首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysophosphatidic acid (LPA) is an extracellular signaling mediator with a broad range of cellular responses. Three G-protein-coupled receptors (Edg-2, -4, and -7) have been identified as receptors for LPA. In this study, the ectophosphatase lipid phosphate phosphatase 1 (LPP1) has been shown to down-regulate LPA-mediated mitogenesis. Furthermore, using degradation-resistant phosphonate analogs of LPA and stereoselective agonists of the Edg receptors we have demonstrated that the mitogenic and platelet aggregation responses to LPA are independent of Edg-2, -4, and -7. Specifically, we found that LPA degradation is insufficient to account for the decrease in LPA potency in mitogenic assays, and the stereoselectivity observed at the Edg receptors is not reflected in mitogenesis. Additionally, RH7777 cells, which are devoid of Edg-2, -4, and -7 receptor mRNA, have a mitogenic response to LPA and LPA analogs. Finally, we have determined that the ligand selectivity of the platelet aggregation response is consistent with that of mitogenesis, but not with Edg-2, -4, and -7.  相似文献   

2.
The phospholipid growth factors sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) are ligands for the related G protein-coupled receptors S1P(1)/EDG1 and LPA(1)/EDG2, respectively. We have developed a model of LPA(1) that predicts interactions between three polar residues and LPA. One of these, glutamine 125, which is conserved in the LPA receptor subfamily (LPA(1)/EDG2, LPA(2)/EDG4, and LPA(3)/EDG7), hydrogen bonds with the LPA hydroxyl group. Our previous S1P(1) study identified that the corresponding glutamate residue, conserved in all S1P receptors, ion pairs with the S1P ammonium. These two results predict that this residue might influence ligand recognition and specificity. Characterization of glutamate/glutamine interchange point mutants of S1P(1) and LPA(1) validated this prediction as the presence of glutamate was required for S1P recognition, whereas LPA recognition was possible with either glutamine or glutamate. The most likely explanation for this dual specificity behavior is a shift in the equilibrium between the acid and conjugate base forms of glutamic acid due to other amino acids surrounding that position in LPA(1), producing a mixture of receptors including those having an anionic glutamate that recognize S1P and others with a neutral glutamic acid that recognize LPA. Thus, computational modeling of these receptors provided valid information necessary for understanding the molecular pharmacology of these receptors.  相似文献   

3.
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (Sph-1-P) are known as structurally related bio-active lipids activating platelets through their respective receptors. Although the receptors for LPA and Sph-1-P have been recently identified in various cells, the identification and characterization of ones in platelets have been reported only preliminarily. In this report, we first investigated the distinct modes of LPA and Sph-1-P actions in platelet activation and found that LPA functioned as a much stronger agonist than Sph-1-P, and high concentrations of Sph-1-P specifically desensitized LPA-induced intracellular Ca(2+) mobilization. In order to identify the responsible receptors underlying these observations, we analyzed the LPA and Sph-1-P receptors which might be expressed in human platelets, by RT-PCR. We found for the first time that Edg2, 4, 6 and 7 mRNA are expressed in human platelets.  相似文献   

4.
Short-chain phosphatidic acid derivatives, dioctanoyl glycerol pyrophosphate (DGPP 8:0, 1) and phosphatidic acid 8:0 (PA 8:0, 2), were previously identified as subtype-selective LPA(1) and LPA(3) receptor antagonists. Recently, we reported that the replacement of the phosphate headgroup by thiophosphate in a series of fatty alcohol phosphates (FAP) improves agonist as well as antagonist activities at LPA GPCR. Here, we report the synthesis of stereoisomers of PA 8:0 analogs and their biological evaluation at LPA GPCR, PPARgamma, and ATX. The results indicate that LPA receptors stereoselectively interact with glycerol backbone modified ligands. We observed entirely stereospecific responses by dioctyl PA 8:0 compounds, in which (R)-isomers were found to be agonists and (S)-isomers were antagonists of LPA GPCR. From this series, we identified compound 13b as the most potent LPA(3) receptor subtype-selective agonist (EC(50)=3 nM), and 8b as a potent and selective LPA(3) receptor antagonist (K(i)=5 nM) and inhibitor of ATX (IC(50)=600 nM). Serinediamide phosphate 19b was identified as an LPA(3) receptor specific antagonist with no effect on LPA(1), LPA(2), and PPARgamma.  相似文献   

5.
An enantionselective synthesis of both enantiomers of Ki16425, which possesses selective LPA antagonistic activity, was achieved. The isoxazole core was constructed by a 1,3-dipolar cycloaddition of nitrile oxide with alkyne and condensation with the optically active α-phenethyl alcohol segment, which was prepared by an enantioselective reduction of arylmethylketone. Biological evaluation of both enantiomers of Ki16425 revealed that the (R)-isomer showed much higher antagonistic activity for LPA(1) and LPA(3) receptors.  相似文献   

6.
Lysophosphatidic acid (1-acyl-sn-glycero-3-phosphate or LPA) is a phospholipid mediator displaying numerous and widespread biological activities and thought to act via G-protein-coupled receptors. Here we have studied the effects on human platelets of a number of LPA analogues, including two enantiomers of both N-palmitoyl-(L)-serine-3-phosphate ((L) and (D)NAPS for N-acyl-phosphoserine) and 2-(R)-N-palmitoyl-norleucinol-1-phosphate ((R) and (S)PNPA), cyclic analogues of 1-acyl-sn-glycero-3-phosphate (cPA) and of 1-O-hexadecyl-sn-glycero-3-phosphate (cAGP), sphingosine-1-phosphate (SPP), as well as two palmitoyl derivatives of dioxazaphosphocanes bearing either a P-H or a P-OH bond (DOXP-H and DOXP-OH, respectively). Nine of these compounds induced platelet aggregation with the following order of potency: SPP < cAGP < DOXP-OH < (L)NAPS = (D)NAPS < (R)PNPA = (S)PNPA < LPA < AGP, EC50 varying between 9.8 nM and 8.3 microM. Two of these compounds (SPP and cAGP) appeared as weak agonists inducing platelet aggregation to only 33% and 41%, respectively, of the maximal response attained with LPA and other analogues. In cross-desensitization experiments, all of these compounds specifically inhibited LPA-induced aggregation, suggesting that they were all acting on the same receptor(s). In contrast, cPA and DOXP-H did not trigger platelet aggregation but instead specifically inhibited the effects of LPA in a concentration-dependent manner. The inhibitory action of cPA did not vary with the acyl chain length or the presence of a double bond and did not involve an increase in cAMP. These data thus confirm the lack of stereospecificity of platelet LPA receptor(s). In addition, since the order of potency of some analogues is different from that described in other cells, our results suggest that platelets contain (a) pharmacologically distinct receptor(s) whose molecular identity still remains to be established. Finally, this unique series of compounds might be used for further characterization of other endogenous or recombinant LPA receptors.  相似文献   

7.
Lysophosphatidic acid (LPA) is a bioactive lipid with diverse physiological effects via activation of G protein-coupled receptors (GPCRs). It has been implicated as a specific dedifferentiation factors that can promote phenotypic modulation of cultured vascular smooth muscle cells (VSMCs) which is critically involved in various vascular disease. However, the role of LPA receptors and details of their signaling in LPA induced phenotypic modulation are largely unexplored. In this study we detect the expression of LPA1 and LPA3 in rat aortic smooth muscle cells (RASMCs). LPA promoted RASMCs phenotypic modulation in a dose-dependent manner and coordinated induced the phosphorylation of p38 mitogen-activated protein kinase (p38MAPK) and extracellular signal-regulated kinase (ERK). LPA-induced cell phenotypic modulation was significantly inhibited by specific LPA1/LPA3-receptor antagonist dioctyl-glycerol pyrophosphate (DGPP8:0) at concentration, but this inhibitive effect was lost when the antagonist was coadministered with a highly selective LPA3 agonist,1-oleoyl-2-Omethyl-rac-glycero-phosphothionate (OMPT). In addition, pertussis toxin (PTX), a Gi protein inhibitor had little affect on the LPA-induced phenotypic modulation in RASMC. These data suggest that LPA-induced phenotypic modulation is mediated through the PTX-insensitive G-protein(s), possibly Gq-coupled LPA3 receptor.  相似文献   

8.
Lysophosphatidic acid (LPA, 1- or 2-acyl-sn-glycerol 3-phosphate) is a simple phospholipid but displays an intriguing cell biology that is mediated via interactions with G protein-coupled seven transmembrane receptors (GPCRs). So far, five GPCRs, designated LPA(1-5), and, more recently, two additional GPCRs, GPR87 and P2Y5, have been identified as receptors for LPA. These LPA receptors can be classified into two families, the EDG and P2Y families, depending on their primary structures. Recent studies on gene targeting mice and family diseases of these receptors revealed that LPA is involved in both pathological and physiological states including brain development (LPA(1)), neuropathy pain (LPA(1)), lung fibrosis (LPA(1)), renal fibrosis (LPA(1)) protection against radiation-induced intestinal injury (LPA(2)), implantation (LPA(3)) and hair growth (P2Y5). LPA is produced both in cells and biological fluids, where multiple synthetic reactions occur. There are at least two pathways for LPA production. In serum or plasma, LPA is predominantly produced by a plasma enzyme called autotaxin (ATX). ATX is a multifunctional ectoenzyme and is involved in many patho-physiological conditions such as cancer, neuropathy pain, lymphocyte tracking in lymph nodes, obesity, diabetes and embryonic blood vessel formation. LPA is also produced from phosphatidic acid (PA) by its deacylation catalyzed by phospholipase A (PLA)-type enzymes. However, the physiological roles of this pathway as well as the enzymes involved remained to be solved. A number of phospholipase A(1) and A(2) isozymes could be involved in this pathway. One PA-selective PLA(1) called mPA-PLA(1)alpha/LIPH is specifically expressed in hair follicles, where it has a critical role in hair growth by producing LPA through a novel LPA receptor called P2Y5.  相似文献   

9.
A series of alkyl and aryl phosphonyl, thiophosphonyl, and dithiophosphonyl derivatives of (S)- and (R)-glutamic acid were prepared and examined for inhibitory potency against glutamate carboxypeptidase (carboxypeptidase G). The acquisition of the phosphonamidodithioic acids and the individual phosphonamidothioic acid diastereomers was achieved through a common phosphonamidothiolate precursor, which also allowed for the chromatographic resolution of the chiral phosphorus center of the phosphonamidothioic acids. The most potent inhibitor of the series was the n-butylphosphonamidate derivative of the natural isomer of glutamic acid. Although each diastereomeric pair of three phosphonamidothionates exhibited stereoselective inhibition consistent with the configuration of the chiral phosphorus center, this effect was generally not remarkable. More important, was the effect of carbon stereochemistry upon glutamate carboxypeptidase inhibition as exemplified by a limited series of enantiomeric pairs of phosphonamidate and phosphonamidodithionate derivatives of glutamic acid. The phosphonamidate analogs derived from the unnatural stereoisomer of glutamic acid were devoid of inhibitory potency in contrast to their enantiomers. Surprisingly, the phosphonamidodithionates derived from the unnatural stereoisomer of glutamic acid demonstrated greater inhibitory potency than their naturally-derived antipodes.  相似文献   

10.
The endothelial differentiation gene family encodes three highly homologous G protein-coupled receptors for lysophosphatidic acid (LPA). Based on baculoviral overexpression studies, differences have been proposed in the structure-activity relationship (SAR) of these receptors. We have compared the SAR of the individual receptors either overexpressed transiently at high or at lower levels following stable transfection in LPA-nonresponsive RH7777 cells. The SAR in transfected RH7777 cells was markedly different from that described in insect cells. The LPA(3) receptor has been proposed to be selectively activated by unsaturated LPA species and shows a strong preference for sn-2 versus the sn-1 acyl-LPA regioisomer. Because of the short half-life of sn-2 LPA due to acyl migration under some conditions, we have synthesized acyl migration-resistant analogs using an acetyl group in place of the free hydroxyl group in order to evaluate LPA receptor SAR. Only LPA(1) and LPA(2) showed regioisomeric preference and only for the 18:2 fatty acyl-stabilized LPA sn-1 regioisomer. To identify residues involved in ligand recognition of LPA(3), we developed and validated computational models of LPA(3) complexes with the analogs studied. The models revealed that Arg-3.28 and Gln-3.29 conserved within the LPA-selective endothelial differentiation gene receptors and the more variable Lys-7.35 and Arg-5.38 of LPA(3) form critical interactions with the polar headgroup of LPA. The models identified Leu-2.60 and Val-7.39 of LPA(3) underlying the regioisomer-selective interaction with the acetyl group of the stabilized regioisomers. Mutation of Leu-2.60 to alanine selectively increased the EC(50) of the sn-2 acetyl-LPA regioisomers, whereas alanine replacement of Val-7.39 profoundly affected both regioisomers.  相似文献   

11.
G protein coupled receptors (GPCRs) form homo- and hetero-dimers or -oligomers, which are functionally important. Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are bioactive lysophopholipids involved in diverse biological processes. We have examined homo- and hetero-dimerization among three major LPA receptors (LPA(1-3)), three major S1P receptors (S1P(1-3)), as well as OGR1 and GPR4. Using LacZ complementation assays, we have shown that LPA receptors form homo- and hetero-dimers within the LPA receptor subgroup and hetero-dimers with other receptors (S1P(1-3) and GPR4). In addition, we have found that although GPR4 and OGR1 share more than 50% homology, GPR4 forms strong homo- and hetero-dimers with LPA and S1P receptors, but OGR1 forms very weak homo-dimer and relatively weak hetero-dimers with other receptors. Using chimeric receptors between GPR4 and OGR1, we have shown that different domains of GPR4 receptor are involved in its dimerization with different GPCRs and more than one domain may be involved in some of the complex formation. Our results suggest that when studying a signal transduction induced by a stimulus, not only is the expression and activation of its own receptor(s), but also the status of the interacting receptors should be taken into consideration.  相似文献   

12.
Lysophosphatidic acid (LPA), together with sphingosine 1-phosphate, is a bioactive lipid mediator that acts on G-protein-coupled receptors to evoke multiple cellular responses, including Ca(2+) mobilization, modulation of adenylyl cyclase, and mitogen-activated protein (MAP) kinase activation. In this study, we isolated a human cDNA encoding a novel G-protein-coupled receptor, designated EDG7, and characterized it as a cellular receptor for LPA. The amino acid sequence of the EDG7 protein is 53.7 and 48.8% identical to those of the human functional LPA receptors EDG2 and EDG4, respectively, previously identified. LPA (oleoyl) but not other lysophospholipids induced an increase in the [Ca(2+)](i) of EDG7-overexpressing Sf9 cells. Other LPA receptors, EDG4 but not EDG2, transduced the Ca(2+) response by LPA when expressed in Sf9 cells. LPAs with an unsaturated fatty acid but not with a saturated fatty acid induced an increase in the [Ca(2+)](i) of EDG7-expressing Sf9 cells, whereas LPAs with both saturated and unsaturated fatty acids elicited a Ca(2+) response in Sf9 cells expressing EDG4. In EDG7- or EDG4-expressing Sf9 cells, LPA stimulated forskolin-induced increase in intracellular cAMP levels, which was not observed in EDG2-expressing cells. In PC12 cells, EDG4 but not EDG2 or EDG7 mediated the activation of MAP kinase by LPA. Neither the EDG7- nor EDG4-transduced Ca(2+) response or cAMP accumulation was inhibited by pertussis toxin. In conclusion, the present study demonstrates that EDG7, a new member of the EDG family of G-protein-coupled receptors, is a specific LPA receptor that shows distinct properties from known cloned LPA receptors in ligand specificities, Ca(2+) response, modulation of adenylyl cyclase, and MAP kinase activation.  相似文献   

13.
14.
Lysophosphatidic acid (LPA) acts via binding to specific G protein-coupled receptors and has been implicated in the biology of breast cancer. Here, we characterize LPA receptor expression patterns in common established breast cancer cell lines and their contribution to breast cancer cell motility. By measuring expression of the LPA receptors LPA1, LPA2, and LPA3 with real-time quantitative PCR, we show that the breast cancer cell lines tested can be clustered into three main groups: cells that predominantly express LPA1 (BT-549, Hs578T, MDA-MB-157, MDA-MB-231, and T47D), cells that predominantly express LPA2 (BT-20, MCF-7, MDA-MB-453, and MDA-MB-468), and a third group that shows comparable expression level of these two receptors (MDA-MB-175 and MDA-MB-435). LPA3 expression was detected primarily in MDA-MB-157 cells. Using a Transwell chemotaxis assay to monitor dose response, we find that cells predominantly expressing LPA1 have a peak migration rate at 100 nM LPA that drops off dramatically at 1 µM LPA, whereas cells predominantly expressing LPA2 show the peak migration rate at 1 µM LPA, which remains high at 10 µM. Using BT-20 cells, LPA2-specific small interfering RNA, and C3 exotransferase, we demonstrate that LPA2 can mediate LPA-stimulated cell migration and activation of the small GTPase RhoA. Using LPA2 small interfering RNA, exogenous expression of LPA1, and treatment with Ki16425 LPA receptor antagonist in the BT-20 cells, we further find that LPA1 and LPA2 cooperate to promote LPA-stimulated chemotaxis. In summary, our results suggest that the expression of both LPA1 and LPA2 may contribute to chemotaxis and may permit cells to respond optimally to a wider range of LPA concentrations, thus revealing a new aspect of LPA signaling. G protein-coupled receptor; lysophosphatidic acid; chemotactic migration; GTPase  相似文献   

15.
Lysophosphatidic acid (LPA), a lipid mediator enriched in serum, stimulates cell migration, proliferation and other functions in many cell types. LPA acts on six known G protein-coupled receptors, termed LPA(1-6), showing both overlapping and distinct signaling properties. Here we show that, unexpectedly, LPA and serum almost completely inhibit the transwell migration of B16 melanoma cells, with alkyl-LPA(18:1) being 10-fold more potent than acyl-LPA(18:1). The anti-migratory response to LPA is highly polarized and dependent on protein kinase A (PKA) but not Rho kinase activity; it is associated with a rapid increase in intracellular cAMP levels and PIP3 depletion from the plasma membrane. B16 cells express LPA(2), LPA(5) and LPA(6) receptors. We show that LPA-induced chemorepulsion is mediated specifically by the alkyl-LPA-preferring LPA(5) receptor (GPR92), which raises intracellular cAMP via a noncanonical pathway. Our results define LPA(5) as an anti-migratory receptor and they implicate the cAMP-PKA pathway, along with reduced PIP3 signaling, as an effector of chemorepulsion in B16 melanoma cells.  相似文献   

16.
Lysophosphatidic acid (LPA), which interacts with at least three G protein-coupled receptors (GPCRs), LPA1/Edg-2, LPA2/Edg-4, and LPA3/Edg-7, is a lipid mediator with diverse effects on various cells. Here, we investigated the expression profiles of LPA receptors and patterns of LPA-induced migration in gastric cancer cells. Northern blot analysis revealed that various gastric cancer cells expressed variable levels of LPA1, LPA2, and LPA3 without a consistent pattern. Using a Boyden chamber assay, LPA markedly increased cell migration of LPA1-expressing cells, the effects of which were almost totally abrogated by Ki16425, an LPA antagonist against LPA1 and LPA3. In contrast, LPA by itself did not significantly induce migration in MKN28 and MKN74 cells, which exclusively expressed LPA2. However, when hepatocyte growth factor (HGF) was placed with LPA in the lower chamber, LPA induced migration of these cells in a dose-dependent manner. Immunoprecipitation analysis revealed that LPA induced transient tyrosine phosphorylation of c-Met in LPA2-expressing cells, which suggests that the transactivation of c-Met by LPA causes a cooperative migratory response with HGF to these cells. Our results indicate that LPA regulates the migration of gastric cancer cells in a receptor-specific manner and suggest that the expression pattern of LPA receptors may affect the metastatic behavior of gastric cancer.  相似文献   

17.
Lysophosphatidic acid (LPA) is a "bioactive" phospholipid able to generate growth factor-like activities in a wide variety of normal and malignant cell types. LPA is proposed to play an important role in normal physiological situations such as wound healing, vascular tone, vascular integrity, or reproduction. In parallel, LPA could also be involved in the etiology of some diseases such as atherosclerosis, cancer, or obesity. The bioactivity of LPA is mediated by the activation of specific G-protein coupled receptors (LPA1, LPA2, and LPA3) leading to the activation of a number of intracellular effectors. LPA is present in solution (bound to albumin) in various extracellular fluids (blood, ascites, aqueous humor), and is released in vitro by some cell types such as platelets, cancer cells, or adipocytes. LPA is a rather polar phospholipid, which cannot easily diffuse throughout plasma membrane, and its presence outside the cells requires soluble phospholipases (secreted phospholipase A2 and soluble lysophospholipase D/autotaxin), which synthesize LPA directly in the extracellular milieu, from precursors such as phosphatidic acid and lysophosphatidylcholine. In the future, LPA receptors, as well as the enzymes involved in LPA metabolism, will constitute promising pharmacological and transgenic targets to determine the physiopathological relevance of "bioactive" LPA in vivo.  相似文献   

18.
19.
Cytokines and growth factors in malignant ascites are thought to modulate a variety of cellular activities of cancer cells and normal host cells. The motility of cancer cells is an especially important activity for invasion and metastasis. Here, we examined the components in ascites, which are responsible for cell motility, from patients and cancer cell-injected mice. Ascites remarkably stimulated the migration of pancreatic cancer cells. This response was inhibited or abolished by pertussis toxin, monoglyceride lipase, an enzyme hydrolyzing lysophosphatidic acid (LPA), and Ki16425 and VPC12249, antagonists for LPA receptors (LPA1 and LPA3), but not by an LPA3-selective antagonist. These agents also inhibited the response to LPA but not to the epidermal growth factor. In malignant ascites, LPA is present at a high level, which can explain the migration activity, and the fractionation study of ascites by lipid extraction and subsequent thin-layer chromatography indicated LPA as an active component. A significant level of LPA1 receptor mRNA is expressed in pancreatic cancer cells with high migration activity to ascites but not in cells with low migration activity. Small interfering RNA against LPA1 receptors specifically inhibited the receptor mRNA expression and abolished the migration response to ascites. These results suggest that LPA is a critical component of ascites for the motility of pancreatic cancer cells and LPA1 receptors may mediate this activity. LPA receptor antagonists including Ki16425 are potential therapeutic drugs against the migration and invasion of cancer cells.  相似文献   

20.
Lysophosphatidic acid (LPA) is a bioactive lipid mediator which is generated by secretory phospholipase A(2). In this study, we studied the biological activity of LPA on human dendritic cells (DCs), which are specialized APCs characterized by their ability to migrate into target sites and secondary lymphoid organs to process Ags and activate naive T cells. We show that immature and mature DCs express the mRNA for different LPA receptors such as endothelial differentiation gene (EDG)-2, EDG-4, and EDG-7. In immature DCs, LPA stimulated pertussis toxin-sensitive Ca(2+) increase, actin polymerization, and chemotaxis. During the maturation process, DCs lost their ability to respond toward LPA with Ca(2+) transients, actin polymerization, and chemotaxis. However, LPA inhibited in a pertussis toxin-insensitive manner the secretion of IL-12 and TNFalpha as well as enhanced secretion of IL-10 from mature DCs. Moreover, LPA did not affect the endocytic or phagocytic capacities and the surface phenotype of DCs, although it increased the allostimulatory function of mature DC and inhibited their capacity to induce Th1 differentiation. In summary, our study implicates that LPA might regulate the trafficking, cytokine production, and T cell-activating functions of DCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号