首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
雷妮娅  米湘成  陈勇  王旭航  李俊清   《生态学报》2008,28(5):1949-1949~1958
以拟南芥(Arabidopsis thaliana)两种基因型(ws-0和col-0)材料,采用复因子混合水平正交试验设计开展盆栽实验,研究了土壤盐分、土壤水分、光照强度、去叶处理等生态因子及其交互作用对受试植株18个表型特征的影响.结果表明生态因子对植物表型可塑性的影响是有针对性的:土壤水分主要影响植物体构件数目;土壤盐分主要影响生物量、角果数及种籽总数等直接反映植株适合度的表型特征;光照条件则主要影响植物的物候表型特征.植物体表型可塑性的方向随水分梯度的变化而发生改变.生态因子交互作用对植物表型可塑性的影响效果不是各因子独立作用的简单加和:对某个表型特征都有显著影响的两个生态因子其交互作用对该特征可能没有影响;反之,受两个生态因子交互作用影响显著的表型特征也可能不受它们的独立影响.在对生态因子交互作用作出响应时,col-0的9个特征表现出可塑性,而ws-0仅有4个表型是可塑的;同一基因型内彼此相关的表型特征在可塑性上也具一致性.抽苔时莲座叶数与角果平均籽粒数不受任何生态因子及其交互作用的影响,这两个表型作为数量特征而未表现出可塑性.  相似文献   

2.
Species can respond to environmental pressures through genetic and epigenetic changes and through phenotypic plasticity, but few studies have evaluated the relationships between genetic differentiation and phenotypic plasticity of plant species along changing environmental conditions throughout wide latitudinal ranges. We studied inter‐ and intrapopulation genetic diversity (using simple sequence repeats and chloroplast DNA sequencing) and inter‐ and intrapopulation phenotypic variability of 33 plant traits (using field and common‐garden measurements) for five populations of the invasive cordgrass Spartina densiflora Brongn. along the Pacific coast of North America from San Francisco Bay to Vancouver Island. Studied populations showed very low genetic diversity, high levels of phenotypic variability when growing in contrasted environments and high intrapopulation phenotypic variability for many plant traits. This intrapopulation phenotypic variability was especially high, irrespective of environmental conditions, for those traits showing also high phenotypic plasticity. Within‐population variation represented 84% of the total genetic variation coinciding with certain individual plants keeping consistent responses for three plant traits (chlorophyll b and carotenoid contents, and dead shoot biomass) in the field and in common‐garden conditions. These populations have most likely undergone genetic bottleneck since their introduction from South America; multiple introductions are unknown but possible as the population from Vancouver Island was the most recent and one of the most genetically diverse. S. densiflora appears as a species that would not be very affected itself by climate change and sea‐level rise as it can disperse, establish, and acclimate to contrasted environments along wide latitudinal ranges.  相似文献   

3.
Studies on divergence of phenotypic plasticity in closely related species have suggested that character means and plasticity of these characters may evolve independently. Similar patterns of divergence between populations within a species have been reported although few plant species have been studied. Thus, in this paper, the patterns of differentiation between character means and phenotypic plasticity among eight populations of Arabis serrata are documented. Mean response and magnitude and pattern of phenotypic plasticity were measured and compared in plants growing under an environmental gradient of nutrients. Differences in means and coefficients of variation (CV as indicators of plasticity) among populations were compared using the Canberra metric and generating unrooted Wagner trees. Populations showed significant differences in character means in nine morphological traits. Magnitude and patterns of phenotypic plasticity showed a complex pattern of differentiation for each trait and population. Biomass traits were more plastic, in general, than characters associated with linear size. Comparisons between pairs of populations for nine morphological traits showed that in 28.6% of 252 possible cases, populations differed in means, magnitude and patterns of phenotypic plasticity. In almost 90% of the cases, populations differed in magnitude and/or pattern of plasticity. Considering all characters together, populations from similar habitats and with common life history features tended to respond in similar ways. The patterns of divergence, however, suggest that character means and character plasticities among populations are able to evolve independently.  相似文献   

4.
Plant populations may show differentiation in phenotypic plasticity, and theory predicts that greater levels of environmental heterogeneity should select for higher magnitudes of phenotypic plasticity. We evaluated phenotypic responses to reduced soil moisture in plants of Convolvulus chilensis grown in a greenhouse from seeds collected in three natural populations that differ in environmental heterogeneity (precipitation regime). Among several morphological and ecophysiological traits evaluated, only four traits showed differentiation among populations in plasticity to soil moisture: leaf area, leaf shape, leaf area ratio (LAR), and foliar trichome density. In all of these traits plasticity to drought was greatest in plants from the population with the highest interannual variation in precipitation. We further tested the adaptive nature of these plastic responses by evaluating the relationship between phenotypic traits and total biomass, as a proxy for plant fitness, in the low water environment. Foliar trichome density appears to be the only trait that shows adaptive patterns of plasticity to drought. Plants from populations showing plasticity had higher trichome density when growing in soils with reduced moisture, and foliar trichome density was positively associated with total biomass. Co-ordinating editor: F. Stuefer  相似文献   

5.
Parallel speciation can occur when traits determining reproductive isolation evolve independently in different populations that experience a similar range of environments. However, a common problem in studies of parallel evolution is to distinguish this hypothesis from an alternative one in which different ecotypes arose only once in allopatry and now share a sympatric scenario with substantial gene flow between them. Here we show that the combination of a phylogenetic approach with life-history data is able to disentangle both hypotheses in the case of the intertidal marine snail Littorina saxatilis on the rocky shores of Galicia in northwestern Spain. In this system, numerous phenotypic and genetic differences have evolved between two sympatric ecotypes spanning a sharp ecological gradient, and as aside effect of the former have produced partial reproductive isolation. A mitochondrial phylogeny of these populations strongly suggests that the two sympatric ecotypes have originated independently several times. Building upon earlier work demonstrating size-based assortative mating as the main contributor to reproductive isolation among ecotypes, our analysis provides strong evidence that divergent selection across a sharp ecological gradient promoted the parallel divergence of body size and shape between two sympatric ecotypes. Thus, divergent selection occurring independently in different populations has produced the marine equivalent of host races, which may represent the first step in speciation.  相似文献   

6.
Plants from four populations of Hordeum spontaneum originating in distinct environments of Israel were compared for stress induced phenotypic plasticity. The environments ranged along a gradient of increasing rainfall amount and predictability from low (desert) to moderate (semisteppe batha) to high (Mediterranean grassland and mountain, the latter also experiencing frost stress). The plants were exposed to a set of four treatments: no stress (optimum water and nutrients), water, nutrient and both water and nutrient stress. Plants from the four populations (or ecotypes) exhibited different patterns of plasticity in response to the different stresses (water and nutrients) and in different trait categories (reproductive, fitness and resource allocation). The importance of plasticity in response to water stress appears to decrease, and to nutrient stress appears to increase along the increasing rainfall gradient. The mountain ecotype, growing in an area with high potential productivity (amount of rainfall) but experiencing periodic frosts, was the most plastic among ecotypes in resource allocation under both water and nutrient stress, but exhibited low plasticity in other trait categories. In contrast, the desert ecotype had low plasticity in resource allocation under water stress and the lowest plasticity among the four ecotypes in all trait categories in response to nutrient stress. The ecotype originating in Mediterranean grassland, a predictable and most favourable environment, was highly plastic in fitness and allocation traits in response to low nutrient levels which is likely to occur due to competition in productive environment. We discuss the observed differences in ecotype plasticity as part of their environmentally induced adaptive ‘strategies’. We found no support for the hypothesis that plants originating in environments with greater variation and unpredictability are more plastic. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society 2002, 75 , 301–312.  相似文献   

7.
Fish are known for their high phenotypic plasticity in life‐history traits in relation to environmental variability, and this is particularly pronounced among salmonids in the Northern Hemisphere. Resource limitation leads to trade‐offs in phenotypic plasticity between life‐history traits related to the reproduction, growth, and survival of individual fish, which have consequences for the age and size distributions of populations, as well as their dynamics and productivity. We studied the effect of plasticity in growth and fecundity of vendace females on their reproductive traits using a series of long‐term incubation experiments. The wild parental fish originated from four separate populations with markedly different densities, and hence naturally induced differences in their growth and fecundity. The energy allocation to somatic tissues and eggs prior to spawning served as a proxy for total resource availability to individual females, and its effects on offspring survival and growth were analyzed. Vendace females allocated a rather constant proportion of available energy to eggs (per body mass) despite different growth patterns depending on the total resources in the different lakes; investment into eggs thus dictated the share remaining for growth. The energy allocation to eggs per mass was higher in young than in old spawners and the egg size and the relative fecundity differed between them: Young females produced more and smaller eggs and larvae than old spawners. In contrast to earlier observations of salmonids, a shortage of maternal food resources did not increase offspring size and survival. Vendace females in sparse populations with ample resources and high growth produced larger eggs and larvae. Vendace accommodate strong population fluctuations by their high plasticity in growth and fecundity, which affect their offspring size and consequently their recruitment and productivity, and account for their persistence and resilience in the face of high fishing mortality.  相似文献   

8.
In this study morphological variation and the potential for competition to affect biomass and seedling selection of the families of five populations of Rumex acetosella L. sampled along a successional old-field gradient have been investigated. Seeds from 25 families were submitted to four competitive regimes: no competition (one plant per pot), medium competition (two plants/ pot taking plants from the same population), high within-population competition (four individuals from the same population in a pot) and high between-population competition (four individuals from two different populations in a pot). Eight traits were analysed after 3 months of growth for variation among families within populations. A significant difference among families within the two older populations was recorded for sexual biomass and related components. High sensitivity of these traits to density was observed in all populations except the youngest, suggesting specialization to particular environmental conditions in late successional populations, and a good adaptive capacity to buffer environmental variation in the pioneer population. Little significant interaction between competitive regimes and families within populations was found, i.e. genotypes within each population showed little variation in their response to environmental variation. Genotypic variance decreased with increasing competitive conditions for the majority of the traits. However, the percentage of variance in sexual reproduction explained by family was stable among treatments. Tradeoffs between vegetative reproduction and sexual reproduction were recorded at the population level along the successional gradient, with increasing competitive conditions. As succession proceeds, we observed a decrease in sexual reproduction and an increase in vegetative reproduction. At the family level, correlation among traits were similar when plants were grown in the absence of competition and at high density, with a significant negative correlation between sexual reproduction and vegetative reproduction. For both sprout number and sexual biomass, the performance of families grown under all the treatments was positively correlated. Together these results indicate allocational constraints on the reproductive biology of R. acetosella that may be favoured by natural selection and have influenced population differentiation along the successional gradient. However, they also revealed that the potential exists for evolutionary specialization through plasticity, in response to variation in environmental conditions.  相似文献   

9.
Thigmomorphogenesis, the characteristic phenotypic changes by which plants react to mechanical stress, is a widespread and probably adaptive type of phenotypic plasticity. However, little is known about its genetic basis and population variation. Here, we examine genetic variation for thigmomorphogenesis within and among natural populations of the model system Arabidopsis thaliana. Offspring from 17 field-collected European populations was subjected to three levels of mechanical stress exerted by wind. Overall, plants were remarkably tolerant to mechanical stress. Even high wind speed did not significantly alter the correlation structure among phenotypic traits. However, wind significantly affected plant growth and phenology, and there was genetic variation for some aspects of plasticity to wind among A. thaliana populations. Our most interesting finding was that phenotypic traits were organized into three distinct and to a large degree statistically independent covariance modules associated with plant size, phenology, and growth form, respectively. These phenotypic modules differed in their responsiveness to wind, in the degree of genetic variability for plasticity, and in the extent to which plasticity affected fitness. It is likely, therefore, that thigmomorphogenesis in this species evolves quasi-independently in different phenotypic modules.  相似文献   

10.
Abstract We studied the evolutionary response to novel environments by applying artificial selection for total progeny biomass in populations of Drosophila melanogaster maintained at three different larval population densities. We found the relative amount of genetic variability for characters related with biomass to be lower and the correlation between them more negative at the intermediate density, and that selection resulted in changes in phenotypic plasticity and in patterns of resource allocation between traits. We found some evidence for tradeoffs between densities, which suggests that populations living at heterogeneous densities might be subject to disruptive selection. Our results show that adaptation to new environments may be a complex process, involving not only changes in trait means, but also in correlations between traits and between environments.  相似文献   

11.
Heritable phenotypic variation in plants can be caused not only by underlying genetic differences, but also by variation in epigenetic modifications such as DNA methylation. However, we still know very little about how relevant such epigenetic variation is to the ecology and evolution of natural populations. We conducted a greenhouse experiment in which we treated a set of natural genotypes of Arabidopsis thaliana with the demethylating agent 5-azacytidine and examined the consequences of this treatment for plant traits and their phenotypic plasticity. Experimental demethylation strongly reduced the growth and fitness of plants and delayed their flowering, but the degree of this response varied significantly among genotypes. Differences in genotypes’ responses to demethylation were only weakly related to their genetic relatedness, which is consistent with the idea that natural epigenetic variation is independent of genetic variation. Demethylation also altered patterns of phenotypic plasticity, as well as the amount of phenotypic variation observed among plant individuals and genotype means. We have demonstrated that epigenetic variation can have a dramatic impact on ecologically important plant traits and their variability, as well as on the fitness of plants and their ecological interactions. Epigenetic variation may thus be an overlooked factor in the evolutionary ecology of plant populations.  相似文献   

12.
Population differentiation for phenotypic plasticity of 12 morphological and reproductive traits was investigated in five populations of the Stellaria longipes complex including a population of the sand dune endemic S. arenicola. Population differentiation was detected for the mean (genotypic) value, amount of plasticity, and pattern of plasticity of traits. Average amount of plasticity was not related to degree of isozyme variability in the populations. Differentiation for pattern of plasticity was much more common than for amount. The direction and extent of divergence among populations was dependent on which of the three trait aspects was under consideration (mean, amount of plasticity, pattern of plasticity) and did not reflect their similarity as revealed by enzyme electrophoretic data. It was concluded that trait means, amounts of plasticity, and patterns of plasticity are independent of one another during evolutionary divergence and may be influenced by mosaic selection.  相似文献   

13.
Phenotypic plasticity is important for species responses to global change and species coexistence. Phenotypic plasticity differs among species and traits and changes across environments. Here, we investigated phenotypic plasticity of the widespread grass Arrhenatherum elatius in response to winter warming and frost stress by comparing phenotypic plasticity of 11 geographically and environmentally distinct populations of this species to phenotypic plasticity of populations of different species originating from a single environment. The variation in phenotypic plasticity was similar for populations of a single species from different locations compared to populations of functionally and taxonomically diverse species from one environment for the studied traits (leaf biomass production and root integrity after frost) across three indices of phenotypic plasticity (RDPI, PIN, slope of reaction norm). Phenotypic plasticity was not associated with neutral genetic diversity but closely linked to the climate of the populations’ origin. Populations originating from warmer and more variable climates showed higher phenotypic plasticity. This indicates that phenotypic plasticity can itself be considered as a trait subject to local adaptation to climate. Finally, our data emphasize that high phenotypic plasticity is not per se positive for adaptation to climate change, as differences in stress responses are resulting in high phenotypic plasticity as expressed by common plasticity indices, which is likely to be related to increased mortality under stress in more plastic populations.  相似文献   

14.
拟南芥(Arabidopsis thaliana)是植物生物学的模式植物, 在分子遗传学方面已经积累了丰富的研究成果, 但目前对拟南芥自然分布的生境特点、表型变化的环境依赖特征等研究很少, 极大地限制了对拟南芥进化动力和机制的理解。为了了解在微环境下拟南芥种群分布和表型性状的变化特点, 对天山北部分布于塔尔巴哈台山、阿尔泰山和天山的10个拟南芥种群的分布特征、表型的变化特点, 以及与综合环境因子的相互关系进行了分析。结果表明: 除分枝数外, 株高、株重、根重、单个果实重量、单株果数、单株果重、果长、果实开裂力度、单株果重/总重9个特征在种群间变化显著, 可塑性能力较强; 但方差分析和变异系数结果显示, 角果长度、果实开裂力度在种群内和种群间的变化相对较小。表型特征在山系间、经纬度和海拔间的变化规律不明显。拟南芥主要分布于pH值和HCO3 -含量低, 有机质丰富, 且有一定坡度的沙土地块上。种群内拟南芥分布频度很低, 在1.56%-10.69%之间, 空间自相关距离在15.4-46.7 cm之间变化较大, 10个种群均呈现极显著集群分布, 分布的集群性受果实开裂力度的影响显著, 而果实开裂力度随环境胁迫而极显著增加。总结认为: 天山北部拟南芥生长和分布主要受微环境的影响, 在干旱环境下, 拟南芥主要通过增加繁殖分配比例, 产生难开裂的果实, 促使种子短距离扩散于母株周围, 确保子代利用原适宜生境来生存繁衍。  相似文献   

15.
Reproductive strategies can be associated with ecological specialization and generalization. Clonal plants produce lineages adapted to the maternal habitat that can lead to specialization. However, clonal plants frequently display high phenotypic plasticity (e.g. clonal foraging for resources), factors linked to ecological generalization. Alternately, sexual reproduction can be associated with generalization via increasing genetic variation or specialization through rapid adaptive evolution. Moreover, specializing to high or low quality habitats can determine how phenotypic plasticity is expressed in plants. The specialization hypothesis predicts that specialization to good environments results in high performance trait plasticity and specialization to bad environments results in low performance trait plasticity. The interplay between reproductive strategies, phenotypic plasticity, and ecological specialization is important for understanding how plants adapt to variable environments. However, we currently have a poor understanding of these relationships. In this study, we addressed following questions: 1) Is there a relationship between phenotypic plasticity, specialization, and reproductive strategies in plants? 2) Do good habitat specialists express greater performance trait plasticity than bad habitat specialists? We searched the literature for studies examining plasticity for performance traits and functional traits in clonal and non-clonal plant species from different habitat types. We found that non-clonal (obligate sexual) plants expressed greater performance trait plasticity and functional trait plasticity than clonal plants. That is, non-clonal plants exhibited a specialist strategy where they perform well only in a limited range of habitats. Clonal plants expressed less performance loss across habitats and a more generalist strategy. In addition, specialization to good habitats did not result in greater performance trait plasticity. This result was contrary to the predictions of the specialization hypothesis. Overall, reproductive strategies are associated with ecological specialization or generalization through phenotypic plasticity. While specialization is common in plant populations, the evolution of specialization does not control the nature of phenotypic plasticity as predicted under the specialization hypothesis.  相似文献   

16.
Phenotypic integration and developmental canalization have been hypothesized to constrain the degree of phenotypic plasticity, but little evidence exists, probably due to the lack of studies on the relationships among the three processes, especially for plants under different environments. We conducted a field experiment by subjecting plants of Abutilon theophrasti to three densities, under infertile and fertile soil conditions, and analyzing correlations among canalization, integration, and plasticity in a variety of measured morphological traits after 50 and 70 days, to investigate the relationships among the three variables in response to density and how these responses vary with soil conditions and growth stages. Results showed trait canalization decreased and phenotypic integration and the degree of plasticity (absolute plasticity) in traits increased with density. Phenotypic integration often positively correlated with absolute plasticity, whereas correlations between trait canalization and plasticity were insignificant in most cases, with a few positive ones between canalization and absolute plasticity at low and medium densities. As plants grew, these correlations intensified in infertile soil and attenuated in fertile soil. Our findings suggested the complexity of the relationship between canalization and plasticity: Decreased canalization is more likely to facilitate active plastic responses under more favorable conditions, whereas increased level of integration should mainly be an outcome of plastic responses. Soil conditions and growth stage may affect responses of these correlations to density via modifying plant size, competition strength, and plastic responses in traits. We also predicted that decreased canalization can be advantageous or disadvantageous, and the lack of response to stress may demonstrate a stronger ability of adaptation than passive response, thus should be adaptive plasticity as active response.  相似文献   

17.
Species can adapt to new environmental conditions either through individual phenotypic plasticity, intraspecific genetic differentiation in adaptive traits, or both. Wild emmer wheat, Triticum dicoccoides, an annual grass with major distribution in Eastern Mediterranean region, is predicted to experience in the near future, as a result of global climate change, conditions more arid than in any part of the current species distribution. To understand the role of the above two means of adaptation, and the effect of population range position, we analyzed reaction norms, extent of plasticity, and phenotypic selection across two experimental environments of high and low water availability in two core and two peripheral populations of this species. We studied 12 quantitative traits, but focused primarily on the onset of reproduction and maternal investment, which are traits that are closely related to fitness and presumably involved in local adaptation in the studied species. We hypothesized that the population showing superior performance under novel environmental conditions will either be genetically differentiated in quantitative traits or exhibit higher phenotypic plasticity than the less successful populations. We found the core population K to be the most plastic in all three trait categories (phenology, reproductive traits, and fitness) and most successful among populations studied, in both experimental environments; at the same time, the core K population was clearly genetically differentiated from the two edge populations. Our results suggest that (1) two means of successful adaptation to new environmental conditions, phenotypic plasticity and adaptive genetic differentiation, are not mutually exclusive ways of achieving high adaptive ability; and (2) colonists from some core populations can be more successful in establishing beyond the current species range than colonists from the range extreme periphery with conditions seemingly closest to those in the new environment.  相似文献   

18.
The occurrence of contemporary ecotype formation through adaptive divergence of populations within the range of an invasive species typically requires standing genetic variation but can be facilitated by phenotypic plasticity. The relative contributions of both of these to adaptive trait differentiation have rarely been simultaneously quantified in recently diverging vertebrate populations. Here we study a case of intraspecific divergence into distinct lake and stream ecotypes of threespine stickleback that evolved in the past 140 years within the invasive range in Switzerland. Using a controlled laboratory experiment with full‐sib crosses and treatments mimicking a key feature of ecotypic niche divergence, we test if the phenotypic divergence that we observe in the wild results from phenotypic plasticity or divergent genetic predisposition. Our experimental groups show qualitatively similar phenotypic divergence as those observed among wild adults. The relative contribution of plasticity and divergent genetic predisposition differs among the traits studied, with traits related to the biomechanics of feeding showing a stronger genetic predisposition, whereas traits related to locomotion are mainly plastic. These results implicate that phenotypic plasticity and standing genetic variation interacted during contemporary ecotype formation in this case.  相似文献   

19.
We tested for adaptive differentiation between two natural populations of Impatiens capensis from sites known to differ in selection on plasticity to density. We also determined the degree to which plasticity to density within a site was correlated with plastic responses of experimental immigrants to foreign sites. Inbred lines, derived from natural populations in an open-canopy site and a woodland site, were planted reciprocally in both original sites at naturally occurring high densities and at low density. The density manipulation represents environmental variation typically experienced within the site of a given population, and the transplant manipulation represents environmental differences between sites of different populations. Internode elongation, meristem allocation, leaf length, flowering date, and total lifetime fitness were measured. Genotypes originating in the open site, where selection favored plasticity of first internode length and flowering time (Donohue et al. 2000a), were more plastic in those characters than genotypes originating from the woodland site, where plasticity was maladaptive. Therefore, these two populations appear to have responded to divergent selection on plasticity. Plasticity to density strongly resembled plasticity to site differences for many characters, suggesting that similar environmental factors elicit plasticity both to density and to overhead canopy. Thus, plasticity that evolved in response to density variation within a site influenced phenotypic expression in the foreign site. Plastic responses to site caused immigrants from foreign populations to resemble native genotypes more closely. In particular, immigrants from the open site converged toward the selectively favored early-flowering phenotype of native genotypes in the woodland site, thereby reducing potential fitness differences between foreign and native genotypes. However, because genotypes from the woods population were less plastic than genotypes from the sun population, phenotypic differences between populations were greatest in the open site at low density. Therefore, population differences in plasticity can cause genotypes from foreign populations to be more strongly selected against in some environments than in others. However, genetic constraints and limits to plasticity prevented complete convergence of immigrants to the native phenotype in any environment.  相似文献   

20.
Williams JL  Auge H  Maron JL 《Oecologia》2008,157(2):239-248
Invasive plants may respond through adaptive evolution and/or phenotypic plasticity to new environmental conditions where they are introduced. Although many studies have focused on evolution of invaders particularly in the context of testing the evolution of increased competitive ability (EICA) hypothesis, few consistent patterns have emerged. Many tests of the EICA hypothesis have been performed in only one environment; such assessments may be misleading if plants that perform one way at a particular site respond differently across sites. Single common garden tests ignore the potential for important contributions of both genetic and environmental factors to affect plant phenotype. Using a widespread invader in North America, Cynoglossum officinale, we established reciprocal common gardens in the native range (Europe) and introduced range (North America) to assess genetically based differences in size, fecundity, flowering phenology and threshold flowering size between native and introduced genotypes as well as the magnitude of plasticity in these traits. In addition, we grew plants at three nutrient levels in a pot experiment in one garden to test for plasticity across a different set of conditions. We did not find significant genetically based differences between native and introduced populations in the traits we measured; in our experiments, introduced populations of C. officinale were larger and more fecund, but only in common garden experiments in the native range. We found substantial population-level plasticity for size, fecundity and date of first flowering, with plants performing better in a garden in Germany than in Montana. Differentiation of native populations in the magnitude of plasticity was much stronger than that of introduced populations, suggesting an important role for founder effects. We did not detect evidence of an evolutionary change in threshold flowering size. Our study demonstrates that detecting genetically based differences in traits may require measuring plant responses to more than one environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号