首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IS1397 and ISKpn1 are IS3 family members which are specifically inserted into the loop of palindromic units (PUs). IS1397 is shown to transpose into PUs with sequences close or identical to the Escherichia coli consensus, even in other enterobacteria (Salmonella enterica serovar Typhimurium, Klebsiella pneumoniae, and Klebsiella oxytoca). Moreover, we show that homologous intergenic regions containing PUs constitute IS1397 transpositional hot spots, despite bacterial interspersed mosaic element structures that differ among the three species. ISKpn1, described here for the first time, is specific for PUs from K. pneumoniae, in which we discovered it. A sequence comparison between the two insertion sequences allowed us to define a motif possibly accounting for their specificity.  相似文献   

2.
The gram-negative marine bacterium Pseudoalteromonas atlantica produces extracellular polysaccharide (EPS) that is important in biofilm formation by this bacterium. Insertion and precise excision of IS492 at a locus essential for extracellular polysaccharide production (eps) controls phase variation of EPS production in P. atlantica. Examination of IS492 transposition in P. atlantica by using a PCR-based assay revealed a circular form of IS492 that may be an intermediate in transposition or a terminal product of excision. The DNA sequence of the IS492 circle junction indicates that the ends of the element are juxtaposed with a 5-bp spacer sequence. This spacer sequence corresponds to the 5-bp duplication of the chromosomal target sequence found at all IS492 insertion sites on the P. atlantica chromosome that we identified by using inverse PCR. IS492 circle formation correlated with precise excision of IS492 from the P. atlantica eps target sequence when introduced into Escherichia coli on a plasmid. Deletion analyses of the flanking host sequences at the eps insertion site for IS492 demonstrated that the 5-bp duplicated target sequence is essential for precise excision of IS492 and circle formation in E. coli. Excision of IS492 in E. coli also depends on the level of expression of the putative transposase, MooV. A regulatory role for the circular form of IS492 is suggested by the creation of a new strong promoter for expression of mooV by the joining of the ends of the insertion sequence element at the circle junction.  相似文献   

3.
A significant fraction of Escherichia coli intergenic DNA sequences is composed of two families of repeated bacterial interspersed mosaic elements (BIME-1 and BIME-2). In this study, we determined the sequence organization of six intergenic regions in 51 E. coli and Shigella natural isolates. Each region contains a BIME in E. coli K-12. We found that multiple sequence variations are located within or near these BIMEs in the different bacteria. Events included excisions of a whole BIME-1, expansion/deletion within a BIME-2 and insertions of non-BIME sequences like the boxC repeat or a new IS element, named IS1397. Remarkably, 14 out of 14 IS1397 integration sites correspond to a BIME sequence, strongly suggesting that this IS element is specifically associated with BIMEs, and thus inserts only in extragenic regions. Unlike BIMEs, IS1397 is not detected in all E. coli isolates. Possible relationships between the presence of this IS element and the evolution of BIMEs are discussed.  相似文献   

4.
Insertion sequences (IS)1397 and ISKpn1, found in Escherichia coli and Klebsiella pneumoniae, respectively, are IS3 family members that insert specifically into short palindromic repeated sequences (palindromic units or PUs). In this paper, we first show that although PUs are naturally absent from extrachromosomal elements, both ISs are able to transpose from the chromosome or from a plasmid into PUs artificially introduced into target plasmids. We also show that ISKpn1 target specificity is restricted to K.pneumoniae Z1 PU type, whereas IS1397 target specificity is less stringent since the IS targets the three E.coli Y, Z1 and Z2 PU types indifferently. Experiments of transposition of both ISs driven by both transposases demonstrate that the inverted repeats flanking the ISs are not responsible for this target specificity, which is entirely due to the transposase itself. Implications on ISs evolution are presented.  相似文献   

5.
Insertion sequence IS6120 from Mycobacterium smegmatis was identified by its ability to transpose into different sites in the lambda repressor gene, cl857, carried on an Escherichia coli/mycobacteria shuttle plasmid. IS6120 is a novel 1.5 kb insertion sequence, which has 24-bp imperfect terminal inverted repeats and generates 9-bp duplications of the target DNA following insertion. IS6120 is present in at least three copies in M. smegmatis but was not found in other species, including Mycobacterium tuberculosis. Nucleotide sequence analysis revealed that IS6120 contains two open reading frames, one of which encodes a putative transposase with similarities to those found in IS256 from Staphylococcus aureus, IST2 from Thiobacillus ferrooxidans, and ISRm3 from Rhizobium meliloti. The fact that IS6120 does not recognize a consensus target sequence for insertion and has no homologous sequences in the other strains studied makes IS6120 useful for transposon mutagenesis in mycobacteria.  相似文献   

6.
IS30 is an insertion element common in E. coli strains but rare or absent in Salmonella. Transfer of the IS30-flanked transposon Tn2700 to Salmonella typhimurium was assayed using standard delivery procedures of bacterial genetics (conjugation and transduction). Tn2700 'hops' were rare and required transposase overproduction, suggesting the existence of host constraints for IS30 activity. Sequencing of three Tn2700 insertions in the genome of S. typhimurium revealed that the transposon had been inserted into sites with a low homology to the IS30 consensus target, suggesting that inefficient Tn2700 transposition to the Salmonella genome might be caused by a lack of hotspot targets. This view was confirmed by the introduction of an IS30 'hot target sequence', whose sole presence permitted Tn2700 transposition without transposase overproduction. Detection of IS30-induced DNA rearrangements in S. typhimurium provided further evidence that the element undergoes similar activities in E. coli and S. typhimurium. Thus, hotspot absence may be the main (if not the only) limitation for IS30 activity in the latter species. If these observations faithfully reproduce the scenario of natural populations, establishment of IS30 in the Salmonella genome may have been prevented by a lack of DNA sequences closely related to the unusually long (24 bp) IS30 consensus target.  相似文献   

7.
During recloning of Nicotiana tabacum L. repetitive sequence R8.3 in Escherichia coli, a modified clone that differed from the original by the insertion of an IS10 sequence was unintentionally produced. The insert was flanked by a 9-bp direct repeat derived from the R8.3 sequence, the 9-bp duplication of acceptor DNA in the site of insertion being a characteristic of IS10 transposition events. A database search using the FASTA program showed IS10 and other prokaryotic IS elements inserted into numerous eukaryotic clones. Unexpectedly, the IS10, which is not a natural component of the E. coli genome, appeared to be by far the most frequent contaminant of DNA databases among several IS sequences tested. In the GenEMBL database, the IS10 query sequence yielded positive scores with more than 500 eukaryotic clones. Insertions of shortened IS10 sequences having only one intact terminal inverted repeat were commonly found. Most full-length IS10 insertions (32 out of 40 analyzed) were flanked by 9-bp direct repeats having the consensus 5'-NPuCNN-NGPyN-3' with a strong preference for 5'-TGCTNA-GNN-3'. One insertion was flanked by an inverted repeat of more than 400 bp in length. PCR amplification and Southern analysis revealed the presence of IS10 sequences in E. coli strains commonly used for DNA cloning, including some reported to be Tn10-free. No IS10-specific PCR product was obtained with N. tabacum or human DNA. Our data suggest that transposition of IS10 elements may accompany cloning steps, particularly into large BAC vectors. This might lead to the relatively frequent contamination of DNA databases by this bacterial sequence. It is estimated that one in approximately every thousand eukaryotic clone in the databases is contaminated by IS-derived sequences. We recommend checking submitted sequences for the presence of IS10 and other IS elements. In addition, DNA databases should be corrected by removing contaminating IS sequences.  相似文献   

8.
IS10 inserts preferentially into particular hotspots. We describe here mutations of IS10 transposase, called 'ATS' that confer Altered Target Specificity. These mutations yield a general relaxation in target specificity but do not affect other aspects of transposition. Thus, the preference for specific nucleotide sequences at the target site can be cleanly separated from other steps of the transposition reaction. Eleven ATS mutations identified in a genetic screen occur at only two codons in transposase, one in each of two regions of the protein previously implicated in target site interactions (Patch I and Patch II). Genetic analysis suggests that mutations at the two ATS codons affect the same specific function of transposase, thus raising the possibility that Patch I and Patch II interact. For wild-type IS10, insertion specificity is determined in part by a specific 6 bp consensus sequence and in part by the immediately adjacent sequence context of the target DNA. The ATS mutations do not qualitatively alter the hierarchy with which base pairs are recognized in the consensus sequence; instead, sites selected by ATS transposase exhibit a reduction in the degree to which certain base pairs are preferred over others. Models for the basis of this phenotype are discussed.  相似文献   

9.
Bacterial insertion sequences (ISs) from the IS200/IS605 family encode the smallest known DNA transposases and mobilize through single-stranded DNA transposition. Transposition by one particular family member, ISDra2 from Deinococcus radiodurans, is dramatically stimulated upon massive γ irradiation. We have determined the crystal structures of four ISDra2 transposase/IS end complexes; combined with in vivo activity assays and fluorescence anisotropy binding measurements, these have revealed the molecular basis of strand discrimination and transposase action. The structures also show that previously established structural rules of target site recognition that allow different specific sequences to be targeted are only partially conserved among family members. Furthermore, we have captured a fully assembled active site including the scissile phosphate bound by a divalent metal ion cofactor (Cd2(+)) that supports DNA cleavage. Finally, the observed active site rearrangements when the transposase binds a metal ion in which it is inactive provide a clear rationale for metal ion specificity.  相似文献   

10.
Target specificity of insertion element IS30   总被引:2,自引:2,他引:0  
The Escherichia coli resident mobile element IS 30 has pronounced target specificity. Upon transposition, the element frequently inserts exactly into the same position of a preferred target sequence. Insertion sites in phages, plasmids and in the genome of E. coli are characterized by an exceptionally long palindromic consensus sequence that provides strong specificity for IS 30 insertions, despite a relatively high level of degeneracy. This 24-bp-long region alone determines the attractiveness of the target DNA and the exact position of IS 30 insertion. The divergence of a target site from the consensus and the occurrence of 'non-permitted' bases in certain positions influence the target activity. Differences in attractiveness are emphasized if two targets are present in the same replicon, as was demonstrated by quantitative analysis. In a system of competitive targets, the oligonucleotide sequence representing the consensus of genomic IS 30 insertion sites proved to be the most efficient target. Having compared the known insertion sites, we suppose that IS 30 -like target specificity, which may represent an alternative strategy in target selection among mobile elements, is characteristic of the insertion sequences IS 3 , IS 6 and IS 21 , too.  相似文献   

11.
The movement of the bacterial insertion sequence IS50 and of composite elements containing direct terminal repeats of IS50 involves the two ends of IS50, designated O (outside) and I (inside), which are weakly matched in DNA sequence, and an IS50 encoded protein, transposase, which recognizes the O and I ends and acts preferentially in cis. Previous data had suggested that, initially, transposase interacts preferentially with the O end sequence and then, in a second step, with either an O or an I end. To better understand the cis action of transposase and how IS50 ends are selected, we generated a series of composite transposons which contain direct repeats of IS50 elements. In each transposon, one IS50 element encoded transposase (tnp+), and the other contained a null (tnp-) allele. In each of the five sets of composite transposons studied, the transposon for which the tnp+ IS50 element contained its O end was more active than a complementary transposon for which the tnp- IS50 element contained its O end. This pattern of O end use suggests models in which the cis action of transposase and its choice of ends is determined by protein tracking along DNA molecules.  相似文献   

12.
One-ended insertion of IS911.   总被引:2,自引:0,他引:2       下载免费PDF全文
An apparently nonreplicative integration reaction mediated by the insertion sequence IS911 has been analyzed. It is shown to involve the right-end inverted repeat (IRR) of the element and sequences in the flanking vector DNA. The flanking sequences appear to behave as a surrogate IS911 end, since integration is greatly reduced when limited similarities with IRR are eliminated by site-directed mutagenesis. Data are presented which suggest that the activity of the IRR junction results from the proximity of the transposase gene and may therefore reflect preferential transposase recognition of IRR in cis.  相似文献   

13.
Trimethoprim resistance mediated by the Staphylococcus aureus multi-resistance plasmid pSK1 is encoded by a structure with characteristics of a composite transposon which we have designated Tn4003. Nucleotide sequence analysis of Tn4003 revealed it to be 4717 bp in length and to contain three copies of the insertion element IS257 (789-790 bp), the outside two of which are flanked by directly repeated 8-bp target sequences. IS257 has imperfect terminal inverted repeats of 27-28 bp and encodes for a putative transposase with two potential alpha-helix-turn-alpha-helix DNA recognition motifs. IS257 shares sequence similarities with members of the IS15 family of insertion sequences from Gram-negative bacteria and with ISS1 from Streptococcus lactis. The central region of the transposon contains the dfrA gene that specifies the S1 dihydrofolate reductase (DHFR) responsible for trimethoprim resistance. The S1 enzyme shows sequence homology with type I and V trimethoprim-resistant DHFRs from Gram-negative bacteria and with chromosomally encoded DHFRs from Gram-positive and Gram-negative bacteria. 5' to dfrA is a thymidylate synthetase gene, designated thyE.  相似文献   

14.
15.
Nucleotide sequencing of Rhizobium meliloti insertion sequence ISRm1 showed that it is 1319 nucleotides long and includes 32/31 nucleotide terminal inverted repeats. Analysis of five different insertion sites using sequencing primers complementary to sequences within the left and right ends demonstrated that ISRm1 generates five bp direct repeats at the sites of insertion. Although ISRm1 has shown a target preference for certain short regions (hot spots), there was no apparent similarity in the DNA sequences near the insertion sites. On one strand ISRm1 contains two contiguous open reading frames (ORFs) spanning most of its length. ISRm1 was found to have over 50% sequence homology to insertion sequences IS2 from Escherichia coli and IS426 from Agrobacterium tumefaciens. Their sizes, the sequences of their inverted repeats, and the characteristics of their insertion sites are also comparable, indicating that ISRm1, IS2 and IS426 belong to a class of related insertion sequences. Comparison of the proteins potentially encoded by these insertion sequences showed that the two ORFs found in ISRm1 are also present in IS2 and IS426, suggesting that they may be functional genes.  相似文献   

16.
17.
The Escherichia coli insertion sequence, IS 2 , is a member of the IS 3 family of bacterial transposable elements. Its transposase is a fusion protein, OrfAB, made by a programmed −1 translational frameshift near to the end of orfA and just after the start of orfB . We have characterized two major products of IS 2 intramolecular transposition, which accumulate in cells that express the IS 2 OrfAB fusion protein at elevated levels. The more abundant product is a minicircle composed of the complete IS 2 with just a single basepair (occasionally 2 bp) separating the two IS ends. In all cases, this basepair is derived from the vector sequence immediately adjacent to the left IS 2 end (IRL). The second product is a figure-eight molecule that contains all the IS 2 and vector sequences present in the parental plasmid. One DNA strand contains the parental sequences unrearranged. The other contains a single-stranded version of the minicircle junction — the precise 3' end of IRR has been cleaved and joined to a target just outside the 5' end of IRL; the remaining vector sequences have a free 5' end, derived from cleavage at the 3' end of IRR, and a free 3' end, released upon cleavage of the target site adjacent to IRL. We propose that figure-eight molecules are the precursor to IS 2 minicircles and that the formation of these two products is the initial step in IS 2 intermolecular transposition. This proposed transposition pathway provides a means for a transposase that can cleave only one strand at each IS end to produce simple insertions and avoid forming co-integrates.  相似文献   

18.
19.
An insertion in the lactococcal plasmid pGBK17, which inactivated the gene(s) encoding resistance to the prolate-headed phage c2, was cloned, sequenced, and identified as a new lactococcal insertion sequence (IS). IS981 was 1,222 bp in size and contained two open reading frames, one large enough to encode a transposase. IS981 ended in imperfect inverted repeats of 26 of 40 bp and generated a 5-bp direct repeat of target DNA at the site of insertion. IS981 was present on the chromosome of Lactococcus lactis subsp. lactis LM0230 from where it transposed to pGBK17 during transformation. Twenty-three strains of lactococci examined for the presence of IS981 by Southern hybridization showed 4 to 26 copies per genome, with L. lactis subsp. cremoris strains containing the highest number of copies. Comparison of the DNA sequence and the amino acid sequence of the long open reading frame to other known sequences showed that IS981 is related to a family of IS elements that includes IS2, IS3, IS51, IS150, IS600, IS629, IS861, IS904, and ISL1.  相似文献   

20.
An insertion in the lactococcal plasmid pGBK17, which inactivated the gene(s) encoding resistance to the prolate-headed phage c2, was cloned, sequenced, and identified as a new lactococcal insertion sequence (IS). IS981 was 1,222 bp in size and contained two open reading frames, one large enough to encode a transposase. IS981 ended in imperfect inverted repeats of 26 of 40 bp and generated a 5-bp direct repeat of target DNA at the site of insertion. IS981 was present on the chromosome of Lactococcus lactis subsp. lactis LM0230 from where it transposed to pGBK17 during transformation. Twenty-three strains of lactococci examined for the presence of IS981 by Southern hybridization showed 4 to 26 copies per genome, with L. lactis subsp. cremoris strains containing the highest number of copies. Comparison of the DNA sequence and the amino acid sequence of the long open reading frame to other known sequences showed that IS981 is related to a family of IS elements that includes IS2, IS3, IS51, IS150, IS600, IS629, IS861, IS904, and ISL1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号