首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Genomic instability in cancer is frequently described as being either chromosomal instability or microsatellite instability, although when events within chromosomes are monitored, extensive intrachromosomal instability is also found. Spectral karyotyping was used to visualize how extensively genomic instability gives rise to intratumor genomic heterogeneity in sporadic colorectal carcinomas. Two factors were then examined which might relate to intrachromosomal instability in colorectal cancers: the presence of the glutathione transferase-Ml gene to detoxify potential carcinogens, and the presence of activated ras which has been associated with chromosomal instability when first expressed. Intrachromosomal genomic instability was previously determined by inter-(simple sequence repeat) PCR (inter-SSR PCR) and by fractional allelic loss rate for 348 markers. GSTM1 status was determined for each of 49 tumors through use of specific PCR, and 28 of the tumors showed the GSTM1 null genotype. A significant association was found between GSTMl-null status and elevated inter-(simple sequence repeat) PCR instability. In contrast, no association was found with fractional allelic loss rate. The first exons of the K-ras and H-ras oncogenes were sequenced in 72 colorectal cancers; 19 of the tumors had a mutation in codon 12 of the K-ras gene (24.5%), but no H-ras mutations were found. A weak correlation (p=0.10) was observed between mutant K-ras and inter-(simple sequence repeat) PCR genomic instability, and no association existed with fractional allelic loss rate.  相似文献   

2.
The Pten and Ras pathways are disrupted or activated, respectively, in a substantial proportion of cancers. Skin tumors induced by the classical two stage carcinogenesis protocols show consistent activating mutations of the H-ras gene, but in tumors from Pten heterozygous mice, the frequency of these mutations is markedly decreased, suggesting some redundancy between these pathways. Pten heterozygous mice develop more papillomas and have earlier onset of carcinomas than their control counterparts, but molecular analysis of these tumors indicated that complete loss of Pten and activation of H-ras are mutually exclusive. Pten loss is however not functionally equivalent to H-ras activation, as Pten(-/-) tumors occur earlier and are generally more aggressive. Tumors with Pten loss or H-ras activation have different biochemical properties, suggestive of alternative routes to malignancy. These findings in this mouse model have important implications for the rational design of new targeted therapies for human tumors.  相似文献   

3.
Synergistic interaction between H-ras and p53 were systematically examined during skin tumorigenesis. Concurrent expression of an activated H-ras gene and a mutant p53 gene was accomplished by crossing p53(Val135/wt) mice with TG.AC mice. Topical application to wild-type mice with benzo(a)pyrene (BaP) alone produced approximately 26% skin tumor incidence, whereas BaP treatment of p53(wt/wt)Hras(TG.AC/wt), p53(Val135/wt)Hras(wt/wt), and p53(Val135/wt)Hras(TG.AC/wt) mice produced a 75%, 77%, and 100% incidence of skin tumors, respectively. An average of 0.33 tumor per mouse was observed in wild-type (p53(wt/wt)Hras(wt/wt)) mice, whereas approximately 1.54, 1.96, and 3.08 tumors per mouse were seen in BaP-treated p53(wt/wt)Hras(TG.AC/wt), p53(Val135/wt)Hras(wt/wt), and p53(Val135/wt)Hras(TG.AC/wt) mice, respectively. The effects on total tumor volume were even more striking with 7-, 48-, and 588-fold increases in tumor volume compared with wild-type (p53(wt/wt)Hras(wt/wt)) in p53(wt/wt)Hras(TG.AC/wt), p53(Val135/wt)Hras(wt/wt), and p53(Val135/wt)Hras(TG.AC/wt) mice, respectively. Histopathologically, all tumors from p53(wt/wt)Hras(wt/wt) mice were either papillomas or well-differentiated squamous cell carcinomas, whereas the tumors in p53(wt/wt)Hras(TG.AC/wt), p53(Val135/wt)Hras(wt/wt), and p53(Val135/wt)Hras(TG.AC/wt) mice were principally squamous cell carcinomas with varying degree of invasiveness. Particularly, tumors in p53(Val135/wt)Hras(TG.AC/wt) mice exhibited the most rapid growth and the extreme form of tumor invasion. Microarray analysis revealed that dominant-negative p53 (Val135) and activated H-ras affected several cellular processes involved in tumorigenesis possibly through its effects on apoptosis, cell cycle arrest, and Ras-mitogen-activated protein kinase pathways. The present study provides the first in vivo evidence that a germ line p53 mutation and activated H-ras act synergistically to profoundly enhance tumor progression.  相似文献   

4.
The present study characterized the immunohistochemical localization of beta-catenin protein in hepatocellular neoplasms and hepatoblastomas in B6C3F(1) mice exposed to diethanolamine (DEA) for 2 years and evaluated genetic alterations in the Catnb and H-ras genes which are known to play important roles in the pathogenesis of liver malignancies. Genomic DNA was isolated from paraffin sections of each liver tumor. Catnb exon 2 (corresponds to exon 3 in human) genetic alterations were identified in 18/18 (100%) hepatoblastomas from DEA exposed mice. Deletion mutations (15/18, 83%) were identified more frequently than point mutations (6/18, 33%) in hepatoblastomas. Eleven of 34 (32%) hepatocellular adenomas and carcinomas from DEA treated mice had mutations in exon 2 of the beta-catenin gene, while only 1 of 10 spontaneous neoplasms had a deletion mutation of codon 5-6. Common to all liver neoplasms (hepatocellular adenomas, carcinomas and hepatoblastomas) was membrane staining for the beta-catenin protein, while cytoplasmic and nuclear staining was observed only in hepatoblastomas. The lack of H-ras mutations in hepatocellular neoplasms and hepatoblastomas suggests that the ras signal transduction pathway is not involved in the development of liver tumors following DEA exposure which is different from that of spontaneous liver tumors that often contain H-ras mutations.  相似文献   

5.
The involvement of the ras oncogenes in tumorigenesis was investigated in keratoacanthomas, which are benign and self-regressing skin tumors, both in humans and in a corresponding animal model system. Keratoacanthomas were induced on rabbit ears by repeated applications of 7,12-dimethylbenz(a)anthracene. About 60% of the tumor DNAs produced transformed foci after transfection into NIH 3T3 cells, and in all of them the transforming gene was identified as H-ras by Southern and Northern (RNA) hybridization. Immunoprecipitation experiments suggested that the transforming rabbit H-ras protein carried a mutation in codon 61. In addition, an activated H-ras gene was detected in a human keratoacanthoma by using a nude mouse tumorigenesis assay after transfection of tumor DNA into NIH 3T3 cells. This is the first report of ras activation in a benign human tumor. The transforming human H-ras gene showed a point mutation in codon 61 that would result in leucine instead of the glutamine present in the normal gene product. The finding of ras activation in tumors that are not only benign but also self-regressing indicates that activated ras genes are not sufficient to maintain a neoplastic phenotype, although they likely play a role in early stages of tumorigenesis.  相似文献   

6.
Genome-wide association studies (GWAS) have been successful in finding associations between specific genetic variants and cancer susceptibility in human populations. These studies have identified a range of highly statistically significant associations between single nucleotide polymorphisms (SNPs) and susceptibility to development of a range of human tumors. However, the effect of each SNP in isolation is very small, and all of the SNPs combined only account for a relatively minor proportion of the total genetic risk (5-10%). There is therefore a major requirement for alternative routes to the discovery of genetic risk factors for cancer. We have previously shown using mouse models that chromosomal regions harboring susceptibility genes identified by linkage analysis frequently exhibit allele-specific genetic alterations in tumors. We demonstrate here that the Fbxw7 gene, a commonly mutated gene in a wide range of mouse and human cancers, shows allele-specific deletions in mouse lymphomas and skin tumors. Lymphomas from three different F1 hybrids show 100% allele-specificity in the patterns of allelic loss. Parental alleles from 129/Sv or Spretus/Gla mice are lost in tumors from F1 hybrids with C57BL/6 animals, due to the presence of a specific non-synonymous coding sequence polymorphism at the N-terminal portion of the gene. A specific genetic test of association between this SNP and lymphoma susceptibility in interspecific backcross mice showed a significant linkage (p = 0.001), but only in animals with a functional p53 gene. These data therefore identify Fbxw7 as a p53-dependent tumor susceptibility gene. Increased p53-dependent tumor susceptibility and allele-specific losses were also seen in a mouse skin model of skin tumor development. We propose that analysis of preferential allelic imbalances in tumors may provide an efficient means of uncovering genetic variants that affect mouse and human tumor susceptibility.  相似文献   

7.
Biological and molecular aspects of radiation carcinogenesis in mouse skin   总被引:1,自引:0,他引:1  
The process of mouse skin carcinogenesis can be operationally subdivided into at least three stages which have been termed initiation, promotion, and progression. Ionizing radiation has been found to be a weak initiator of malignant squamous cell carcinomas (SCCs) when radiation was followed by repeated treatments of the skin with the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Besides SCCs, ionizing radiation was found to induce, independent of tumor promoters, basal cell carcinomas (BCCs), a tumor histology not normally seen with chemical carcinogens and mouse skin. Fractionated doses of 1 MeV electrons were found to enhance the conversion of chemically induced benign papillomas to malignant SCCs. In addition to the biological studies, questions related to dominant transforming genes and differential gene expression in the radiation-initiated mouse skin tumors have been explored. Distinct non-ras dominant transforming gene(s) have been detected in radiation-initiated, TPA-promoted SCCs. Differences in the expression pattern of tumor-associated genes were seen in comparing chemically to radiation-induced benign and malignant skin tumors. Therefore, ionizing radiation has been shown to be active in the initiation of malignant skin tumors and progression of benign to malignant tumors in the mouse skin. The ability to divide the process of carcinogenesis into multiple stages in the mouse skin model has facilitated mechanistic studies that may elucidate the molecular pathways involved in radiation-versus chemically induced tumor development.  相似文献   

8.
Gorlin syndrome is an autosomal dominant disorder that predisposes to basal cell carcinomas of the skin, ovarian fibromas, and medulloblastomas. Unlike other hereditary disorders associated with cancer, it features widespread developmental defects. To investigate the possibility that the syndrome is caused by mutation in a tumor suppressor gene, we searched for loss of heterozygosity in 16 sporadic basal cell carcinomas, 2 hereditary basal cell carcinomas, and 1 hereditary ovarian fibroma and performed genetic linkage studies in five Gorlin syndrome kindreds. Eleven sporadic basal cell carcinomas and all 3 hereditary tumors had allelic loss of chromosome 9q31, and all informative kindreds showed tight linkage between the Gorlin syndrome gene and a genetic marker in this region. Loss of heterozygosity at this chromosomal location, particularly in hereditary tumors, implies that the gene is homozygously inactivated and normally functions as a tumor suppressor. In contrast, hemizygous germline mutations lead to multiple congenital anomalies.  相似文献   

9.
Papillomaviruses cause certain forms of human cancers, most notably carcinomas of the uterine cervix. In contrast to the well-established involvement of papillomavirus infection in the etiology of cervical carcinomas and in carcinomas of a rare hereditary condition, epidermodysplasia verruciformis, a causative role for cutaneous human papillomavirus types in the development of nonmelanoma skin cancer has not been proven. In order to better understand the functions of individual genes of cutaneous papillomavirus types, we generated transgenic mice carrying oncogene E6 of the Mastomys natalensis papillomavirus (MnPV), which causes keratoacanthomas of the skin in its natural host. In the present study, we demonstrate that under conditions of experimental two-stage skin carcinogenesis, fast-paced squamous cell carcinomas develop in nearly 100% of MnPV E6 transgenic mice in comparison to 10% in their nontransgenic littermates (log rank test; P < 0.0001). Therefore, we conclude that the MnPV E6 transgene favors the malignant progression of chemically induced tumors. Whereas an activating H-ras mutation is a consistent feature in benign and malignant tumors in wild-type mice, the majority of papillomas and keratoacanthomas and all squamous cell carcinomas obtained in MnPV E6 transgenic mice contain nonmutated ras alleles. These results indicate that the development of squamous cell carcinomas in MnPV E6 transgenic mice does not depend on an activated H-ras oncogene.  相似文献   

10.
11.
Identifying genomic alterations driving breast cancer is complicated by tumor diversity and genetic heterogeneity. Relevant mouse models are powerful for untangling this problem because such heterogeneity can be controlled. Inbred Chaos3 mice exhibit high levels of genomic instability leading to mammary tumors that have tumor gene expression profiles closely resembling mature human mammary luminal cell signatures. We genomically characterized mammary adenocarcinomas from these mice to identify cancer-causing genomic events that overlap common alterations in human breast cancer. Chaos3 tumors underwent recurrent copy number alterations (CNAs), particularly deletion of the RAS inhibitor Neurofibromin 1 (Nf1) in nearly all cases. These overlap with human CNAs including NF1, which is deleted or mutated in 27.7% of all breast carcinomas. Chaos3 mammary tumor cells exhibit RAS hyperactivation and increased sensitivity to RAS pathway inhibitors. These results indicate that spontaneous NF1 loss can drive breast cancer. This should be informative for treatment of the significant fraction of patients whose tumors bear NF1 mutations.  相似文献   

12.
BACKGROUND: DNA hypodiploidy is a unique and rare finding associated with aggressive behavior in solid tumors. Identifying the chromosomal changes underlying this feature may provide important information on the development and progression of these neoplasms. METHODS: Fluorescence in situ hybridization analysis using alpha-satellite probes for nine autosomes and the two sex chromosomes was performed on interphase cells from 27 solid tumors which had been shown to be DNA hypodiploid by flow cytometry. The chromosomal abnormalities were correlated with the DNA index and tumor subtypes. RESULTS: The data show mutually exclusive loss of certain chromosomes and compensatory gain of other chromosomes in different tumors. The net loss was slightly more than the net gain for the chromosomes tested. Polysomy of chromosome 7 and monosomy of chromosomes 17, X and loss Y were found in most tumors. Significant differential loss of chromosomes 6,10, and 12 among DNA hypodiploid breast, kidney and lung carcinomas was noted. CONCLUSIONS: Our study shows (i) gain of chromosome 7 and loss chromosome 17 in most DNA hypodiploid tumors, (ii) specific chromosomal loss was noted in breast and renal cell carcinomas, and (iii) that different mechanisms for DNA hypodiploid and hyperdiploid development may exist.  相似文献   

13.
Point mutations of ras oncogenes are an early event in thyroid tumorigenesis   总被引:13,自引:0,他引:13  
Identifying the nature of the genetic mutations in thyroid neoplasms and their prevalence in the various tumor phenotypes is critical to understanding their pathogenesis. Mutational activation of ras oncogenes in human tumors occurs predominantly through point mutations in two functional regions of the molecules, codons 12, 13 (GTP-binding domain) or codon 61 (GTPase domain). We examined the prevalence of point mutations in codons 12, 13, and 61 of the oncogenes K-ras, N-ras, and H-ras in benign and malignant human thyroid tumors by hybridization of PCR-amplified tumor DNA with synthetic oligodeoxynucleotide probes. None of the eight normal thyroid tissues harbored point mutations. Four of nineteen nodules from multinodular goiters (21%), 6/24 microfollicular adenomas (25%), 3/14 papillary carcinomas (21%), and 0/3 follicular carcinomas contained ras point mutations. The predominant mutation was a valine for glycine substitution in codon 12 of H-ras. None of the multinodular goiter tumors known to be polyclonal (and thus due to hyperplasia) had point mutations, whereas one of the two monoclonal adenomas arising in nodular glands contained in H-ras codon 12 valine substitution, which was confirmed by sequencing the tumor DNA. These data show that ras activation is about equally prevalent in benign and malignant thyroid neoplasms, and thus may be an early event in the tumorigenic process.  相似文献   

14.
Two classes of genes are the targets of mutations involved in human tumorigenesis: oncogenes, the activation of which leads to growth stimulation, and tumor suppressor genes, which become tumorigenic through loss of function, often through allelic deletion. To obtain evidence for a role for tumor suppressor genes in thyroid tumorigenesis, we examined DNA from 80 thyroid neoplasms for loss of heterozygosity in multiple chromosomal loci using 19 polymorphic genomic probes. None of the informative thyroid tumors studied had allelic loss detected with probes for chromosome 2q (D2S44), 3p (D3F15S2, D3S32), 3q (D3S46), 4p (D4S125), 6p (D6S40), 8q (D8S39), 9q (D9S7), 12p (D12S14), 13q (D13S52), 17p (D17S30), or 18q (D18S10). One of eight of the follicular adenomas had a 10q deletion detected with marker D10S15, and one of 26 had a 10q deletion detected with D10S25. One of two of the follicular carcinomas had an 11p deletion in the H-ras locus. The most significant findings were on chromosome 11q13, the site containing the putative gene predisposing to multiple endocrine neoplasia type I. Four of 27 follicular adenomas had loss of heterozygosity for probes in this region. Allelic deletions were detected with the following probes: D11S149, PYGM, D11S146, and INT2. None of 13 informative papillary carcinomas and none of two follicular carcinomas had loss of heterozygosity detectable with these 11q13 markers. Allelic loss is a relatively infrequent event in human thyroid tumors. Deletions of chromosome 11q13 are present in about 14% of follicular, but not papillary, neoplasms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
《The Journal of cell biology》1993,122(5):1103-1117
Squamous carcinomas of both human and rodent origin can undergo a transition to a more invasive, metastatic phenotype involving reorganization of the cytoskeleton, loss of cell adhesion molecules such as E-cadherin and acquisition of a fibroblastoid or spindle cell morphology. We have developed a series of cell lines from mouse skin tumors which represent different stages of carcinogenesis, including benign papillomas, and clonally related squamous and spindle carcinomas derived from the same primary tumor. Some spindle cells continue to express keratins, but with a poorly organized keratin filament network, whereas in others no keratin expression is detectable. All of the spindle cells lack expression of the cell adhesion molecule E-cadherin and the desmosomal component desmoplakin. Loss of these cell surface proteins therefore appears to precede the destabilization of the keratin network. At the genetic level, it is not known whether such changes involve activation of dominantly acting oncogenes or loss of a suppressor function which controls epithelial differentiation. To examine this question, we have carried out a series of fusion experiments between a highly malignant mouse skin spindle cell carcinoma and cell lines derived from premalignant or malignant mouse skin tumors, including both squamous and spindle carcinoma variants. The results show that the spindle cell phenotype as determined by cell morphology and lack of expression of keratin, E-cadherin, and desmoplakin proteins, is recessive in all hybrids with squamous cells. The hybrids expressed all of these differentiation markers, and showed suppression of tumorigenicity to a variable level dependent upon the tumorigenic properties of the less malignant fusion partner. Our results suggest that acquisition of the spindle cell phenotype involves functional loss of a gene(s) which controls epithelial differentiation.  相似文献   

16.
We have capitalized on the unique properties of the skin tumor promoter palytoxin, which does not activate protein kinase C, to investigate alternative mechanisms by which major signaling molecules can be modulated during carcinogenesis. We report here that palytoxin activates extracellular signal-regulated kinase (ERK) through a novel mechanism that involves inactivation of an ERK phosphatase in keratinocytes derived from initiated mouse skin (308 cells). Use of U0126 revealed that palytoxin requires the ERK kinase MEK to stimulate ERK activity, although palytoxin did not activate MEK. We found that 308 keratinocytes highly express mitogen-activated protein kinase phosphatase-3 (MKP-3), which selectively inactivates ERK. Palytoxin induced the loss of MKP-3 in a manner that corresponded to increased ERK phosphorylation. Complementary studies showed that sustained expression of exogenous MKP-3 inhibited palytoxin-stimulated ERK activation. As is characteristic of initiated keratinocytes, 308 cells express activated H-Ras. To investigate whether expression of oncogenic Ras is key to palytoxin-stimulated ERK activation, we determined how palytoxin affected ERK and MKP-3 in MCF10A human breast epithelial cells and in H-ras MCF10A cells, which stably express activated H-Ras. Palytoxin did not affect ERK activity in MCF10A cells, which had no detectable MKP-3. Like 308 cells, H-ras MCF10A cells highly express MKP-3. Strikingly, palytoxin stimulated ERK activity and induced a corresponding loss of MKP-3 in H-ras MCF10A cells. These studies indicate that in initiated cells palytoxin unleashes ERK activity by down-regulating MKP-3, an ERK inhibitor, and further suggest that MKP-3 may be a vulnerable target in cells that express oncogenic Ras.  相似文献   

17.
Okadaic acid (OA), a tumor promoter in the mouse skin carcinogenesis model, has been shown to induce apoptosis in tumor cell lines that harbor H-ras mutations. We examined the effects of OA on mouse keratinocytes with (308) and without (C50) H-ras mutation in vitro and in an in vivo system. Following exposure to varying concentrations of OA over time, the effects of OA in vitro were assessed using microscopic, biochemical and flow cytometric techniques. OA effects on the cells included incorporation of propidium iodide, externalization of phosphatidylserine, and development of hypodiploidy. 308 cells demonstrated typical DNA ladder formation, rapid chromatin and nuclear condensation, while C50 cells demonstrated delayed chromatin condensation and nuclear fragmentation, but no DNA ladder formation. In vivo, OA elicited delayed papilloma formation and reduced tumor multiplicity. Though its mechanism of action is not fully known, we found that OA-induced inhibition of the clonal expansion of initiated cells may be related to the presence or absence of H-ras mutation.  相似文献   

18.
Axillary lymph node status is the most important prognostic factor in predicting disease outcome in women with breast cancer. A number of chromosomal aberrations in primary breast tumors have been correlated with lymph node status and clinical outcome, but chromosomal changes particular to metastatic lymph node tumors have not been well studied. DNA samples isolated from laser-microdissected primary breast and metastatic axillary lymph node tumors from 25 women with invasive breast cancer were amplified using 52 microsatellite markers defining 26 chromosomal regions commonly deleted in breast cancer. Levels and patterns of allelic imbalance (AI) within and between breast and lymph node tumors were assessed to identify chromosomal alterations unique to primary or metastatic tumors and to examine the timing of metastatic potential. The overall frequency of AI in primary breast tumors (0.24) was significantly greater (P < 0.001) than that in lymph node tumors (0.10), and congruent AI events were observed for < 20% of informative markers. AI at chromosomes 11q23.3 and 17p13.3 occurred significantly more frequently (P < 0.05) in primary breast tumors alone; no chromosomal regions showed a significantly higher AI frequency in lymph nodes. Higher rates of AI in primary versus metastatic lymph node tumors suggest that acquisition of metastatic potential may be an early event in carcinogenesis, occurring before significant levels of AI accumulate in the primary tumor. In addition, patterns of AI were highly discordant between tumor types, suggesting that additional genetic alterations accumulated independently in the two cell populations.  相似文献   

19.
BACKGROUND: The prognostic divergence of laryngeal and hypopharyngeal carcinomas is well known. Hypopharyngeal tumors are characterized by frequent metastasis formation and local recurrence, which is the source of the unfavorable prognosis of this subtype. The aim of this study was to define chromosomal alterations associated with the aggressive behavior of hypopharyngeal tumors. METHODS: Twenty-nine head and neck squamous cell carcinomas (larynx n = 14 and hypopharynx n = 15) were analyzed by comparative genomic hybridization (CGH). Fluorescence in situ hybridization (FISH) was used to validate the CGH data and to compare the amplification pattern of the most frequently altered gene (cyclin-D1, CCND1) located on 11q13. RESULTS: The average number of genetic alterations was significantly higher in the hypopharyngeal tumors (P = 0.02). A good correlation of FISH and CGH data were seen. Gains on 11q13 were present in both subtypes, whereas amplification of CCND1 was associated with the aggressive phenotype by FISH. Chromosomal alteration, which was rarely detected in hypopharyngeal tumors but was observed in more than 50% of laryngeal carcinomas, was 8q gain. CONCLUSION: Our CGH and FISH data show that head and neck squamous cell carcinomas contain complex cytogenetic alterations and further support the hypothesis that different molecular pathways are responsible for the progression of differently localized tumors of the upper aerodigestive tract.  相似文献   

20.
Multiple chromosomal imbalances have been identified in breast cancer using comparative genomic hybridization (CGH). Their association with the primary tumors' potential for building distant metastases is unknown. In this study we have investigated 39 invasive breast carcinomas with a mean follow-up period of 99 months (max. 193 months) by CGH to determine the prognostic value of chromosomal gains and losses.The mean number of chromosomal imbalances per tumor was 6.5+/-0.7 (range 2 to 18). The most frequent alterations identified in more than 1/3 of cases were gains on chromosomes 11q13, 12q24, 16, 17, and 20q, and losses on 2q and 13q. A significantly different frequency of chromosomal aberrations (p相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号