首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The properties of two universal major proteins of cytoplasmic mRNP, p50 and the poly(A)-binding protein (PABP), are summarized. Their roles in formation of polyribosomal and free inactive mRNP are considered, with the focus on the authors' studies of p50. The parts these mRNP proteins play in translation regulation, stability, and localization of mRNA are described, and the possible mechanisms of their function are discussed.  相似文献   

2.
3.
The interaction between the poly(A)‐binding protein (PABP) and eukaryotic translational initiation factor 4G (eIF4G), which brings about circularization of the mRNA, stimulates translation. General RNA‐binding proteins affect translation, but their role in mRNA circularization has not been studied before. Here, we demonstrate that the major mRNA ribonucleoprotein YB‐1 has a pivotal function in the regulation of eIF4F activity by PABP. In cell extracts, the addition of YB‐1 exacerbated the inhibition of 80S ribosome initiation complex formation by PABP depletion. Rabbit reticulocyte lysate in which PABP weakly stimulates translation is rendered PABP‐dependent after the addition of YB‐1. In this system, eIF4E binding to the cap structure is inhibited by YB‐1 and stimulated by a nonspecific RNA. Significantly, adding PABP back to the depleted lysate stimulated eIF4E binding to the cap structure more potently if this binding had been downregulated by YB‐1. Conversely, adding nonspecific RNA abrogated PABP stimulation of eIF4E binding. These data strongly suggest that competition between YB‐1 and eIF4G for mRNA binding is required for efficient stimulation of eIF4F activity by PABP.  相似文献   

4.
GW182 family proteins interact with Argonaute proteins and are required for the translational repression, deadenylation and decay of miRNA targets. To elicit these effects, GW182 proteins interact with poly(A)‐binding protein (PABP) and the CCR4–NOT deadenylase complex. Although the mechanism of miRNA target deadenylation is relatively well understood, how GW182 proteins repress translation is not known. Here, we demonstrate that GW182 proteins decrease the association of eIF4E, eIF4G and PABP with miRNA targets. eIF4E association is restored in cells in which miRNA targets are deadenylated, but decapping is inhibited. In these cells, eIF4G binding is not restored, indicating that eIF4G dissociates as a consequence of deadenylation. In contrast, PABP dissociates from silenced targets in the absence of deadenylation. PABP dissociation requires the interaction of GW182 proteins with the CCR4–NOT complex. Accordingly, NOT1 and POP2 cause dissociation of PABP from bound mRNAs in the absence of deadenylation. Our findings indicate that the recruitment of the CCR4–NOT complex by GW182 proteins releases PABP from the mRNA poly(A) tail, thereby disrupting mRNA circularization and facilitating translational repression and deadenylation.  相似文献   

5.
6.
Cytoplasmic poly(A)-binding protein (PABP) C1 recruits different interacting partners to regulate mRNA fate. The majority of PABP-interacting proteins contain a PAM2 motif to mediate their interactions with PABPC1. However, little is known about the regulation of these interactions or the corresponding functional consequences. Through in silico analysis, we found that PAM2 motifs are generally embedded within an extended intrinsic disorder region (IDR) and are located next to cluster(s) of potential serine (Ser) or threonine (Thr) phosphorylation sites within the IDR. We hypothesized that phosphorylation at these Ser/Thr sites regulates the interactions between PAM2-containing proteins and PABPC1. In the present study, we have tested this hypothesis using complementary approaches to increase or decrease phosphorylation. The results indicate that changing the extent of phosphorylation of three PAM2-containing proteins (Tob2, Pan3, and Tnrc6c) alters their ability to interact with PABPC1. Results from experiments using phospho-blocking or phosphomimetic mutants in PAM2-containing proteins further support our hypothesis. Moreover, the phosphomimetic mutations appreciably affected the functions of these proteins in mRNA turnover and gene silencing. Taken together, these results provide a new framework for understanding the roles of intrinsically disordered proteins in the dynamic and signal-dependent control of cytoplasmic mRNA functions.  相似文献   

7.
The properties of two universal major proteins of cytoplasmic mRNP, p50 and the poly(A)-binding protein (PABP), are summarized. Their roles in formation of polyribosomal and free inactive mRNP are considered, with the focus on the authors' studies of p50. The parts these mRNP proteins play in translation regulation, stability, and localization of mRNA are described, and the the possible mechanisms of their function are discussed.  相似文献   

8.
The poly(A)-binding protein (PABP), bound to the 3' poly(A) tail of eukaryotic mRNAs, plays critical roles in mRNA translation and stability. PABP autoregulates its synthesis by binding to a conserved A-rich sequence present in the 5'-untranslated region of PABP mRNA and repressing its translation. PABP is composed of two parts: the highly conserved N terminus, containing 4 RNA recognition motifs (RRMs) responsible for poly(A) and eIF4G binding; and the more variable C terminus, which includes the recently described PABC domain, and promotes intermolecular interaction between PABP molecules as well as cooperative binding to poly(A). Here we show that, in vitro, GST-PABP represses the translation of reporter mRNAs containing 20 or more A residues in their 5'-untranslated regions and remains effective as a repressor when an A61 tract is placed at different distances from the cap, up to 126 nucleotides. Deletion of the PABP C terminus, but not the PABC domain alone, significantly reduces its ability to inhibit translation when bound to sequences distal to the cap, but not to proximal ones. Moreover, cooperative binding by multiple PABP molecules to poly(A) requires the C terminus, but not the PABC domain. Further analysis using pull-down assays shows that the interaction between PABP molecules, mediated by the C terminus, does not require the PABC domain and is enhanced by the presence of RRM 4. In vivo, fusion proteins containing parts of the PABP C terminus fused to the viral coat protein MS2 have an enhanced ability to prevent the expression of chloramphenicol acetyltransferase reporter mRNAs containing the MS2 binding site at distal distances from the cap. Altogether, our results identify a proline- and glutamine-rich linker located between the RRMs and the PABC domain as being strictly required for PABP/PABP interaction, cooperative binding to poly(A) and enhanced translational repression of reporter mRNAs in vitro and in vivo.  相似文献   

9.
Vasopressin (VP) mRNA and the non-coding BC200 RNA are sorted to neuronal dendrites. Among proteins interacting specifically with both RNAs is the multifunctional poly(A)-binding protein (PABP) consisting of four RNA recognition motifs (RRMs) and a C-terminal auxiliary domain. The protein/RNA interaction studies presented here reveal that PABPs association with VP- and BC200 RNA is exclusively mediated by RRMs 3+4. Quantitative binding studies with PABP deletion mutants demonstrate preferential binding of RRMs 3+4 even to poly(A)-homopolymers, while RRMs 1+2 exhibit a lower affinity for those sequences. An optimal interaction with both poly(A)- and non-poly(A) sequences is only achieved by full-size PABP.  相似文献   

10.
RNA-binding proteins that bind to the 3′ untranslated region of mRNAs play important roles in regulating gene expression. Here we examine the association between the 70 kDa poly (A) binding protein (PABP) and stored (RNP) and polysomal mRNAs during mammalian male germ cell development. PABP mRNA levels increase as germ cells enter meiosis, reaching a maximum in the early postmeiotic stages, and decreasing to a nearly nondetectable level towards the end of spermatogenesis. Most of the PABP mRNA is found in the nonpolysomal fractions of postmitochondrial extracts, suggesting that PABP mRNA is either inefficiently translated or stored as RNPs during spermatogenesis. Virtually all of the testicular PABP is bound to either polysomal or nonpolysomal mRNAs, with little, if any, free PABP detectable. Analysis of several specific mRNAs reveals PABP is bound to both stored (RNP) and translated forms of the mRNAs. Western blot analysis and immunocytochemistry indicate PABP is widespread in the mammalian testis, with maximal amounts detected in postmeiotic round spermatids. The presence of PABP in elongating spermatids, a cell type in which PABP mRNA is nearly absent, suggests that PABP is a stable protein in the later stages of male germ cell development. The high level of testicular PABP in round spermatids and in mRNPs suggests a role for PABP in the storage as well as in the subsequent translation of developmentally regulated mRNAs in the mammalian testis. © 1995 Wiley-Liss, Inc.  相似文献   

11.
When bound to the 3′ poly(A) tail of mRNA, poly(A)-binding protein (PABP) modulates mRNA translation and stability through its association with various proteins. By visualizing individual PABP molecules in real time, we found that PABP, containing four RNA recognition motifs (RRMs), adopts a conformation on poly(A) binding in which RRM1 is in proximity to RRM4. This conformational change is due to the bending of the region between RRM2 and RRM3. PABP-interacting protein 2 actively disrupts the bent structure of PABP to the extended structure, resulting in the inhibition of PABP-poly(A) binding. These results suggest that the changes in the configuration of PABP induced by interactions with various effector molecules, such as poly(A) and PABP-interacting protein 2, play pivotal roles in its function.  相似文献   

12.
The eukaryotic mRNA 3′ poly(A) tail and the 5′ cap cooperate to synergistically enhance translation. This interaction is mediated by a ribonucleoprotein network that contains, at a minimum, the poly(A) binding protein (PABP), the cap-binding protein eIF4E, and a scaffolding protein, eIF4G. eIF4G, in turn, contains binding sites for eIF4A and eIF3, a 40S ribosome-associated initiation factor. The combined cooperative interactions within this “closed loop” mRNA among other effects enhance the affinity of eIF4E for the 5′ cap, by lowering its dissociation rate and, ultimately, facilitate the formation of 48S and 80S ribosome initiation complexes. The PABP-poly(A) interaction also stimulates initiation driven by picornavirus’ internal ribosomal entry sites (IRESs), a process that requires eIF4G but not eIF4E. PABP, therefore, should be considered a canonical initiation factor, integral to the formation of the initiation complex. Poly(A)-mediated translation is subjected to regulation by the PABP-interacting proteins Paip1 and Paip2. Paip1 acts as a translational enhancer. In contrast, Paip2 strongly inhibits translation by promoting dissociation of PABP from poly(A) and by competing with eIF4G for binding to PABP. Published in Russian in Molekulyarnaya Biologiya, 2006, Vol. 40, No. 4, pp. 684–693. The article is published in the original.  相似文献   

13.
MLLE (previously known as PABC) is a peptide-binding domain that is found in poly(A)-binding protein (PABP) and EDD (E3 isolated by differential display), a HECT E3 ubiquitin ligase also known as HYD (hyperplastic discs tumor suppressor) or UBR5. The MLLE domain from PABP recruits various regulatory proteins and translation factors to poly(A) mRNAs through binding of a conserved 12 amino acid peptide motif called PAM2 (for PABP-interacting motif 2). Here, we determined crystal structures of the MLLE domain from PABP alone and in complex with PAM2 peptides from PABP-interacting protein 2. The structures provide a detailed view of hydrophobic determinants of the MLLE binding coded by PAM2 positions 3, 5, 7, 10, and 12 and reveal novel intermolecular polar contacts. In particular, the side chain of the invariant MLLE residue K580 forms hydrogen bonds with the backbone of PAM2 residues 5 and 7. The structures also show that peptide residues outside of the conserved PAM2 motif contribute to binding. Altogether, the structures provide a significant advance in understanding the molecular basis for the binding of PABP by PAM2-containing proteins involved in translational control, mRNA deadenylation, and other cellular processes.  相似文献   

14.
An important determinant for the expression level of cytokines and proto-oncogenes is the rate of degradation of their mRNAs. AU-rich sequence elements (AREs) in the 3(') untranslated regions have been found to impose rapid decay of these mRNAs. ARE-containing mRNAs can be stabilized in response to external signals which activate the p38 MAP kinase cascade including the p38 MAP kinase substrate MAPKAP kinase 2 (MK2). In an attempt to identify components downstream of MK2 in this pathway we analyzed several proteins which selectively interact with the ARE of GM-CSF mRNA. One of them, the cytoplasmic poly(A)-binding protein PABP1, co-migrated with a protein that showed prominent phosphorylation by recombinant MK2. Phosphorylation by MK2 was confirmed using PABP1 purified by affinity chromatography on poly(A) RNA. The selective interaction with an ARE-containing RNA and the phosphorylation by MK2 suggest that PABP1 plays a regulatory role in ARE-dependent mRNA decay and its modulation by the p38 MAP kinase cascade.  相似文献   

15.
Poly(A)-binding proteins (PABPs) are the best characterized messenger RNA-binding proteins of eucaryotic cells and have been identified in diverse organisms such as mammals and yeasts. The in vitro poly(A)-binding properties of these proteins have been studied intensively; however, little is known about their function in cells. In this report, we show that sea urchin eggs have two molecular weight forms of PABP (molecular weights of 66,000 and 80,000). Each of these has at least five posttranslationally modified forms. Both sea urchin PABPs are found in approximately 1:1 ratios in both cytoplasmic and nuclear fractions of embryonic cells. Quantification in eggs and embryos revealed that sea urchin PABPs are surprisingly abundant, composing about 0.6% of total cellular protein. This is 50 times more than required to bind all the poly(A) in the egg based on the binding stoichiometry of 1 PABP per 27 adenosine residues. We found that density gradient centrifugation strips PABP from poly(A) and therefore underestimates the amount of PABP complexed to poly(A)+ RNA in cell homogenates. However, large-pore gel filtration chromatography could be used to separate intact poly(A)-PABP complexes from free PABP. Using the gel filtration method, we found that the threefold increase in poly(A) content of the egg after fertilization is paralleled by an approximate fivefold increase in the amount of bound PABP. Furthermore, both translated and nontranslated poly(A)+ RNAs appear to be complexed to PABP. As expected from the observation that PABPs are so abundant, greater than 95% of the PABP of the cell is uncomplexed protein.  相似文献   

16.
The poly(A)-binding protein (PABP), a key component of different ribonucleoprotein complexes, plays a crucial role in the control of mRNA translation rates, stability, and subcellular targeting. In this study we identify RING zinc finger protein Makorin 1 (MKRN1), a bona fide RNA-binding protein, as a binding partner of PABP that interacts with PABP in an RNA-independent manner. In rat brain, a so far uncharacterized short MKRN1 isoform, MKRN1-short, predominates and is detected in forebrain nerve cells. In neuronal dendrites, MKRN1-short co-localizes with PABP in granule-like structures, which are morphological correlates of sites of mRNA metabolism. Moreover, in primary rat neurons MKRN1-short associates with dendritically localized mRNAs. When tethered to a reporter mRNA, MKRN1-short significantly enhances reporter protein synthesis. Furthermore, after induction of synaptic plasticity via electrical stimulation of the perforant path in vivo, MKRN1-short specifically accumulates in the activated dendritic lamina, the middle molecular layer of the hippocampal dentate gyrus. Collectively, these data indicate that in mammalian neurons MKRN1-short interacts with PABP to locally control the translation of dendritic mRNAs at synapses.  相似文献   

17.
Autoregulation of poly(A)-binding protein synthesis in vitro.   总被引:2,自引:0,他引:2       下载免费PDF全文
The poly(A)-binding protein (PABP), in a complex with the 3'poly(A) tail of eukaryotic mRNAs, plays important roles in the control of translation and message stability. All known examples of PABP mRNAs contain an extensive A-rich sequence in their 5' untranslated regions. Studies in mammalian cells undergoing growth stimulation or terminal differentiation indicate that PABP expression is regulated at the translational level. Here we examine the hypothesis that synthesis of the PABP is autogenously controlled. We show that the endogenous inactive PABP mRNA in rabbit reticulocytes can be specifically stimulated by addition of low concentrations of poly(A) and that this stimulation is also observed with in vitro transcribed human PABP mRNA. By deleting the A-rich region from the leader of human PABP mRNA and adding it upstream of the initiator AUG in a reporter mRNA we show that the adenylate tract is sufficient and necessary for mRNA repression and poly(A)-mediated activation in the reticulocyte cell-free system. UV cross-linking experiments demonstrate that the leader adenylate tract binds PABP. Furthermore, addition of recombinant GST-PABP to the cell-free system represses translation of mRNAs containing the A-rich sequence in their 5'UTR, but has no effect on control mRNA. We thus conclude that in vitro PABP binding to the A-rich sequence in the 5' UTR of PABP mRNA represses its own synthesis.  相似文献   

18.
19.
During virus assembly, the capsid proteins of RNA viruses bind to genomic RNA to form nucleocapsids. However, it is now evident that capsid proteins have additional functions that are unrelated to nucleocapsid formation. Specifically, their interactions with cellular proteins may influence signaling pathways or other events that affect virus replication. Here we report that the rubella virus (RV) capsid protein binds to poly(A)-binding protein (PABP), a host cell protein that enhances translational efficiency by circularizing mRNAs. Infection of cells with RV resulted in marked increases in the levels of PABP, much of which colocalized with capsid in the cytoplasm. Mapping studies revealed that capsid binds to the C-terminal half of PABP, which interestingly is the region that interacts with other translation regulators, including PABP-interacting protein 1 (Paip1) and Paip2. The addition of capsid to in vitro translation reaction mixtures inhibited protein synthesis in a dose-dependent manner; however, the capsid block was alleviated by excess PABP, indicating that inhibition of translation occurs through a stoichiometric mechanism. To our knowledge, this is the first report of a viral protein that inhibits protein translation by sequestration of PABP. We hypothesize that capsid-dependent inhibition of translation may facilitate the switch from viral translation to packaging RNA into nucleocapsids.  相似文献   

20.
We describe a new RNA binding protein from Xenopus we have named ePABP2 (embryonic poly(A) binding protein type II). Based on amino acid similarity, ePABP2 is closely related to the ubiquitously expressed nuclear PABP2 protein that directs the elongation of mRNA poly(A) tails during pre-mRNA processing. However, in contrast to known PABP2 proteins, Xenopus ePABP2 is a cytoplasmic protein that is predominantly expressed during the early stages of Xenopus development and in adult ovarian tissue. Biochemical experiments indicate ePABP2 binds poly(A) with specificity and that this binding requires the RRM domain. Mouse and human ePABP2 proteins were also identified and mouse ePABP2 expression is also confined to the earliest stages of mouse development and adult ovarian tissue. We propose that Xenopus ePABP2 is the founding member of a new class of poly(A) binding proteins expressed in vertebrate embryos. Possible roles for this protein in regulating mRNA function in early vertebrate development are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号