用人类collectrin同源性引物 ,经末端cDNA快速扩增法分离获得人collectrin基因全长序列并对collectrin进行生物信息学分析及定位表达研究 .结果发现 ,人类collectrin(GenBank登录号为AF2 2 9179)基因全长含 1345bp ,开放阅读框架编码 2 2 2个氨基酸 .在核苷酸和氨基酸水平 ,与小鼠collectrin序列分别有 86 9%和 87 4 %同源性 .生物信息学分析结果提示 ,collectrin为一个 2 5kD的具有一个信号肽和一个跨膜区的跨膜糖蛋白 .人类collectrin与人类血管紧张素转换酶相关的羧基肽酶 (ACE2 )具有 4 7 8%高度同源性 .人多组织Northern杂交结果显示 :collectrin基因为人类肾脏特异性表达基因 .原位杂交及免疫组化证实 ,与小鼠collectrin特异表达于集合管细胞不同 ,人collectrin基因mRNA及其蛋白产物除位于肾脏集合管细胞外 ,远曲肾小管细胞也有表达 .由此推论 ,人类collectrin基因为肾脏特异性表达基因 ,与人类血管紧张素转换酶相关的羧基肽酶具有高度同源性 ,可能为血管紧张素转换酶 (ACE)基因家族的新成员 .  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号