首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary This report presents evidence for the presence of the vitamin D-dependent calcium-binding protein, calbindin-D9K, in bone cells and matrix. In undecalcified frozen sections of growing and adult rat bone, calbindin-D9K was immunohistochemically localized in trabecular bone of the epiphysis and metaphysis and in cortical bone of the diaphysis. It was found within the cytoplasm of osteocytes, of osteoblasts lining the osteoid, and osteoblasts inside the osteoid seams. It was also found in the osteoblast processes and the anastomosed reticulum of the processes connecting the osteocytes with each other. Extracellularly, calbindin-D9K immunoreactivity was present in compact cortical bone in the areas of the mineralized matrix surrounding the osteocyte lacunae and in the pericanalicular walls containing the cell processes. Calbindin-D9K immunoreactivity was low or absent from the cytoplasm of osteocytes in trabecular bone from severely vitamin D-deficient rats and restored in vitamin D-deficient rats given a single dose of 1,25(OH)2-VitD3. Thus, the synthesis of immunoreactive calbindin-D9K by osteoblasts and osteocytes in trabecular bone is vitamin D-dependent. The presence of immunoreactive calbindin-D9K in the osteocytes and their cell processes suggests that this calcium-binding protein is involved in the calcium fluxes regulating bone calcium homeostasis. Its locatization in osteoblasts involved in bone formation and in their cell processes suggests that it has a role in the calcium transport from these cells towards the sites of active bone mineralization. The extracellular immunoreactive calbindin-D9K in the walls of osteocyte lacunae and pericanalicula margins may have a specific role in those areas. Thus, the distribution of calbindin-D9K immunoreactivity in bone indicates that it may mediate all or part of the action of vitamin D on bone cells and bone mineralization.  相似文献   

2.
This electron microscope study describes the subcellular occurrence and distribution of immunoreactive calbindin-D9K in the trabecular metaphyseal and compact cortical bone of normal rats, rachitic vitamin-D-deficient rats, and rachitic rats given 1,25-(OH)2D3. Undecalcified bones were embedded in Lowicryl K4M and calbindin-D9K antigenicity was detected by the protein A-gold method. Immunoreactive calbindin-D9K was localized in the cytoplasm and cell processes of osteoblasts and osteocytes. Immunoreactive calbindin-D9K was also found within matrix vesicles and calcifying matrix vesicles, where it lay over the needle-shaped crystallites, at the apparent site of initial crystal formation, but not along the whole crystallites. In fully mineralized bone it occurred at the same site, over the crystallites. Calibindin-D9K was vitamin-D-dependent in the osteoblasts and matrix vesicles, where its presence was correlated with the reappearance of crystallites in 1,25-(OH)2D3-treated vitamin-D-deficient rats. This suggests that immunoreactive calbindin-D9K is involved in mineral deposition in bone matrix vesicles. Abnormal intracellular calcification associated with calbindin-D9K antigenicity in the osteoblasts of 1,25-(OH)2D3-treated vitamin-D-deficient rats indicates that immunoreactive calbindin-D9K may also play a part in abnormal intracellular mineral deposition.  相似文献   

3.
The developing chick embryo acquires calcium from two sources. Until about Day 10 of incubation, the yolk is the only source; thereafter, calcium is also mobilized from the eggshell. We have previously shown that during normal chick embryonic development, vitamin D is involved in regulating yolk calcium mobilization, whereas vitamin K is required for eggshell calcium translocation by the chorioallantoic membrane. We have studied here the biochemical action of 1,25-dihydroxy vitamin D3 in the yolk sac by examining the expression and regulation of the cytosolic vitamin D-dependent calcium-binding protein, calbindin-D28K. Two types of embryos are used for this study, normal embryos developing in ovo and embryos maintained in long-term shell-less culture ex ovo, the latter being dependent solely on the yolk as their calcium source. Our findings are (1) calbindin-D28K is expressed in the embryonic yolk sac, detectable at incubation Days 9 and 14; (2) the embryonic yolk sac calbindin-D28K resembles that of the adult duodenum in both molecular weight (Mr 28,000) and isoelectric point, as well as the presence of E-F hand Ca2(+)-binding structural domains; (3) systemic calcium deficiency caused by shell-less culture of chick embryos results in enhanced expression of calbindin-D28K in the yolk sac during late development; (4) yolk sac calbindin-D28K expression is inducible by 1,25-dihydroxy vitamin D3 treatment in vivo and in vitro; and (5) immunohistochemistry revealed that yolk sac calbindin-D28K is localized exclusively to the cytoplasm of the yolk sac endoderm. These findings indicate that the chick embryonic yolk sac is a genuine target tissue of 1,25-dihydroxy vitamin D3.  相似文献   

4.
Previous work in our laboratory showed that the osteopetrotic (op/op) mouse possesses a vitamin D-independent mechanism of intestinal calcium absorption. This study was performed in an effort to further characterize the mechanism. The vitamin D-deficient op/op mouse absorbed calcium faster than either a vitamin D-deficient or 1, 25-dihydroxyvitamin D(3)-supplemented wild-type mouse. This increased rate of absorption was not found at concentrations of calcium that result in diffusional calcium absorption. Thus, vitamin D-deficient op/op mice had intestinal calcium absorption similar to that of vitamin D-deficient wild-type littermates when increasing levels of calcium were administered. Also, mRNA and protein levels of calbindin-D9k were similar in vitamin D-deficient wild-type and op/op mice as well as in wild-type and op/op mice treated with 1, 25-dihydroxyvitamin D(3). Therefore, the mechanism of vitamin D-independent intestinal calcium absorption in the op/op mouse is distinct from vitamin D-dependent intestinal calcium absorption.  相似文献   

5.
We have used specific cDNAs to the rat vitamin D receptor (VDR) and to the mammalian vitamin D-dependent calcium-binding proteins (calbindin-D9k in intestine and calbindin-D28k in kidney) in order to obtain a better understanding of the regulation of the VDR gene and its relationship to calbindin gene expression. Hormonal regulation and development expression of the rat VDR gene were characterized by both Northern and slot blot analyses. Administration of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3; 25 ng/day for 7 days) to vitamin D-deficient rats resulted in an increase in calbindin mRNA in intestine and kidney but no change in VDR mRNA in these tissues. Vitamin D-deficient rats responded to dexamethasone treatment (100 micrograms/100 g of body weight/day for 4 days) with a 2.5-fold increase in intestinal VDR mRNA which was accompanied by a 4-fold decrease in intestinal calbindin-D9k mRNA. Developmental studies indicated a pronounced increase in renal VDR mRNA and calbindin-D28k mRNA between birth and 1 week of age. In the intestine, an induction of VDR and calbindin-D9k gene expression was observed at a later time, during the 3rd postnatal week (the period of increased duodenal active transport of calcium). Taken collectively, our data indicate that in the adult rat, target tissue response to hormone is not modified by a corresponding alteration in new receptor synthesis. However, developmental studies indicate that the induction of 1,25(OH)2D3 receptor mRNA is correlated with the induction of calbindin gene expression. Our results also demonstrate that glucocorticoid administration can result in an alteration in intestinal calbindin and VDR gene expression.  相似文献   

6.
The amount of skin calcium-binding protein, evaluated using a sensitive radioimmunoassay and indirect immunofluorescence, was decreased in vitamin-D deficient rats and increased after one week vitamin D3 or 1 alpha-hydroxyvitamin D3 treatment. In vitamin D replete and in vitamin D-deficient animals, skin calcium-binding protein was not sensitive to changes in dietary and/or serum calcium concentrations. These results indicate that this protein is different from other calcium-binding proteins such as parvalbumin and calmodulin which are not vitamin D-dependent, and also different from intestinal calcium-binding protein which, in D replete animals, is sensitive to changes in dietary and serum calcium concentrations. Skin calcium-binding protein may, therefore, represent a new class of vitamin D-dependent protein.  相似文献   

7.
Summary This electron microscope study describes the subcellular occurrence and distribution of immunoreactive calbindin-D9K in the trabecular metaphyseal and compact cortical bone of normal rats, rachitic vitamin-D-deficient rats, and rachitic rats given 1,25-(OH)2D3. Undecalcified bones were embedded in Lowicryl K4M and calbindin-D9K antigenicity was detected by the protein A-gold method. Immunoreactive calbindin-D9K was localized in the cytoplasm and cell processes of osteoblasts and osteocytes. Immunoreactive calbindin-D9K was also found within matrix vesicles and calcifying matrix vesicles, where it lay over the needle-shaped crystallites, at the apparent site of initial crystal formation, but not along the whole crystallites. In fully mineralized bone it occurred at the same site, over the crystallites. Calibindin-D9K was vitamin-D-dependent in the osteoblasts and matrix vesicles, where its presence was correlated with the reappearance of crystallites in 1,25-(OH)2D3-treated vitamin-D-deficient rats. This suggests that immunoreactive calbindin-D9K is involved in mineral deposition in bone matrix vesicles. Abnormal intracellular calcification associated with calbindin-D9K antigenicity in the osteoblasts of 1,25-(OH)2D3-treated vitamin-D-deficient rats indicates that immunoreactive calbindin-D9K may also play a part in abnormal intracellular mineral deposition.  相似文献   

8.
The intestinal level of the vitamin D-dependent duodenal calcium-binding protein was assayed by an equilibrated column technique in rat embryos, neonates, and pups. Calcium-binding protein was undetectable in unborn, newborn, and 1- to 2-day-old rats i.e., the level was lower than in severely vitamin D-deficient animals. Calcium-binding protein was detected after the animals were 5-days old and thereafter rose monotonically as a function of body weight. Treatment with 1,25-dihydroxyvitamin D3 failed to raise the calcium-binding protein levels of newborn or 1-day-old rats, but doubled the level in 11- or 12-day-old pups. Plasma calcium was raised in all treated animals. The failure to detect calcium-binding protein in vitamin D-replete suckling animals provides evidence for a dissociation between calcium absorption and calcium binding protein.  相似文献   

9.
Substance P (SP) is a neuropeptide that is released from axons of sensory neurons and causes signal transduction through the activation of the neurokinin-1 receptor (NK1-R). The present study demonstrates the distribution of SP-like-immunoreactive (SP-LI) axons and the localization of NK1-Rs in rat bone tissue using the avidin-biotin-peroxidase complex method. Axons with SP-LI were commonly found near the trabecular bone in the temporal bone marrow, but they were only sparsely distributed in the mandible, femur, and tibia. Immunoreactivity for NK1-Rs was found on the plasma membrane and in the cytoplasm of the osteoclasts. In the osteoblasts and osteocytes, a small number of weak, punctate immunoreactive products of NK1-Rs were distributed close to the plasma membrane. At the electron-microscopic level, immunoreactivity for NK1-R was distributed mainly in the whole cytoplasm, except for the clear zone of the osteoclasts, and in pit-like structures along the plasma membrane. The NK1-R-immunoreactive structures in the cytoplasm were divided into two types of organelles, consisting of vesicular and vacuolar structures (probably transport vesicles and early endosomes). In the osteoblasts and osteocytes, the number of NK1-R-positive vesicular structures was fewer than in the osteoclasts. These results thus suggest that SP secreted by the sensory axons could directly modulate bone metabolism via NK1-Rs.  相似文献   

10.
Polyclonal antibodies against a 44-KD phosphoprotein (44K BPP) from rat bone were raised in rabbits, affinity-purified, and used as probes to study the protein's distribution in various types of developing bones from newborn rats. Three immunostaining procedures were applied utilizing indirect immunofluorescence, avidin-biotin-peroxidase complex, and avidin-gold complex with silver enhancement. All methods gave essentially identical and/or complementary results. Antigenicity for anti-44K BPP was detected in endochondral and membranous bone. In the latter, it was also demonstrated in the osteoid. In the woven bone of lower jaw, immunoreactivity for anti-44K BPP antibodies was found in fibroblast-shaped cells (pre-osteoblasts) that were between the bone trabeculae but not in direct contact with bony extracellular material. In addition to these presumed osteoprogenitor cells, osteoblasts as well as osteocytes were strongly stained; the cytoplasmic staining was associated with the Golgi apparatus. Occasionally immunoreactivity was detected in osteoclasts, but in these cells immunostaining was either diffusely spread in the cytoplasm or present only at sites of bone erosion. These findings support the hypothesis that the 44K BPP is a protein made by osteoblasts and is localized predominantly in bone. Furthermore, the protein appears to be expressed early in histogenesis of the bone-forming cells.  相似文献   

11.
Immunoblotting is a commonly used technique for the immunodetection of specific proteins which have been fractionated by polyacrylamide gel electrophoresis. We describe here a simple procedure for the double staining of immunoblots, first to detect the immunoreactive component(s) by histochemistry using enzyme-conjugated secondary antibodies, and second to visualize the general protein electrophoretogram using India ink. This procedure permits the direct comparison of electrophoretic mobilities between the immunoreactive protein(s) and the total protein population as well as protein standards of known Mr. The experimental advantage of the procedure is that no additional manipulation of the protein samples or the standards is necessary prior to electrophoretic fractionation. In this report, detection of the vitamin D-dependent calcium-binding protein, calbindin-D28K, is used to illustrate the application of the procedure.  相似文献   

12.
A possible role of calcium in vivo on intestinal calbindin-D 9-kDa mRNA levels has been studied in rats. In vitamin D-deficient rats, a marked increase in dietary calcium has a small but significant effect on calbindin-D 9-kDa mRNA levels, despite a dramatic increase in serum calcium concentration that clearly resulted from increased intestinal absorption of calcium. On the other hand, vitamin D under all circumstances increased calbindin-D 9-kDa mRNA levels, with the greatest levels found in animals on a low calcium diet where little or no calcium is available for absorption. These results strongly support the idea that 1,25-dihydroxyvitamin D is directly responsible for the induction of calbindin-D 9-kDa.  相似文献   

13.
Localization of 28 kDa calbindin in human odontoblasts   总被引:5,自引:0,他引:5  
Summary The presence of 28 kDa calbindin in human odontoblasts was studied by use of specific antibodies raised against chick duodenal 28 kDa calbindin, in immunofluorescence, immuno-peroxidase, and electron-microscopic labelling experiments.The calbindin-like protein was detected mainly in the cytoplasm of odontoblast cell bodies, in their processes and occasionally in their nuclei. Correspondingly, at the ultrastructural level, immunoreactive material was associated with the cytosol, microfilaments and cilia. These findings suggest that human odontoblasts express a 28 kDa vitamin D-dependent calcium-binding protein, unlike those of rats and mice in which ameloblasts are the only cells immunoreactive for the protein.  相似文献   

14.
A calcium binding protein that is biochemically similar to vertebrate 28,000-Mr vitamin D-dependent calcium binding protein (calbindin-D28k) has been purified from squid brain. Squid brain calbindin was found to have an isoelectric point of 5.0, was heat stable up to 60 degrees C, and showed increased electrophoretic mobility in the presence of chelator. Amino acid analysis revealed a high content of glutamic and aspartic acids and a low level of methionine, histidine, and tyrosine, a finding similar but not identical to the composition of vertebrate calbindin-D28k. The molecular weight of the squid protein, determined by Ferguson plot analysis of data obtained from sodium dodecyl sulfate-gel electrophoresis, was calculated to be 25,700, as compared with 27,800 for rat renal calbindin. Immunocytochemical analysis demonstrated immunoreactive protein in a selected population of neurons and fibers in several areas of the molluscan nervous system. This study represents the first purification from an invertebrate of a calcium binding protein that is biochemically similar to vitamin D-dependent calcium binding protein. These results demonstrate that calbindin, although not identical in vertebrates and cephalopods, may be phylogenetically conserved in structure. The restricted distribution of immunoreactive calbindin in both the cephalopod and mammalian brain suggests that the function of neuronal calbindin may also be conserved in evolution.  相似文献   

15.
Calbindin (CaBP)-D28k and CaBP-D9k are cytosolic vitamin D-dependent calcium-binding proteins long thought to play an important role in transepithelial calcium transport. However, recent genetic studies suggest that CaBP-D28k is not essential for calcium metabolism. Genetic ablation of this gene in mice leads to no calcemic abnormalities. Genetic inactivation of the vitamin D receptor (VDR) gene leads to hypocalcemia, secondary hyperparathyroidism, rickets, and osteomalacia, accompanied by 90% reduction in renal CaBP-D9k expression but little change in CaBP-D28k. To address whether the role of CaBP-D28k in calcium homeostasis is compensated by CaBP-D9k, we generated VDR/CaBP-D28k double knockout (KO) mice, which expressed no CaBP-D28k and only 10% of CaBP-D9k in the kidney. On a regular diet, the double KO mice were more growth-retarded and 42% smaller in body weight than VDRKO mice and died prematurely at 2.5-3 months of age. Compared with VDRKO mice, the double KO mice had higher urinary calcium excretion and developed more severe secondary hyperparathyroidism and rachitic skeletal phenotype, which were manifested by larger parathyroid glands, higher serum parathyroid hormone levels, much lower bone mineral density, and more distorted growth plate with more osteoid formation in the trabecular region. On high calcium, high lactose diet, blood-ionized calcium levels were normalized in both VDRKO and the double KO mice; however, in contrast to VDRKO mice, the skeletal abnormalities were not completely corrected in the double KO mice. These results directly demonstrate that CaBP-D28k plays a critical role in maintaining calcium homeostasis and skeletal mineralization and suggest that its calcemic role can be mostly compensated by CaBP-D9k.  相似文献   

16.
Vitamin D-dependent calcium-binding protein (CaBP) was localized in intestinal tissue sections obtained from rats raised under three different nutritional conditions: a normal vitamin D-replete diet, a vitamin D-free diet followed by supplementation with vitamin D3, or a vitamin D-free diet without additional supplementation. An indirect immunoperoxidase technique, with immunocontrols, was used to visualize the specific sites of CaBP. CaBP was visualized only in the cytoplasm of absorptive cells. In the duodenum of animals raised on a normal diet, CaBP was present in absorptive cells from the upper crypt region to the villus tips. In the jejunum, many fewer absorptive cells contained CaBP, while in the ileum only random absorptive cells near the villus tips contained CaBP. In rats raised on a vitamin D-deficient diet then supplemented with vitamin D3, CaBP was present in cells at the full depth of the crypts and in absorptive cells along the total villus length in the duodenum. Rats raised on the same deficient diet but without supplementation with additional vitamin D exhibited no CaBP in crypt cells nor in absorptive cells more than half way up the villi. Absorptive cells higher on the villi contained immunoreactive CaBP but the intensity of immunostaining and number of CaBP-containing cells was markedly reduced compared to the vitamin D-supplemented group.  相似文献   

17.
THE FINE STRUCTURE OF BONE CELLS   总被引:2,自引:0,他引:2       下载免费PDF全文
An electron microscopic study of Araldite-embedded, undecalcified human woven and chick lamellar bone is presented. The fine structure of the cells of bone in their normal milieu is described. Active osteoblasts possess abundant granular endoplasmic reticulum, numerous small vesicles, and a few secretion droplets. Their long cytoplasmic processes penetrate the osteoid. The transition of osteoblasts into osteoid osteocytes and then into osteocytes is traced and found to involve a progressive reduction of cytoplasmic organelles. Adjoining the osteocytes and their processes is a layer of amorphous material which is interposed between the cell surfaces and the bone walls of their respective cavities. Osteoclasts contain numerous non-membrane-associated ribosomes, abundant mitochondria, and little granular endoplasmic reticulum, thus differing markedly from other bone cells. The brush border is a complex of cytoplasmic processes adjacent to a resorption zone in bone. No unmineralized collagen is seen at resorption sites and it appears that collagen is removed before or at the time of mineral solution. All bone surfaces are covered by cells, some of which lack distinctive qualities and are designated endosteal lining cells. The structure of osteoid, bone, and early mineralization sites is illustrated and discussed.  相似文献   

18.
Radioactively labelled cholecalciferol was administered continuously to rats which were fed a vitamin D-deficient diet. It has been possible to show that all the metabolites of the cholecalciferol which normally occur in known target tissues of vitamin D are present in the parotid gland, and the pattern resembled that obtained for the kidney, a known target tissue for vitamin D action. The accumulation of cholecalciferol metabolites in the parotid gland was shown to be functional, as a calcium-binding protein was found to be present in the gland, possessing similar properties to the renal vitamin D-dependent calcium-binding protein.  相似文献   

19.
 The protooncogene protein, Bcl-2, protects cells from apoptosis and ensures their survival in vitro by inhibiting the action of the apoptosis-inducer, Bax. Its expression in proliferative and long-lived cells in vivo also indicates that it protects against cell death. The chondrocytes of the epiphyseal plate cartilage undergo a series of maturation steps and deposit mineral in the cartilage matrix before dying. The possibility that Bcl-2 helps protect chondrocytes until mineral deposition is completed was investigated by determining the distribution of Bcl-2 immunoreactivity in the epiphyseal plate cartilage of growing rats and its subcellular localization, using a specific antibody. The involvement of Bax in the triggering of chondrocyte death was checked by immunocytochemistry. Bcl-2 expression in the osteoblasts and the final result of their evolution, the osteocytes, was also examined in trabecular bone. Bcl-2 immunoreactivity was non-uniformly distributed throughout the epiphyseal cartilage. It was maximal in proliferative chondrocytes, decreased in mature chondrocytes, and low in hypertrophic chondrocytes, whereas there was Bax immunoreactivity in all chondrocytes examined. Immunolabeling was intense in osteoblasts but considerably lower in fully differentiated osteocytes. Bcl-2 immunoreactivity was mainly in the cytoplasm of chondrocytes, osteoblasts, and early osteocytes; the nuclei appeared clear. The subcellular distribution of Bcl-2 immunolabeling in chondrocytes, revealed by gold particles in the electron microscope, showed that gold particles were frequently concentrated in the mitochondria in all the cartilage zones and lay mainly within the organelles, not at their periphery. The endoplasmic reticulum contained moderate immunoreactivity and there were few gold particles in the cytoplasm and nuclei. The number of gold particles decreased in all the subcellular compartments from proliferative to hypertrophic chondrocytes. In contrast, Bax immunoreactivity changed little during chondrocyte terminal evolution, and its subcellular distribution mirrored that of Bcl-2. These immunocytochemical data indicate that Bcl-2 helps maintain chondrocytes and osteoblasts until their terminal maturation. Accepted: 19 February 1997  相似文献   

20.
We have used a specific cDNA to the mammalian 28,000 Mr vitamin D-dependent calcium binding protein (calbindin-D28k) to study the regulation of the expression of this mRNA in rat kidney and brain. The effects of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) and dietary alteration on genomic expression were characterized by both Northern and slot blot analysis. Administration of 1,25-(OH)2D3 for 7 days (25 ng/day) to vitamin D-deficient rats resulted in a marked increase in renal calbindin-DmRNA, renal calbindin, and serum calcium. When vitamin D-deficient rats were supplemented for 10 days with calcium (3% calcium gluconate in the water, 2% calcium in the diet) serum calcium levels were similar to the levels observed in the 1,25-(OH)2D3-treated rats. However, in the calcium-supplemented rats the levels of renal calbindin and renal calbindin mRNA were similar to the levels observed in the vitamin D-deficient rats, suggesting that calcium alone without vitamin D does not regulate renal calbindin gene expression in vivo. In dietary alteration studies in vitamin D-replete rats, renal calbindin protein and mRNA increased 2.5-fold in rats fed diets low in phosphate providing evidence that in the rat the nutritional induction of calbindin is accompanied by a corresponding alteration in the concentration of its specific mRNA. Under low dietary calcium conditions, the levels of renal calbindin protein and mRNA were similar to the levels observed in control rats, although 1,25-(OH)2D3 serum levels were markedly elevated, suggesting that factors in addition to 1,25-(OH)2D3 can modulate renal calbindin gene expression.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号