首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1株植物乳杆菌生物学特性的研究   总被引:1,自引:0,他引:1  
研究1株植物乳杆菌(N3)的生物学特性,实验结果表明该菌能耐受80~85℃的高温和0.20kg/cm2蒸汽压力;直接分解玉米淀粉的乳酸产率为7.05%(36 h)和8.19%(48 h);能耐受pH为4.5的酸性环境;在人工胃液中的活菌数为4.1×106CFU/g;对金霉素、土霉素、痢特灵和氟哌酸等抗生素的敏感性强,而对防霉剂和脱霉素不敏感。植物乳杆菌(N3)是1株优良的益生素生产菌。  相似文献   

2.
【背景】目前对于酸菜发酵的研究主要关注点是植物乳杆菌(Lactobacillus plantarum),有关短乳杆菌(Lactobacillus brevis)在酸菜方面的研究报道很少。【目的】为了挖掘短乳杆菌的发酵性能并开发酸菜发酵剂,将2株短乳杆菌分别与1株植物乳杆菌进行组合并发酵酸菜,分析短乳杆菌对酸菜发酵品质的影响。【方法】分别测定短乳杆菌与植物乳杆菌的单菌株生长产酸性能、耐酸性及亚硝酸盐降解力,并将两菌种组合后发酵酸菜,分析1-7d内酸度、乳酸菌活菌数、亚硝酸盐含量及酸菜质构特性的变化趋势。【结果】相较于短乳杆菌Lb-9-2,短乳杆菌Lb-5-3的生长和产酸速率较慢、酸耐受力较弱,但其亚硝酸盐降解力较强。两株短乳杆菌分别与植物乳杆菌Lp-9-1组合后产酸力显著增强,并在3 d时达到最低pH值(约3.10);植物乳杆菌Lp-9-1的添加使酸菜中总体乳酸菌生长延迟,在5 d时达到最高活菌数;组合菌种的样品中亚硝酸盐含量在1-7 d内变化较为平缓,前5天内两个组合之间差异不显著;接种乳酸菌会降低酸菜硬度和弹性,发酵3d时Lb-5-3/Lp-9-1组合的硬度最大,感官评价得分最高。【...  相似文献   

3.
4.
昂立植物乳杆菌及其抑菌物质的特性研究   总被引:1,自引:0,他引:1  
该文研究了昂立植物乳杆菌(LP-Onlly)菌体及其代谢产物的抑菌性能,并对其代谢产物中的抑菌物质进行了部分理化特性的考察,发现LP-Onlly菌体对部分肠道有害菌有抑制作用,代谢产物中的抑菌物质对常见的肠道致病菌和食品腐败微生物具有广谱抑菌作用,对嗜酸乳杆菌及双歧杆菌等益生菌无抑制作用.该物质具有热稳定性,但抑菌活性受pH值的影响较大.  相似文献   

5.
目的 以Lactobacillus plantarum SQ-2506为目标,研究该菌株的发酵、冻干工艺及其益生特性。方法 通过对培养基中C源、N源和刺激因子的浓度改变考察对活菌数的影响,从而确定培养基的最佳配方;在确定最佳培养基后做出该菌的生长曲线以确定最佳发酵时间点;同时考察冻干保护剂的配方和预冷时间对菌粉活菌数的影响;此外,对植物乳杆菌进行产酸、产H2O2、生物膜形成能力、抑菌特性以及抗氧化能力的检测。结果 最佳MRS培养基中葡萄糖浓度为0.8%、酪蛋白胨为0.4%、牛肉粉为0.6%、吐温为0.06%;植物乳杆菌的生长曲线在5 h时达到稳定期,此时发酵液活菌数为3.16×109 CFU/mL,发酵液的pH为4.45。最佳冻干保护剂的配方:脱脂乳100 g/L,蔗糖120 g/L,抗坏血酸20 g/L,谷氨酸钠30 g/L;冻干前对上机液预冻时间为2 h,此时菌粉冻干存活率为70.21%。该菌株具有产酸、产H2O 2能力,并对大肠埃希菌、金黄色葡萄球菌和白色假丝酵母均有一定的抑制作用,形成膜能力较强,且具有一定的抗氧化能力。结论 通过培养基成分、发酵条件和冻干工艺的优化以及对其益生特性的研究,为下一步新药开发和规模化生产奠定基础。  相似文献   

6.
植物乳杆菌细菌素的研究与应用   总被引:1,自引:0,他引:1  
植物乳杆菌细菌素不仅种类多,产生菌在发酵过程中还可产生良好的保健功效,因此成为研究的热点。本文对植物乳杆菌细菌素的种类、分子结构、抑菌机制及遗传控制做了较为详尽的介绍,并简要介绍了植物乳杆菌细菌素在食品、医药、饲料中的应用,为进一步研究植物乳杆菌细菌素提供了参考。  相似文献   

7.
植物乳杆菌Lp-2的高密度发酵   总被引:2,自引:0,他引:2  
高密度培养植物乳杆菌是制作其发酵剂的重要环节。首先,研究了不同的溶氧和pH对植物乳杆菌的分批发酵的影响。在分批发酵的基础上,为进一步提高发酵液中的菌体浓度,进行了补料分批发酵实验。最终通过对蔗糖反馈补料发酵试验对比改造获得了pH反馈补料发酵工艺。此发酵补料工艺可以控制蔗糖残糖量始终处于较低的水平,因此获得了最高的菌体产量。菌体干重达到13.56g/L,较分批培养提高90.05%。  相似文献   

8.
目的研究益生菌粘附肠上皮细胞机制,探讨益生菌的生物屏障机制,筛选益生菌.方法研究昂立植物乳杆菌(LP-Onlly)培养上清液,对病原菌和自身菌粘附Lovo细胞的影响.结果培养12 h的LP-Onlly发酵上清液在一定程度上能抑制病原菌的粘附,同时耗尽培养上清液,有促进自身菌粘附的作用.结论耗尽培养上清液中存在粘附素成分,能介导该菌的粘附.  相似文献   

9.
在植物乳杆菌对数期后期,高温(43—47℃)、低温(15—25℃)及10-30g/L NaCl等应激处理60min均可使植物乳杆菌耐热性和耐酸性得到较大的提高。其中,尤以高温应激45℃应激处理效果最好,细胞耐热残存率和耐酸残存率较对照分别提高124%和56.8%。  相似文献   

10.
降胆固醇植物乳杆菌的紫外诱变选育   总被引:1,自引:0,他引:1  
通过对植物乳杆菌进行紫外线诱变处理,采用胆固醇梯度平板的初筛方法和体外降胆固醇能力的测试,结果得到二株降胆固醇能力强且性能比较稳定的植物乳杆菌突变菌株Lp-UVs 29和Lp-UVs 44,胆固醇的降解率分别为48.7%和44.2%,分别比诱变前提高了97.97%和79.67%.  相似文献   

11.
Development of a minimal growth medium for Lactobacillus plantarum   总被引:1,自引:0,他引:1  
Aim:  A medium with minimal requirements for the growth of Lactobacillus plantarum WCFS was developed. The composition of the minimal medium was compared to a genome-scale metabolic model of L. plantarum .
Methods and Results:  By repetitive single omission experiments, two minimal media were developed: PMM5 (true minimal medium) and PMM7 [a pseudominimal medium, supporting proper biomass formation of 350 mg l−1 dry weight (DW)]. The specific growth rate of L. plantarum on PMM7 was found to be 50% and 63% lower when compared to growth on established growth media (chemically defined medium and MRS, respectively). Using a genome-scale metabolic model of L. plantarum , it was predicted that PMM5 and PMM7 would not support the growth of L. plantarum . This is because the biosynthesis of para- aminobenzoic acid ( p ABA) was predicted to be essential for growth. The discrepancy in simulated growth and experimental growth on PMM7 was further investigated for p ABA; a molecule which plays an important role in folate production. The growth performance and folate production were determined on PMM7 in the presence and absence of p ABA. It was found that a 12 000-fold reduction in folate pools exerted no influence on formation of biomass or growth rate of L. plantarum cultures when grown in the absence of p ABA.
Conclusion:  Largely reduced folate production pools do not have an effect on the growth of L. plantarum , showing that L. plantarum makes folate in a large excess.
Significance and Impact of the study:  These experiments illustrate the importance of combining genome-scale metabolic models with growth experiments on minimal media.  相似文献   

12.
Aims: To monitor variations in the bacterial community and fermentation products of maize silage within and between bunker silos. Methods and Results: Silage samples were collected in 2008 and 2009 from three dairy farms, wherein the farmers arranged for a contractor to produce maize silage using bunker silos. Silage was prepared using a lactic acid bacteria (LAB) inoculant consisting of Enterococcus faecium, Lactobacillus plantarum and Lactobacillus buchneri. Eight samples were collected from each bunker silo; 4 ‘outer’ and 4 ‘inner’ samples were collected from near the top and the bottom of the silo. The dry matter, lactic acid, acetic acid, ethanol, 1‐propanol and 1,2‐propanediol contents differed between bunker silos in both sampling years. Higher acetic acid, 1‐propanol and 1,2‐propanediol contents were found in the bottom than the top layers in the 2008 samples, and higher lactic acid content was found in the top than the bottom layers in the 2009 samples. The bacterial community varied more between bunker silos than within a bunker silo in the 2008 samples, whereas differences between the top and the bottom layers were seen across bunker silos in the 2009 samples. The inoculated LAB were uniformly distributed, while several nonconventional silage bacteria were also detected. Lactobacillus acetotolerans, Lactobacillus panis and Acetobacter pasteurianus were detected in both years. Stenotrophomonas maltophilia was detected in the 2008 samples, and Lactobacillus reuteri, Acinetobacter sp. and Rahnella sp. were detected in the 2009 samples. Conclusions: Although differences were seen within and between bunker silos, the bacterial community may indicate a different relationship between bunker silos and sampling locations within a bunker silo from that indicated by the fermentation products. Significance and Impact of the Study: Analysis of bacterial community can help understand how diverse non‐LAB and LAB species are involved in the ensiling process of bunker‐made maize silage.  相似文献   

13.
AIMS: To exploit promoters involved in production of the bacteriocin sakacin P for regulated overexpression of genes in Lactobacillus plantarum C11. METHODS AND RESULTS: Production of sakacin P by Lact. sakei LTH673 is controlled by a peptide-based quorum sensing system that drives strong, regulated promoters. One of these promoters (PorfX) was used to establish regulated overexpression of genes encoding chloramphenicol acetyltransferase from Bacillus pumilus, aminopeptidase N from Lactococcus lactis or chitinase B from Serratia marcescens in Lact. plantarum C11, a strain that naturally possesses the regulatory machinery that is necessary for promoter activation. The expression levels obtained were highly dependent on which gene was used and on how the promoter was coupled to this gene. The highest expression levels (14% of total cellular protein) were obtained with the aminopeptidase N gene translationally fused to the regulated promoter. CONCLUSIONS: Sakacin promoters permit regulated expression of a variety of genes in Lact. plantarum C11. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows the usefulness of regulated bacteriocin promoters for developing new gene expression systems for lactic acid bacteria, in particular lactobacilli.  相似文献   

14.
15.
AIM: To provide evidence that the production of bacteriocin by lactic acid bacteria can be enhanced by the presence of a bacteriocin-sensitive strain and identify the agent that is responsible for enhancing bacteriocin production. METHODS AND RESULTS: One bacteriocin-producing lactic acid bacterium was isolated from kimchi. The strain GJ7 was designated as Leuconostoc citreum GJ7 based on Gram staining, biochemical properties, and 16S rRNA gene sequencing. The isolate produced a heat- and pH-stable bacteriocin (kimchicin GJ7), which has antagonistic activity against a broad spectrum of micro-organisms. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified kimchicin GJ7 showed a single band of molecular weight c. 3500 Da. Cultures of Leuc. citreum GJ7 in the presence of thermally inactivated kimchicin GJ7-sensitive strains, Lactobacillus plantarum KFRI 464, Lactobacillus delbrueckii KFRI 347, or Leuconostoc mesenteroides KCTC 1628, increased bacteriocin production. This inducing factor was characterized and purified from Lact. plantarum KFRI 464, which showed the greatest enhancement of kimchicin GJ7 activity. The inducing factor was purified using a DEAE (diethyl aminoethyl)-Sephacel column and high-performance liquid chromatography, and yielded a single band of c. 6500 Da. N-terminal sequencing of the inducing factor identified 16 amino acids. The N-terminal sequence of the inducing factor was synthesized and examined for the induction of kimchicin GJ7 activity, and was found to induce activity, but at a level about 10% lower than that of the entire molecule. CONCLUSIONS: The presence of a bacteriocin-sensitive strain, Lact. plantarum KFRI 464, acts as an environmental stimulus to activate the production of kimchicin GJ7 by Leuc. citreum GJ7. The inducing factor from Lact. plantarum KFRI 464 is highly homologous to the 30S ribosomal protein S16 from various micro-organisms. The N-terminal sequence of the inducing factor examined in this study is a very important sequence related to the inducing activity. Nevertheless, the inducing factor may not be part of the ribosomal protein S16 itself. SIGNIFICANCE AND IMPACT OF THE STUDY: We believe that the present study is the first to identify an agent that is produced by one micro-organism and influences bacteriocin production in another. The bacteriocin-enhancing system described in this study could be effectively used to control the growth of other micro-organisms (sensitive cells) in food systems. Moreover, this enhancement of bacteriocin production can be applied usefully in industrial production of natural food preservatives.  相似文献   

16.
17.
We identified two compounds that demonstrated 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity from cultures of Lactobacillus plantarum. Spectroscopic analyses proved these compounds to be L-3-(4-hydroxyphenyl) lactic acid (HPLA) and L-indole-3-lactic acid (ILA). The respective EC50 values for HPLA and ILA were 36.6 ± 4.3 mM and 13.4 ± 1.0 mM.  相似文献   

18.
Lactobacillus plantarum is a facultative heterofermentative lactic acid bacterium highly adapted to a wide variety of environments and widely used in food and feed fermentations. Proteomes of two strains of L. plantarum, one isolated from spontaneously fermented cereal-based feed (strain REB1), and the other from white cabbage (strain MLBPL1), were studied to elucidate the strain-specific variation and the physiological changes occurring between the growth (lag, early-exponential, late-exponential and early-stationary) phases of this bacterium when cultivated in a standard rich medium. A total of 231 protein spots were identified by LC-MS/MS. These proteins showed that strain MLBPL1 had more proteins with growth phase-dependent expression than REB1, which possesses a more constant expression profile. The proteins with growth phase-dependent expression in REB1 and MLBPL1 were mainly associated with energy metabolism (glycolysis, phosphoketolase pathway and ribose metabolism), all having preferential expression in the early-exponential phase, confirming the use of different carbohydrates simultaneously. Indication of energy production was also seen in lag and early-stationary phases.  相似文献   

19.
Aims:  The ability of concentrated supernatants from Lactobacillus plantarum to produce a disruption of plasma membrane in eukaryotic and prokaryotic cells has been examined.
Methods and Results:  A strain of Lact. plantarum (tolerant to acid and bile salts and resistant to several antibiotics) was used. It inhibited the growth of pathogenic Escherichia coli and L. monocytogenes . Supernatants from Lact. plantarum were concentrated by centrifugation. Either E. coli or HL-60 cells (a human promyelocytic cell line) were treated in the presence of the concentrated supernatants. The effect of concentrated supernatants from Lact. plantarum on E. coli growth demonstrated a bacteriostatic activity and a loss of cell viability measured by sytox green staining. Concentrated supernatants were capable of disturbing plasma membrane in E. coli and of promoting a cytotoxic and lyctic action on HL-60 cells and on human erythrocytes, respectively.
Conclusions:  These results suggest that Lact. plantarum release an effective compound responsible for an important effect in the disruption of E. coli plasma membrane and for a cytototoxic activity on promyelocytic leukaemia cells.
Significance and Impact of the Study:  This is the first in vitro study about the antimicrobial and biological activities of concentrated supernatants from Lact. plantarum .  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号