首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
TSG-6 protein, up-regulated in inflammatory lesions and in the ovary during ovulation, shows anti-inflammatory activity and plays an essential role in female fertility. Studies in murine models of acute inflammation and experimental arthritis demonstrated that TSG-6 has a strong anti-inflammatory and chondroprotective effect. TSG-6 protein is composed of the N-terminal link module that binds hyaluronan and a C-terminal CUB domain, present in a variety of proteins. Interactions between the isolated link module and hyaluronan have been studied extensively, but little is known about the binding of full-length TSG-6 protein to hyaluronan and other glycosaminoglycans. We show that TSG-6 protein and hyaluronan, in a temperature-dependent fashion, form a stable complex that is resistant to dissociating agents. The formation of such stable complexes may underlie the activities of TSG-6 protein in inflammation and fertility, e.g. the TSG-6-dependent cross-linking of hyaluronan in the cumulus cell-oocyte complex during ovulation. Because adhesion to hyaluronan is involved in cell trafficking in inflammatory processes, we also studied the effect of TSG-6 on cell adhesion. TSG-6 binding to immobilized hyaluronan did not interfere with subsequent adhesion of lymphoid cells. In addition to immobilized hyaluronan, full-length TSG-6 also binds free hyaluronan and all chondroitin sulfate isoforms under physiological conditions. These interactions may contribute to the localization of TSG-6 in cartilage and to its chondroprotective and anti-inflammatory effects in models of arthritis.  相似文献   

2.
The relative binding affinity of Zn2+ to several glycosaminoglycans was determined by gel-filtration chromatography. Binding was observed only between Zn2+ and heparin. No binding was observed between Zn2+ and chondroitin 4-sulphate, chondroitin 6-sulphate, dermatan sulphate of hyaluronic acid. All of the glycosaminoglycans contained carboxy groups, but only heparin bound Zn2+. This observation suggests that, contrary to a previously proposed hypothesis, simple electrostatic interactions between the negatively charged carboxy groups of the glycosaminoglycans and the positively charged Zn2+ cannot explain the observed binding.  相似文献   

3.
The binding of the glycosaminoglycans (GAG) chondroitin sulfate and heparin and the homologous molecule dextran sulfate to multilamellar dimyristoyl phosphatidylcholine (DMPC), dilaureyl phosphatidylcholine (DLPC) and egg lecithin liposomes was investigated by microelectrophoresis measurements. Drastic changes of the zeta potential of the liposomes to negative values indicate the binding of the highly anionic macromolecules. Binding depends strongly on Ca2+ and NaCl concentrations in the medium and does not occur in the absence of Ca2+. The adsorption is saturated at concentrations of about 0.1 mg/ml chondroitin sulfate and heparin and 0.01 mg/ml dextran sulfate. In the gel state of the phospholipid bilayer more GAG can associate with the surface compared to the fluid state.  相似文献   

4.
Pigment epithelium-derived factor (PEDF) is a multifunctional serpin with antitumorigenic, antimetastatic, and differentiating activities. PEDF is found within tissues rich in the glycosaminoglycan hyaluronan (HA), and its amino acid sequence contains putative HA-binding motifs. We show that PEDF coprecipitation with glycosaminoglycans in media conditioned by human retinoblastoma Y-79 cells decreased after pretreatments with hyaluronidase, implying an association between HA and PEDF. Direct binding of human recombinant PEDF to highly purified HA was demonstrated by coprecipitation in the presence of cetylpyridinium chloride. Binding of PEDF to HA was concentration-dependent and saturable. The PEDF-HA interactions were sensitive to increasing NaCl concentrations, indicating an ionic nature of these interactions and having affinity higher than PEDF-heparin. Competition assays showed that PEDF can bind heparin and HA simultaneously. PEDF chemically modified with fluorescein retained the capacity for interacting with HA but lacked heparin affinity, suggesting one or more distinct HA-binding regions on PEDF. The HA-binding region was examined by site-directed mutagenesis. Single-point and cumulative alterations at basic residues within the putative HA-binding motif K189A/K191A/R194A/K197A drastically reduced the HA-binding activity without affecting heparin- or collagen I binding of PEDF. Cumulative alterations at sites critical for heparin binding (K146A/K147A/R149A) decreased HA affinity but not collagen I binding. Thus these clusters of basic residues (BXBXXBXXB and BX3AB2XB motifs) in PEDF are functional regions for binding HA. In the spatial PEDF structure they are located in distinct areas away from the collagen-binding site. The HA-binding activity of PEDF may contribute to deposition in the extracellular matrix and to its reported antitumor/antimetastatic effects.  相似文献   

5.
Hydrazinolysis of heparin and other glycosaminoglycans.   总被引:2,自引:0,他引:2       下载免费PDF全文
Heparin, carboxy-group-reduced heparin, several sulphated monosaccharides and disaccharides formed from heparin, and a tetrasaccharide prepared from chondroitin sulphate were treated at 100 degrees C with hydrazine containing 1% hydrazine sulphate for periods sufficient to cause complete N-deacetylation of the N-acetylhexosamine residues. Under these hydrazinolysis conditions both the N-sulphate and the O-sulphate substituents on these compounds were completely stable. However, the uronic acid residues were converted into their hydrazide derivatives at rates that depended on the uronic acid structures. Unsubstituted L-iduronic acid residues reacted much more slowly than did unsubstituted D-glucuronic acid or 2-O-sulphated L-iduronic acid residues. The chemical modification of the carboxy groups resulted in a low rate of C-5 epimerization of the uronic acid residues. The hydrazinolysis reaction also caused a partial depolymerization of heparin but not of carboxy-group-reduced heparin. Treatment of the hydrazinolysis products with HNO2 at either pH 4 or pH 1.5 or with HIO3 converted the uronic acid hydrazides back into uronic acid residues. The use of the hydrazinolysis reaction in studies of the structures of uronic acid-containing polymers and the implications of the uronic acid hydrazide formation are discussed.  相似文献   

6.
Abstract Heparan sulphate binding to Helicobacter pylori at pH 4 to 5 was inhibited with various sulphated polysaccharides (heparin and chondroitin sulphates, fucoidan, carrageenans and some others), but not by carboxylated or nonsulphated compounds. Heparin binding proteins are exposed on the cell surface.  相似文献   

7.
Khayat R  Batra R  Qian C  Halmos T  Bailey M  Tong L 《Biochemistry》2003,42(4):885-891
Herpesvirus protease is required for the life cycle of the virus and is an attractive target for the design and development of new anti-herpes agents. The protease belongs to a new class of serine proteases, with a novel backbone fold and a unique Ser-His-His catalytic triad. Here we report the crystal structures of human cytomegalovirus protease in complex with two peptidomimetic inhibitors. The structures reveal a new hydrogen-bonding interaction between the main chain carbonyl of the P(5) residue and the main chain amide of amino acid 137 of the protease, which is important for the binding affinity of the inhibitor. Conformational flexibility was observed in the S(3) pocket of the enzyme, and this is supported by our characterization of several mutants in this pocket. One of the structures is at 2.5 A resolution, allowing us for the first time to locate ordered solvent molecules in the inhibitor complex. The presence of two solvent molecules in the active site may have implications for the design of new inhibitors against this enzyme. Favorable and stereospecific interactions have been established in the S(1)' pocket for one of these inhibitors.  相似文献   

8.
"Intimal cushions" which develop in the late gestation lamb ductus arteriosus (DA) are characterized by smooth muscle cells migrating into a large subendothelial space. Our previous in vitro studies, comparing DA cells with those from the aorta (Ao), have shown, even in early gestation, a 10-fold increase in DA endothelial incorporation of hyaluronan into the subendothelial matrix, a 2-fold increase in smooth muscle fibronectin synthesis and, in response to endothelial conditioned medium, a 2-fold increase in chondroitin sulfate. To determine whether these extracellular matrix components may be playing a role in inducing DA smooth muscle migration, we seeded Da or Ao smooth muscle cells onto three-dimensional collagen (2.0 mg/ml) gels and assessed migration 2, 5, and 8 days later. After 8 days, significantly greater numbers of DA compared to Ao cells were found invading the gels (23.1 +/- 3.1% vs 16.2 +/- 2.3%, P less than 0.01). Addition of GRGDS peptides (0.5 mM) or antibodies against fibronectin significantly decreased migration in the DA cells, but had no effect on migration in the Ao. Addition of endothelial conditioned medium to induce smooth muscle chondroitin sulfate production had no effect on DA cell migration. Inclusion of hyaluronan in the gel (0.5-1.5 mg), however, further enhanced DA cell migration, being greatest (31.9 +/- 3.1%) at a concentration of 1 mg/ml. Hyaluronan was without effect on Ao smooth muscle cell migration. The ability of hyaluronan to promote migration in cultures of DA smooth muscle cells was blocked completely by the addition of antibodies (1:100 dilution, 1 micrograms/ml) to a cell surface hyaluronan binding protein (HABP). As well, addition of anti-HABP to cells on gels containing collagen only significantly reduced migration in the DA but not the Ao. Immunofluorescent staining revealed that in DA cells, HABP was more concentrated in lamellipodia and leading edges than in Ao cells. As well, DA smooth muscle cells synthesized greater amounts of HABP as determined by Western immunoblotting and immunoprecipitation using polyclonal antisera to HABP. Thus, our studies indicate that both increased fibronectin and HABP contribute to the enhanced migration of DA smooth muscle cells. These results, together with our previous studies showing a 10-fold increase in hyaluronan accumulation in the DA endothelial matrix, would suggest a mechanism for increased DA smooth muscle migration into the subendothelial matrix observed in vivo.  相似文献   

9.
We have previously identified two hyaluronan (HA) binding domains in the HA receptor, RHAMM, that occur near the carboxyl-terminus of this protein. We show here that these two HA binding domains are the only HA binding regions in RHAMM, and that they contribute approximately equally to the HA binding ability of this receptor. Mutation of domain II using recombinant polypeptides of RHAMM demonstrates that K423 and R431, spaced seven amino acids apart, are critical for HA binding activity. Domain I contains two sets of two basic amino acids, each spaced seven residues apart, and mutation of these basic amino acids reduced their binding to HA--Sepharose. These results predict that two basic amino acids flanking a seven amino acid stretch [hereafter called B(X7)B] are minimally required for HA binding activity. To assess whether this motif predicts HA binding in the intact RHAMM protein, we mutated all basic amino acids in domains I and II that form part of these motifs using site-directed mutagenesis and prepared fusion protein from the mutated cDNA. The altered RHAMM protein did not bind HA, confirming that the basic amino acids and their spacing are critical for binding. A specific requirement for arginine or lysine residues was identified since mutation of K430, R431 and K432 to histidine residues abolished binding. Clustering of basic amino acids either within or at either end of the motif enhanced HA binding activity while the occurrence of acidic residues between the basic amino acids reduced binding. The B(X7)B motif, in which B is either R or K and X7 contains no acidic residues and at least one basic amino acid, was found in all HA binding proteins molecularly characterized to date. Recombinant techniques were used to generate chimeric proteins containing either the B(X7)B motifs present in CD44 or link protein, with the amino-terminus of RHAMM (amino acids 1-238) that does not bind HA. All chimeric proteins containing the motif bound HA in transblot analyses. Site-directed mutations of these motifs in CD44 sequences abolished HA binding. Collectively, these results predict that the motif of B(X7)B as a minimal binding requirement for HA in RHAMM, CD44 and link protein, and occurs in all HA binding proteins described to date.  相似文献   

10.
Investigation of ligand binding to native cytochrome c, carboxymethyl-Met 80-cytochrome c, myoglobin and haemhexapeptide revealed that the binding of exogenous ligands is modulated by the following factors:
  • 1.Hydrophobicity of the haem environment.
  • 2.Haem accessibility to exogenous ligands, termed the haem crevice ‘open-closed’ parameter.
  • 3.Steric interactions between the protein and the bound ligand.
  相似文献   

11.
The cell-adhesive glycoprotein vitronectin in human plasma was characterized with a monospecific anti-vitronectin antibody. Vitronectin, a mixture of monomeric 75 and 65 kDa polypeptides, was found to have different ratios of amounts of 75 and 65 kDa polypeptides in immunoblots of sera from various healthy human donors. Two states of vitronectin were previously reported; the open state binds to heparin, but the cryptic state does not (Hayashi et al. (1985) J. Biochem. 98, 1135-1138). The anti-vitronectin antibody was suggested to react more strongly with the open state of vitronectin than with the cryptic state. To quantitate all vitronectin regardless of its state, an enzyme-linked immunosorbent assay of vitronectin was developed based on prior boiling of vitronectin-containing samples in 2% (w/v) sodium dodecyl sulfate and 40 mM dithiothreitol to destroy conformational differences. About 12-20% of the vitronectin molecules in plasma were found to bind to heparin-Sepharose under physiological conditions. Vitronectin in plasma bound 30-fold more efficiently to heparin immobilized by amino groups than by carboxyl groups. Its affinity for heparin was higher than for chondroitin sulfate A or C, or dermatan sulfate. Vitronectin was also found to contain covalently-linked small polypeptides of 15 and 13 kDa. These light chains seemed to be disulfide-bonded to the 65 kDa polypeptide, and might be endogenously derived from nicks in the carboxy-terminal portion of the 75 kDa polypeptide in plasma.  相似文献   

12.
《Inorganica chimica acta》1988,153(2):105-113
The temperature dependency of ligand binding processes lend support to the proposed mechanisms and the factors affecting ligand binding reported earlier in this series. The free energy contribution from each factor affecting ligand binding was estimated for a number of haem proteins. The structures of the haem proteins used, as conveyed from ligand binding data, are in agreement with the structures of these haem proteins as determined by other methods (e.g. X-ray crystallography, NMR, etc.). Therefore, ligand binding could be used as a facile probe to investigate some of the structural and functional properties of haem proteins. In this respect, it was concluded that the structure of native cytochrome c at pH 10 is similar to the structure of carboxymethyl-Met 80 cytochrome c between pH 7 and 10.  相似文献   

13.
Preliminary investigations (Horvat et al., '75) indicated the nucleus of rat liver as a site for specific binding of insulin. In this report these observations are confirmed. Nuclei from rat liver were isolated in a highly purified state as verified by interference contrast and electron microscopy and by chemical analysis. Extensive scanning of the preparations did not reveal the presence of structures resembling plasma membranes. The nuclear envelope was isolated by a modification of the method of Kay et al. ('72). Electron micrographs showed the presence of nuclear "ghosts" and few other recognizable nuclear elements, but no plasma membranes (60--80 A thick) were detected. The preparation was found to contain specific insulin binding activity. Specificity of the binding sites for insulin was demonstrated in competition studies with other polypeptide hormones and a synthetic insulin analog. Scatchard analysis of the binding data indicates the presence of a single class of high affinity receptors. In contrast to findings with plasma membranes the hormone-receptor complex is very stable and the kinetics of the dissociation of bound [125I]-insulin do not indicate negative cooperativity of the binding sites. Immunofluorescent labeling of intact, unfixed nuclei showed a specific fluorescent halo only around those nuclei that have been preincubated with insulin. All other controls were negative.  相似文献   

14.
The platelet-derived growth factor (PDGF) family comprises disulfide-bonded dimeric isoforms and plays a key role in the proliferation and migration of mesenchymal cells. Traditionally, it consists of homo- and heterodimers of A and B polypeptide chains that occur as long (AL and BL) or short (AS and BS) isoforms. Short isoforms lack the basic C-terminal extension that mediates binding to heparin. In the present study, we show that certain PDGF isoforms bind in a specific manner to glycosaminoglycans (GAGs). Experiments performed with wild-type and mutant Chinese hamster ovary cells deficient in the synthesis of GAGs revealed that PDGF long isoforms bind to heparan sulfate and chondroitin sulfate, while PDGF short isoforms only bind to heparan sulfate. This was confirmed by digestion of cell surface GAGs with heparitinase and chondroitinase ABC and by incubation with sodium chloride to prevent GAG sulfation. Furthermore, exogenous GAGs inhibited the binding of long isoforms to the cell membrane more efficiently than that of short isoforms. Additionally, we performed surface plasmon resonance experiments to study the inhibition of PDGF isoforms binding to low molecular weight heparin by GAGs. These experiments showed that PDGF-AAL and PDGF-BBS isoforms bound to GAGs with the highest affinity. In conclusion, PDGF activity at the cell surface may depend on the expression of various cellular GAG species.  相似文献   

15.
P R Carey  R W King 《Biochemistry》1979,18(13):2834-2838
Alkalimetric, spectrophotometric, NMR, and resonance Raman titrations are reported for the sulfonamide Neoprontosil in aqueous solution. An assignment of the magnetic resonance peaks for each of the Neoprontosil protons has been made. Neoprontosil is shown to have two "coupled" iity of the microscopic pKs for these two groups precludes spectroscopic characterization of the separate -SO2NH2, -O- or -SO2NH-, -OH species. For this reason, no conclusion can be drawn on the ionization state of the drug when bound to carbonic anhydrase. The resonance Raman spectrum of Neoprontosil bound to human carbonic anhydrase B at pH 9.5 shows a shift in the intense -N=N- stretching mode from 1414 (free) to 1407 cm- (bound), suggesting that a slight conformational change about the -N=N- single bond linkages occurs upon binding.  相似文献   

16.
Molecular mechanisms and genetics of hyaluronan biosynthesis   总被引:6,自引:0,他引:6  
Hyaluronan is an extremely important polysaccharide from both the biological and commercial points of view. This review summarizes the present state of the art concerning the polymer and our understanding of the molecular mechanisms of its synthesis with emphasis on the implications of this understanding for polysaccharide engineering of hyaluronan.  相似文献   

17.
SCF(Skp2) is a multisubunit E3 ubiquitin ligase responsible for ubiquitination of cell cycle inhibitor p27. Ubiquitination of p27 requires an adapter protein, Cks1, to be in direct association with Skp2. The exact interface between Skp2 and Cks1 has not been elucidated. Here we have reported the definition of the critical functional interface between Skp2 and Cks1. We have identified eight amino acid residues in two discrete regions of Skp2 that are engaged in Cks1 binding. Mutation of any of these eight residues alone or in combination results in the loss of Cks1 association and negates Skp2-dependent p27 ubiquitination. These eight amino acid residues map on the same side of the Skp2 structure and likely constitute a functional binding surface for Cks1. Four of the eight amino acid residues are located in the largely unstructured carboxyl-terminal tail region of Skp2. These results uncovered the specificity of the Skp2-Cks1 interaction and reveal a critical function for the structurally flexible carboxyl-terminal tail region of Skp2 in Cks1 recognition and substrate ubiquitination.  相似文献   

18.
The hyaluronan (HA) synthase, PmHAS, and the chondroitin synthase, PmCS, from the Gram-negative bacterium Pasteurella multocida polymerize the glycosaminoglycan (GAG) sugar chains HA or chondroitin, respectively. The recombinant Escherichia coli-derived enzymes were shown previously to elongate exogenously supplied oligosaccharides of their cognate GAG (e.g. HA elongated by PmHAS). Here we show that oligosaccharides and polysaccharides of certain noncognate GAGs (including sulfated and iduronic acid-containing forms) are elongated by PmHAS (e.g. chondroitin elongated by PmHAS) or PmCS. Various acceptors were tested in assays where the synthase extended the molecule with either a single monosaccharide or a long chain (approximately 10(2-4) sugars). Certain GAGs were very poor acceptors in comparison to the cognate molecules, but elongated products were detected nonetheless. Overall, these findings suggest that for the interaction between the acceptor and the enzyme (a) the orientation of the hydroxyl at the C-4 position of the hexosamine is not critical, (b) the conformation of C-5 of the hexuronic acid (glucuronic versus iduronic) is not crucial, and (c) additional negative sulfate groups are well tolerated in certain cases, such as on C-6 of the hexosamine, but others, including C-4 sulfates, were not or were poorly tolerated. In vivo, the bacterial enzymes only process unsulfated polymers; thus it is not expected that the PmCS and PmHAS catalysts would exhibit such relative relaxed sugar specificity by acting on a variety of animal-derived sulfated or epimerized GAGs. However, this feature allows the chemoenzymatic synthesis of a variety of chimeric GAG polymers, including mimics of proteoglycan complexes.  相似文献   

19.
20.
Intermolecular self-association of hylan chains can be observed in hylan of molecular weight ca. 1×107, with an indication of specific cross-linking protein points and inter-chain cross-links of molecular weight of between 10,000 and 80,000. When this high molecular weight hylan is autoclaved to Mw 1.8×106, to yield a molecular size of the same order as a conventional hyaluronan, the structural features of hylan are retained, with regions of network disintegration having single chains to which one or two chains are joined. After degradation by OH radicals, extended linear chains are found with some of the straight chains having branch points. These can be attributed to the unwinding of the hylan coils by the movement of a droplet of water across the mica surface. The effect of filtration by 1 μm filter does not reduce the measured Mw (corresponding to an intrinsic viscosity of 8188 at low shear rate). However, when stressed through a 0.45 μm filter the Mw falls to a quarter of its previous value. The cross-linked structure of the original hylan is shown to be equivalent to a hyaluronan of ca. 10×106, based on rheological measurements. The cross-linked structure confers stability to degradation by OH radicals not observed for hyaluronan. This distinctive behaviour of hylan is maintained for the entire range of molecular weights studied. The results confirm the tendency of hylan chains to readily undergo chain–chain association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号