首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An aqueous two-phase polymer method originally developed for the isolation of plasma membrane from mature goat epididymal spermatozoa (Rana, A.P.S. and Majumder, G.C., Prep. Biochem., 17, 261, 1987) has been found to be unsuitable for the maturing spermatozoa derived from caput and corpus epididymides because of significant contamination of the isolated membrane with intact cells. A modified method has been developed by manipulating the centrifugal force (required for membrane sedimentation) for the isolation of maturing sperm plasma membrane of high yield (approximately 55%) and purity as judged by marker enzyme assays and phase contrast and electron microscopic analyses. The method consists of treatment of intact spermatozoa with 1.25 mM EDTA, dispersion of these cells to a two-phase polymer system comprising 5.5% 252-Kd dextran and 4.2% 20-Kd polyethylene glycol compound and subsequent centrifugation at 12,000 X g for 30 min when the two phases separate out and membranes sediment at the interphase. The repeatation of the two-phase fractionation step yielded greater purity of the plasma membrane.  相似文献   

2.
The plasma membranes of ram spermatozoa were disrupted in a hypotonic EDTA medium and isolated by using a two-phase polymer system of dextran--polyethyleneglycol. The plasma membranes obtained were of a relatively high degree of purity (approximately 70%) as judged by electron microscopy observations and measurements of the marker enzymes alkaline phosphatase, ATPase and AMPase. The activity of succinate cytochrome C reductase, a marker of mitochondrial membranes, was very low.  相似文献   

3.
Preparation of mammalian plasma membranes by aqueous two-phase partition   总被引:7,自引:0,他引:7  
D J Morré  D M Morré 《BioTechniques》1989,7(9):946-8, 950-4, 956-8
Plasma membranes are readily purified from crude mixtures by the technique of aqueous two-phase partition. This procedure has been used widely to prepare plasma membrane fractions, highly purified, from both green and dark-grown plant materials. Only recently, however, has the method been applied to animal cells and tissues to supplant previous protocols where preparative sucrose and other gradient procedures were employed. The method based on aqueous two-phase partition, is rapid, reproducible and facile. It is especially useful for tissue culture cells since gradient methods often are complicated by alterations in plasma membrane density with different culture conditions and the presence of extensive cytoskeleton-membrane interactions. Homogenates prepared either in dilute 1 mM bicarbonate or isotonic sucrose are first centrifuged to concentrate the plasma membrane vesicles. The concentrated membranes are then combined with a mixture of dextran and polyethylene glycol that will of itself spontaneously separate into a polyethylene glycol-rich upper phase and a dextran-rich lower phase. The mixture is usually centrifuged to accelerate phase separation. The plasma membranes enter the upper, polyethylene glycol-rich phase, whereas contaminating membranes remain with the dextran of the lower phase. The yield of plasma membranes is 20% or more of those present in homogenates and the fraction purity is 90% or greater.  相似文献   

4.
We describe the purification of lacrimal gland plasma membranes by affinity partitioning using a two-phase system containing polyethylene glycol and dextran in which wheat germ agglutinin conjugated to dextran is used as affinity ligand. When partitioning a microsomal fraction, the plasma membrane marker 5′-nucleotidase was obtained in the affinity ligand-containing bottom phase, whereas the endoplasmic reticulum marker NADH-ferricyanide reductase remained in the top phase. The affinity partitioning behaviour of components involved in exocytosis and cellular signalling was also examined.  相似文献   

5.
The crude membrane preparation of Methylomonas methanica was fractionated by sucrose density gradient centrifugation and in an aqueous dextran -- polyethylene glycol two-phase system. Fractions of a higher purity were prepared by sucrose density gradient centrifugation. Two subcellular fractions were isolated and characterized. One of them enriched in lipopolysaccharides was represented by the cell wall debris; the other possessing greater specific activities of the enzymes contained mainly intracytoplasmic membranes. The effect of various factors on the separation of membranes and on the specific enzyme activities was investigated.  相似文献   

6.
A simple method is described for the isolation and characterization of plasma membranes from calf thymocytes. The procedure involves extraction of thymocytes in a hypotonic medium containing borate and EDTA. Membrane ghosts, obtained by centrifugation of the cell lysate, are purified by passage through a column containing glass beads. The purity of plasma membranes was checked by chemical analysis, by assay of marker enzymes and also by electron microscopy. Polyacrylamide gel electrophoresis of the calf thymocyte plasma membrane produced a number of protein bands as well as a major band which stained for carbohydrate. The method is rapid and could be applied to isolate plasma membranes from nucleated cells of various types in large quantities.  相似文献   

7.
A simple method is described for the isolation and characterization of plasma membranes from calf thymocytes. The procedure involves extraction of thymocytes in a hypotonic medium containing borate and EDTA. Membrane ghosts, obtained by centrifugation of the cell lysate, are purified by passage through a column containing glass beads. The purity of plasma membranes was checked by chemical analysis, by assay of marker enzymes and also by electron microscopy. Polyacrylamide gel electrophoresis of the calf thymocyte plasma membrane produced a number of protein bands as well as a major band which stained for carbohydrate. The method is rapid and could be applied to isolate plasma membranes from nucleated cells of various types in large quantities.  相似文献   

8.
The graft modification of dextran with benzoyl groups has been studied. The factors that affect the degree of substitution of benzoyl dextran were investigated. Phase diagrams for aqueous two-phase systems composed of polyethylene glycol/benzoyl dextran and dextran/benzoyl dextran have been determined. Phase separation was also obtained in aqueous solution of two benzoyl dextran polymers with different degrees of substitution. A four-phase system was obtained with a mixture of polyethylene glycol, dextran and two kinds of benzoyl dextrans. The partitioning of methylene blue and a Procion yellow HE-3G dextran derivative were studied in polyethylene glycol/benzoyl dextran and dextran/benzoyl dextran two-phase systems and in systems of two benzoyl dextrans differing in degree of substitution. The proteins bovine serum albumin and glucose-6-phosphate dehydrogenase were partitioned in polyethylene glycol/benzoyl dextran aqueous two-phase systems and the effect of the degree of substitution of benzoyl dextran was studied. Chlorella pyrenoidosa, thylakoid membrane vesicles, plasma membrane vesicles and chloroplasts were partitioned in polyethylene glycol/benzoyl dextran and dextran/benzoyl dextran two-phase systems, and in a polyethylene glycol/dextran/benzoyl dextran four-phase system.  相似文献   

9.
Highly purified plasma membrane vesicles were prepared from yeast protoplasts by a combination of osmotic lysis, differential centrifugation, and separation in an aqueous dextran/polyethylene glycol two-phase system. The vesicles were predominantly (85-90%) of cytoplasmic side-out orientation and displayed large ATP-dependent proton pumping activity which was inhibited by vanadate (100 μM) but not by bafilomycin or nitrate. The preparation presented a distinct polypeptide profile with respect to the total membrane fraction and was enriched in the 110-kDa polypeptide corresponding to the plasma membrane H+-ATPase. This preparation of native plasma membranes vesicles is especially suitable for functional studies in vitro.  相似文献   

10.
Plasma membranes can be isolated from a variety of plant tissues by first preparing a post-mitochondrial membrane fraction enriched in plasma membranes, by differential centrifugation, and partitioning this on a dextran-polyethylene glycol two-phase system. With wild oat aleurone, however, we observed that differential centrifugation could not be used to produce a microsomal fraction enriched in plasma membrane. Approximately 70% of the plasma membrane in aleurone homogenates was pelleted by sequential centrifugation at 100 g× 10 min and 1000 g× 10 min. The remainder sedimented at 112 000 g× 1 h. All the material that was pelletable by centrifugation was, therefore, subjected to dextran-polyethylene glycol two-phase partitioning. The plasma membrane marker enzymes glucan synthase II (GSII, EC 2. 4. 1. 34) and UDP-glucose:sterol glucosyltransferase (SGT, EC 2. 4. 1.) were enriched in the upper phase, whereas cytochrome c oxidase activity (EC 1. 9. 3. 1), a mitochondrial marker enzyme, was depleted. The presence of endoplasmic reticulum (ER) and protein body membranes in the phase system was assessed by probing western blots, of SDS-PAGE separated proteins, with polyclonal antiserum either to binding protein (BiP, an ER marker) or to tonoplast intrinsic protein (TIP, a protein body membrane marker). BiP and TIP were present in the lower phase, but were not detected in the upper phase. In addition, the polypeptide patterns of material in the upper and lower phases were very different. These observations suggested that high purity aleurone plasma membrane had been isolated. Although the procedure for isolating plasma membranes was applicable to both aleurone protoplasts and layers, the polypeptide patterns of plasma membranes prepared from these sources were very different. The major protein components of wild oat aleurone were 7 S and 12 S storage globulins. These proteins were present in the lower phase, but not in the plasma membrane enriched upper phase, after aqueous two-phase partitioning. Differential centrifugation studies showed that it was necessary to homogenise aleurone in a buffer of pH 6. 0 or less if a soluble protein fraction, essentially devoid of storage globulins, was to be obtained. The use of these fractionation techniques is discussed in relation to photoaffinity labelling of gibberellin (GA)-binding proteins in aleurone.  相似文献   

11.
J J Yemma  P E Selanik 《Cytobios》1978,18(71-72):183-193
A method for the isolation of the plasma membranes of the acellular slime mould, Didymium iridis in the myxamoebae and swarm cell stages was developed using a modified dextranpolyethylene glycol aqueous two-phase polymer system. It was found to be far superior to the widely accepted technique of density gradient centrifugation concerning this cellular system. Chemical and enzymatic assays performed on the plasma membranes and other cell fractions as well as microscopic examination were used as a basis for positive identification and assessment of purity. Results of the chemical and enzymatic assays indicate that plasma membranes are recovered with high yield and purity using the modified two-phase polymer technique. The method is both rapid and effective and can be performed using low-speed centrifugation.  相似文献   

12.
Chlorophyll-free plasma membranes of the unicellular green alga Chlamydomonas reinhardtii Dangeard were purified from a microsomal fraction using an aqueous polymer two-phase system of 6.5% (w/w) dextran T500, 6·5% (w/w) polyethylene glycol 3350, 60 mM NaCI, 0 33 M sucrose and 5 mM potassium phosphate (pH 7·8). The plasma membrane fraction contained only 2·4% of the microsomal membrane protein. Specific activity of the plasma membrane marker enzyme, K*, Mg2+-ATPase (EC 3.6.1.3). was enriched 9-fold over the microsomal fraction, and 22% of total activity was recovered in the upper, polyethylene glycol-rich phase. Contamination from intracellular membranes was minimal. K*, Mg2+-ATPase showed a pH optimum at about 6·5, and addition of 0·05% (w/v) Triton X-100 stimulated the activity 3-fold. [3H]-Nimodipinc was employed to characterize 1,4-dihydropyridine-specific membrane receptors. Two apparent binding sites with different affinities to nimodipine were found in the crude microsomal fraction. The separation of plasma membranes from intracellular membranes revealed that one binding site with higher affinity (KD= 9 nM) was located on the plasma membrane and a second binding site with lower affinity (KD= 36 nM) on an intracellular membrane The apparent dissociation constants determined from the association and dissociation rate constants in kinetic experiments were comparable to those determined by equilibrium experiments. The maximum number of binding sites of the plasma membrane fraction and the intracellular membrane fraction was Bmax= 440 and 470 fmol (mg protein)-1, respectively. [3H]-Nimodipinc binding was inhibited by (±) verapamil and stimulated by D-cis-diltiazem in both fractions. Moreover, ethyle-neglycol-bis(2-aminoethylcther)-N, N'-tetraacctic acid (EGTA) inhibited [3H]-nimo-dipinc binding in the plasma membrane fraction but not in the intracellular membrane fraction This effect was cancelled by the addition of CaCl2.  相似文献   

13.
The distribution of divalent cation stimulated ATPase activity in relation to the distribution of other enzyme activities was studied for membrane fractions from wheat roots ( Tritium aestivum L . cv. Svenno). A homogenate from dark grown plants was fractionated by differential centrifugation at 1000 g , 10,000 g , 30,000 g and 60,000 g (1, 10, 30 and 60 KP fractions), followed by partition in an aqueous polymer two-phase system, using polyethylene glycol 4000/dextran T500 concentrations of 5.7/5.7, 5.9/5.9, 6.1/6.1, 6.3/6.3 and 6.5/6.5% (w/w). The 30 KP fraction was also separated by counter-current distribution id a 6.3/6.3% two-phase system. Protein and activities of Ca2+, Mg2+, and Mn2+ stimulated ATPases. cytochrome oxidase, light induced absorbance change (LIAC) related to cyt b reductions, inosine diphosphatase and NADH dependent antimycin A insensitive cytochrome c reductase were measured.
The partition of ATPase activities stimulated by Ca2+, Mg2+ or Mn2+ was similar at all polymer concentrations tested, indicating: a low cation specificity of the dominating ATPases. The distribution of ATPases. agreed with different marker enzymes in different centrifuge fractions. Divalent cation stimulated ATPases were evidently related to several of the organelles. In the different fractions the distribution of ATPase activity should then follow that of the marker enzyme of the dominant organelle. From studies with different polymer concentrations the 6.3/6.3-system was selected for further separation of the membranes in the 30 KP fraction by counter-current distribution. By this method one fraction was obtained, which probably consisted of plasmalemma and was free from mitochondrial material. Indications for plasmalemma in this fraction were a) similar partition as protoplasts and b) high LIAC activity.  相似文献   

14.
We have developed a rapid procedure for isolating a fraction enriched in plasma membrane from Dunaliella salina using an aqueous two-phase system (dextran/polyethylene glycol, 6.7%/6.7%). An enriched plasma membrane fraction, free of chloroplast and mitochondrial contamination, could be obtained in 2.5 hours. Plasma membrane proteins, which accounted for approximately 1% of the total membrane protein, contained a number of unique proteins compared with the other cell fractions, as shown by gel electrophoresis. The lipids of the plasma membrane fraction from 1.7 molar NaCl-grown cells were extracted and characterized. Phosphatidylethanolamine and phosphatidylcholine were the two most prevalent phospholipids, at 20.6% and 6.0% of the total lipid, respectively. In addition, inositol phospholipids were a significant component of the D. salina plasma membrane fraction. Phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate accounted for 5.2% and 1.5% of the plasma membrane phospholipid, respectively. Diacylglyceryltrimethylhomoserine accounted for 7.9% of the plasma membrane total lipid. Free sterols were the major component of the plasma membrane fraction, at 55% of the total lipid, and consisted of ergosterol and 7-dehydroporiferasterol. Sterol peroxides were not present in the plasma membrane fraction. The lipid composition of enriched plasma membrane fractions from cells grown at 0.85 molar NaCl and 3.4 molar NaCl were compared with those grown at 1.7 molar NaCl. The concentration of diacylglyceryltrimethylhomoserine and the degree of plasma membrane fatty acid saturation increased in 3.4 molar plasma membranes. The relative concentration of sterols in the plasma membrane fraction was similar in all three NaCl concentrations tested.  相似文献   

15.
A method for the isolation of plasma membrane enriched fraction from plant sources is described. An aqueous two-phase system is suitable for the isolation of plasma membrane. Purified plasma membrane fractions have been prepared from Vicia faba leaves and pollen tubes of Luffa cylindrica. The determination of marker enzymes shows that the plasma membrane has a high affinity for the polyethylene glycol-rich upper phase, whereas those membranes from mitochondria, chloroplasts and other organelles prefer the dextran-rich lower phase and the interface. The plasma membrane was identified with the aid of silicotungstic acid-chromic acid staining. In the upper phase there are mainly stained elliptical vesicles, whereas in the lower phase there are many differnet kind of unstained vesicles. This result is coincident with the marker enzyme examination. The two-phase method for the isolation of plasma membrane may be widely applied not only to nongreen tissues but also to green tissues of plants.  相似文献   

16.
Specific cell surface membrane receptors, labeled by forming a complex with low concentrations (about 10--9 M to 10--10 M) of a highly radioactive (125-I, carrier-free) ligand, can serve as simple, reliable, sensitive, and quantitative markers for plasma membranes in fractionation procedures. 125-I-Labeled insulin, cholera toxin and the plant lictins, wheat germ agglutinin (WGA), and concanavalin A are the receptor ligands used for labeling plasma membranes. Plasma membranes are labeled before homogenization by incubating intact cells briefly at 24 degrees or 4 degrees, or by very brief in situ perfusion of the organ, with the 125-I-Labeled marker. After removing the free 125-I-labeled ligand from the medium by washing (at 4 degrees), the membrane-marker complex remains intact over prolonged (days) periods of time at 4 degrees. Labeling occurs nearly exclusively on the cell surface, the specificity of this plasma membrane reaction is maintained through homogenization and fractionation, and little dissociation of the complex, detectable exchange of label, or aggregation occur even upon prolonged incubation of the homogenates. When desired, the complex can be dissociated deliberately by manipulating experimental conditions such as temperature or by adding specific simple sugars. The most generally suitable marker appears to be WGA. At least in certain tissues (e. g. fat cells) labeling of the plasma membrane with 125-I-WGA and 125-I-isnulin can be performed equally well and selectively in homogenates as in the intact cell. 125-I-Cholera toxin cannot be used in homogenates because of significant binding to nuclei. The use of 125-I-labeled WGA as a specific plasma membrane marker is illustrated in following the course of fractionations, and in quantitating the yield and purity, of plasma membranes from fat cells, lymphocytes, and liver. The results are compared with simultaneous measurements of the plasma membrane enzyme "markers," ATPase, 5-nucleotidase, and basal as well as hormone-stimulated adenylate cyclase activities. The fractionation of liver plasma membranes by aqueous dextran-polyethylene glycol two-phase polymer systems and by conventional differential centrifugation procedures arealso quantitated with the marker, 125I-WGA. Substantial quantities of plasma membrane material are no recovered in the interphase of the two-phase polymer system. Conventional liver fractionation procedures which retain, for further purification, only the readily sedimented pellet (2000 times g, 15 min) discard a very large (at least 70%) questenal hy  相似文献   

17.
In the present study, the use of aqueous polymer two-phase systems for separation of pathogenic bacteria from a complex food sample was investigated. Three different two-phase systems, a polyethylene glycol 3350/dextran T 500, a methoxy polyethylene glycol 5000/dextran T 500 and a polyethylene glycol 3350/hydroxypropyl starch system, were compared at pH 3 and pH 6 for their capacity to separate the pathogenic bacteria Listeria monocytogenes and Salmonella berta from a Cumberland sausage. In all three phase systems, the food particles partitioned to the lower phase. Best performance was obtained by the polymer combinations, polyethylene glycol 3350/dextran T 500 and polyethylene glycol 3350/hydroxypropyl starch. In these systems, Salmonella berta partitioned to the hydrophobic upper phase both at pH 3 and pH 6 with an average partitioning ratio of 80% and a recovery of 56%. Listeria monocytogenes partitioned to the upper phase at pH 3 only with an average partitioning ratio of 72% and a recovery of 45%. This method may become a valuable tool for separation of bacteria from complex food matrices.  相似文献   

18.
An effective method for the isolation of plasma membrane from light-grown winter rye seedlings (Secale cereale L. cv Puma) was established using a liquid two-polymer phase separation. The conditions for the specific partition of plasma membrane into the polyethylene glycol-enriched upper phase were examined, including variations in the polymer concentration, buffer system, pH, and NaCl addition in the phase partition system. The most effective phase partition system for the isolation of plasma membrane from winter rye consisted of 5.6/5.6% (w/w) polyethylene glycol 4000/dextran T500 in 0.25 molar sucrose-10 millimolar potassium phosphate-30 millimolar NaCl (pH 7.8), repeated once. When the isolated plasma membrane was centrifuged on a linear sucrose density gradient, a single band was found at the 34% (w/w) sucrose layer (1.141 grams per cubic centimeter) which co-fractionated with the pH 6.5-ATPase.

Identification of plasma membrane was performed by the combination of phosphotungstic acid-chromic acid stain and specific binding of N-1-naphthylphthalamic acid. Based on morphometrical observations after phosphotungstic acid-chromic acid stain, the isolated plasma membrane consisted mostly of vesicles of high purity. The isolated plasma membrane also showed extremely high specificity for N-1-naphthylphthalamic acidbinding, 10-fold higher than other membranes. It was also confirmed that there is a distinct difference in properties between plasma membrane and other membranes. The endomembranes such as from chloroplasts, mitochondria, and endoplasmic reticulum were observed to be highly sensitive to Zn2+ ion and lower pH, which resulted in an abrupt aggregation of membranes. On the contrary, plasma membrane was very stable to these treatments and no aggregation was observed. These unique properties of isolated plasma membrane are generally observed in a wide variety of plant species and can be utilized for the assessment of the purity of preparations of isolated plasma membranes and for their identification.

  相似文献   

19.
Vesicular fragments of Golgi apparatus, smooth- and rough-surfaced microsomes from rat liver are differently partitioned in aqueous polymer two-phase systems consisting of dextran, polyethylene glycol, and sodium phosphate buffer. At a given polymer concentration, the amount of material partitioned in the top phase increases in the following order: rough microsomes less than smooth microsomes less than Golgi fragments. Counter-current distribution of Golgi fragments in the system consisting of 6.8% (w/w) dextran T500 and 6.8% polyethylene glycol 4,000 results in the separation of the fragments into three fractions; i.e. Fractions I, II, and III. NADH- and NADPH-cytochrome c reductase activities are detected almost exclusively in Fraction I, whereas the activities of galactosyltransferase, acid phosphatase, 5'-nucleotidase, and thiamine pyrophosphatase are maximal in Fraction III and minimal in Fraction I. The distribution of these enzymes suggests that Fraction I is similar to, though not identical with, microsomes, Fraction III resembles plasma membrane and lysosomes, and Fraction II is between the two. It is concluded that NADH- and NADPH-cytochrome c reductases are localized in a restricted region of the Golgi structure and that intra-Golgi differentiation seems to proceed in a discontinuous manner.  相似文献   

20.
Membrane-bound MgATPase activity from roots of young sugar beet ( Beta vulgaris L. cv. Monohill) was investigated in a membrane fraction purified by partition in an aqueous polymer two-phase system. After two steps of "washing" with fresh bottom phase (rich in dextran), the polyethylene glycol rich top phase (U3) was practically free of mitochondrial membranes (cytochrome oxidase), and the remaining MgATPase activity showed high substrate specificity for ATP. An optimum for the MgATPase activity was found at pH 7. The activation by Na+ or K+ was strongest on the acid side without any observable shift in pH optimum. Oligomycin had no effect, but vanadate strongly inhibited the U3 MgATPase and the K+ activation was lost. The complex activation pattern achieved by varying the Na+/K+ ratio at constant total concentration was interpreted as a synergistic (Na++ K+)-activation. The U3 fraction MgATP-ase activity showed a 4-fold increase in the presence of 0.01% Triton X-100 implying that the MgATPase activity is located in vesicles of which 75% or more are sealed with the ATP binding site on the inside. Comparison with the properties of plasma membrane. ATPases from other plants indicated that the U3 fraction MgATPase was mainly of plasma membrane origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号