首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Certain A + T-rich DNA sequences (C-type inducing sequences) cause adjacent inverted repeats to undergo cruciform extrusion by a particular pathway (C-type extrusion), which is characterized by large activation energies and extrusion at low salt concentrations and relatively low temperatures. When they are supercoiled, these sequences become reactive toward the normally single-strand-selective reagents bromoacetaldehyde, glyoxal, osmium tetraoxide, and sodium bisulfite. The following evidence is presented: (1) The most reactive sequences are those to the left of the inverted repeat. (2) Chemical reactivity is suppressed by either sodium chloride or micromolar concentrations of distamycin. The suppression of reactivity closely parallels that of C-type cruciform extrusion. (3) Chemical reactivity requires a threshold level of negative supercoiling. The threshold superhelix density depends on the prevailing salt concentration. (4) Analysis of temperature dependences suggests that reaction with osmium tetraoxide involves transient unstacking events, while bromoacetaldehyde requires larger scale helix opening. Thus a variety of opening events may occur in the supercoiled A + T-rich sequences, from small-amplitude breathing to low-frequency, large-amplitude openings. The latter appear to be responsible for C-type cruciform extrusion.  相似文献   

2.
The extrusion kinetics of two cruciforms derived from unrelated DNA sequences differ markedly. Kinetic barriers exist for both reactions, necessitating elevated temperatures before extrusion proceeds at measureable speeds, but the dependence upon temperature and ionic strength is quite different for the two sequences. One, the ColE1 inverted repeat, exhibits a remarkably great temperature dependence of reaction rate and is suppressed by moderate amounts of NaCl or MgCl2. In contrast, the other, a synthetic inverted repeat present in pIRbke8, shows more modest temperature dependence and has a requirement for the presence of salt, with optimal concentrations being 50 mM NaCl or 100 microM MgCl2. Under optimal conditions, cruciform extrusion rates are fast (t1/2 less than 60m) at 37 degrees C for both sequences at native superhelix densities. In 50 mM NaCl the pIRbke8 inverted repeat is characterised by an Arrhenius activation energy of 42.4 +/- 3.2 kcal mole -1. The differences in kinetic properties between the two sequences indicate that DNA base sequence is itself an important factor in determining cruciform kinetics, and possibly even in the selection of the mechanistic pathway.  相似文献   

3.
We have previously described [K. M. Sullivan and D. M. J. Lilley (1986) Cell 47, 817-827] a set of sequences, called C-type inducing sequences, which cause cruciform extrusion by adjacent inverted repeats to occur by an abnormal kinetic pathway involving a large denatured region of DNA. In this paper we apply statistical thermodynamic DNA helix melting theory to these sequences. We find a marked correlation between the ability of sequences to confer C-type cruciform character experimentally and their calculated propensity to undergo cooperative melting, and no exceptions have been found. The correlations are both qualitative and quantitative. Thus the ColE1 flanking sequences behave as single melting units, while the DNA of the S-type plasmid pIRbke8 exhibits no propensity to melt in the region of the bke cruciform. The results of the calculations are also fully consistent with the following experimental observations: 1. the ability of the isolated colL and colR fragments of the ColE1 flanking sequences, as well as the short sequence col30, to confer C-type character; 2. C-type induction by an A + T rich Drosophila sequence; 3. low-temperature cruciform extrusion by an (AT)34 sequence; 4. the effect of changing sequences at a site 90 base pairs (bp) removed from the inverted repeat; 5. the effects of systematic deletion of the colL sequence; and 6. the effects of insertion of various sequences in between the colL sequence and the xke inverted repeat. These studies show that telestability effects on thermal denaturation as predicted from equilibrium helix melting theory of linear DNA molecules may explain all the features that are revealed by studying the extrusion of cruciforms in circular DNA molecules subjected to superhelical stress.  相似文献   

4.
Large-scale cooperative helix opening has been previously observed in A + T rich sequences contained in supercoiled DNA molecules at elevated temperatures. Since it is well known that helix melting of linear DNA is suppressed by addition of salt, we have investigated the effects of added salts on opening transitions in negatively supercoiled DNA circles. We have found that localised large-scale stable melting in supercoiled DNA is strongly suppressed by modest elevation of salt concentration, in the range 10 to 30 mM sodium. This has been shown in a number of independent ways: 1. The temperature required to promote cruciform extrusion by the pathway that proceeds via the coordinate large-scale opening of an A + T rich region surrounding the inverted repeat (the C-type pathway, first observed in the extrusion of the ColE1 inverted repeat) is elevated by addition of salt. The temperature required for extrusion was increased by about 4 deg for an addition of 10 mM NaCl. 2. A + T rich regions in supercoiled DNA exhibit hyperreactivity towards osmium tetroxide as the temperature is raised; this reactivity is strongly suppressed by the addition of salt. At low salt concentrations of added NaCl (10 mM) we observe that there is an approximate equivalence between reducing the salt concentration, and the elevation of temperature. Above 30 mM NaCl the reactivity of the ColE1 sequences is completely supressed at normal temperatures. 3. Stable helix opening transitions in A + T rich sequences may be observed with elevated temperature, using two-dimensional gel electrophoresis; these transitions become progressively harder to demonstrate with the addition of salt. With the addition of low concentrations of salt, the onset of opening transitions shifts to higher superhelix density, and by 30 mM NaCl or more, no transitions are visible up to a temperature of 50 degrees C. Statistical mechanical simulation of the data indicate that the cooperativity free energy for the transition is unaltered by addition of salt, but that the free energy cost for opening each basepair is increased. These results demonstrate that addition of even relatively low concentrations of salt strongly suppress the large-scale helix opening of A + T rich regions, even at high levels of negative supercoiling. While the opening at low salt concentrations may reveal a propensity for such transitions, spontaneous opening is very unlikely under physiological conditions of salt, temperature and superhelicity, and we conclude that proteins will therefore be required to facilitate opening transitions in cellular DNA.  相似文献   

5.
There are two alternative pathways by which inverted repeat sequences in supercoiled DNA molecules may extrude cruciform structures, called C-type and S-type. S-type cruciforms, which form the great majority, are characterised by absolute requirement for cations to promote extrusion, which then proceeds at higher temperatures and with lower activation parameters than for C-type cruciforms. The mechanism proposed for S-type extrusion involves an initial opening of basepairs limited to the centre of the inverted repeat, formation of intra-strand basepairing and a four-way junction, and finally branch migration to the fully extruded cruciform. The model predicts that central sequence changes will be more kinetically significant than those removed from the centre. We have studied the kinetics of cruciform extrusion by a series of inverted repeats related to that of pIRbke8 by either one or two mutations in the symmetric unit. We find that mutations in the central 8 to 10 nucleotides may profoundly affect extrusion rates--the fastest being 2000-fold faster than the slowest, whereas mutations further from the centre affect rates to a much smaller extent, typically up to ten-fold. These data support the proposed mechanism for extrusion via central opening.  相似文献   

6.
Sequence context may profoundly alter the character of structural transitions in supercoiled DNA (Sullivan, K. M., and Lilley, D. M. J. (1986) Cell 47, 817-827). The A + T-rich sequences of ColE1, which flank the inverted repeat, are responsible for cruciform extrusion following a mechanistic pathway which proceeds via a relatively large denatured region. This C-type mechanism results in kinetic properties which are very different from those of the S-type pathway, the normal mechanism of cruciform extrusion in the absence of the ColE1 flanking sequences. We have analyzed the sequence requirements for the induction of the C-type pathway. The 100-base pair left side sequence of ColE1 (colL) was subjected to systematic deletion using Bal31 exonucleolysis, showing that removal of 30 base pairs from its right end abolished extrusion by the C-type process. A cloned oligonucleotide of the same 30-base pair sequence was sufficient to confer C-type cruciform extrusion on an adjacent inverted repeat. An A + T-rich sequence from Drosophila was found to act like the ColE1 sequences. We have studied the effects of introducing sequences between the A + T-rich colL, and the inverted repeat on which it acts. A range of such fragments was found, from those which augment the effect of colL to those which block it completely. In general, it appears that the ability of a sequence to block the effect of colL depends on both the length and G + C content of the fragment. The sequences which are responsible for the extrusion by the C-type pathway are termed C-type inducing sequences, while sequences which are interposed between the inducing sequence and the inverted repeat, and which may either augment or attenuate the effect, but which cannot function as inducing sequences in isolation, are termed transmitting sequences. The results of these studies are most readily consistent with long range destabilization of DNA structure via telestability effects.  相似文献   

7.
We have made a comparative study of the kinetics of cruciform extrusion by a salt-dependent (S-type) cruciform in the presence of a variety of metal ions and related species. We find that the nature of the cation present has a marked effect on the observed kinetics, and that different cations differ greatly in the efficiency with which they promote the extrusion process. We can divide the ions into four classes according to the optimal ionic concentration required for maximal extrusion rate. Group Ia cations and tetramethyl ammonium are most effective in promoting extrusion at 50 to 60 mM. Group IIa and selected transition metal ions (notably manganese) are effective over a wide range, extending down to 200 microM. Hexaminecobalt(III) and the polyamines promote extrusion at concentrations as low as 15 to 40 microM. Most remaining ions examined, including trivalent ions such as Al(III) and many transition metal ions are totally ineffective. Within the first two groups, we observe a marked correlation between the rate of cruciform extrusion promoted and ionic radius, the larger ions giving faster extrusion rates. We interpret this to indicate specific ion binding occurring in the transition state of the extrusion process. We may rationalize all the data in terms of a model for salt-dependent cruciform extrusion, in which the transition state resembles a partially extruded protocruciform. This creates an anionic "cavity" with selective ion binding properties, and its stabilization is therefore ion size-dependent.  相似文献   

8.
In the absence of flanking AT-rich segments, cruciform transition energies of DNA palindromic sequences of random base composition are high and mainly dependent upon the base-stacking and -pairing parameters of the palindromic segment. When AT-rich sequences adjoin palindromes, the transition energy of cruciform extrusion is significantly lowered. An inverse relationship exists between the length of the AT-rich stretch and the cruciform transition energy. Long stretches lower the transition energies more than short stretches. At physiological salt and temperature conditions, equilibrium between cruciform extrusion and absorption for the inverted repeat sequences IRS-B and IRS-C of pBR322 derived plasmids is reached in less than five minutes.  相似文献   

9.
10.
The binding of three analogues of the minor-groove binding antiviral antibiotic distamycin (Dst) with double-stranded (ds)-DNA were monitored using ds-DNA melting temperature (Tm) measurements, ethidium bromide (EtBr) displacement assay, footprinting analysis and induced circular dichroism (ICD). These compounds contained 3-5 N-methyl-pyrrole-carboxamide units and lacked the N-terminal formamide unit present in Dst. These experiments suggested that the present analogues did not compromise their AT-specificity despite the deletion of the N-terminal formamide unit. The binding affinities, however, were significantly affected. Interestingly, the analogue with three N-methyl-pyrrole-carboxamide units exhibited an initial decrease in ICD at > 40 mM salt concentrations. This was followed by a pronounced recovery of ICD at > 1.6 M salt concentrations, a phenomenon hitherto not observed with any other DNA binding molecules. The pentapyrrole analogue exhibited the highest binding affinity with CT-DNA under normal (40 mM) salt conditions. However, it suffered maximum relative dissociation under high salt conditions and did not exhibit any recovery in ICD at higher NaCl concentrations. The analogues possessing four and five pyrrole rings exhibited intense ICD signals with poly d(GC) in the ligand absorption region in the presence of 40 mM NaCl, unlike the one with three pyrrole rings. These ICD signals were however, highly susceptible to changes in ionic strength. Thus subtle modifications in the ligand molecular structure can have dramatic effect on their DNA binding properties.  相似文献   

11.
Some viable palindromic DNA sequences were found to cause an increase in the recovery of genetic recombinants. Although these palindromes contained no Chi sites, their presence in cis caused apparent recA+-dependent recombination to increase severalfold. This biological property did not correlate with the physical properties of the palindromes' extrusion of cruciform structures in vitro. Thus, two unrelated palindromes with similar effects on recombination in both Escherichia coli and Pseudomonas syringae displayed quite different kinetics of cruciform formation. In plasmids of native superhelical density, one palindrome underwent rapid cruciform formation at 55 degrees C, whereas the other did not form detectable cruciforms at any temperature. A shorter palindrome with similarly rapid kinetics of cruciform formation did not affect recombination detectably. The lack of a clear relationship between physical and genetic properties was also demonstrated in the case of longer, inviable palindromes. Here we found that the degree of asymmetry required in vivo to rescue a long palindrome from inviability far exceeded that required to kinetically prohibit cruciform extrusion in vitro.  相似文献   

12.
Abstract

The binding of three analogues of the minor-groove binding antiviral antibiotic distamycin (Dst) with double-stranded (ds)-DNA were monitored using ds-DNA melting temperature (Tm) measurements, ethidium bromide (EtBr) displacement assay, footprinting analysis and induced circular dichroism (ICD). These compounds contained 3–5 N-methyl-pyrrole-car- boxamide units and lacked the N-terminal formamide unit present in Dst. These experiments suggested that the present analogues did not compromise their AT-specificity despite the deletion of the N-terminal formamide unit. The binding affinities, however, were significantly affected. Interestingly, the analogue with three N-methyl-pyrrole-carboxamide units exhibited an initial decrease in ICD at >40 mM salt concentrations. This was followed by a pronounced recovery of ICD at > 1.6 M salt concentrations, a phenomenon hitherto not observed with any other DNA binding molecules. The pentapyrrole analogue exhibited the highest binding affinity with CT-DNA under normal (40 mM) salt conditions. However, it suffered maximum relative dissociation under high salt conditions and did not exhibit any recovery in ICD at higher NaCl concentrations. The analogues possessing four and five pyrrole rings exhibited intense ICD signals with poly d(GC) in the ligand absorption region in the presence of 40 mM NaCl, unlike the one with three pyrrole rings. These ICD signals were however, highly susceptible to changes in ionic strength. Thus subtle modifications in the ligand molecular structure can have dramatic effect on their DNA binding properties.  相似文献   

13.
R Bowater  F Aboul-ela  D M Lilley 《Biochemistry》1991,30(49):11495-11506
We have studied the properties of (A + T)-rich sequences derived from ColE1 that promote cruciform extrusion at low ionic strength in supercoiled plasmids. We compared the chemical reactivity of the sequences in negatively supercoiled DNA (using osmium tetroxide and bromoacetaldehyde) with the results of two-dimensional gel electrophoresis performed under the same conditions. Taken together, the results indicate the occurrence of cooperative helix-coil transitions in the (A + T)-rich DNA at low ionic strength, to form stable, denatured regions. The extent of the open region is a function of temperature and superhelix density, with an additional local destabilization brought about by the presence of cruciform structures. We present a simple statistical mechanical model of the helix-coil transition in the (A + T)-rich DNA, from which we have obtained estimates of the free energy for average base-pair opening of 0.31 kcal mol-1 and that for the formation of a helix-coil junction of 4.9 kcal mol-1, in 45 mM Tris-borate, pH 8.3, 0.5 mM EDTA. The results offer a model for the C-type mechanism of cruciform extrusion. Inverted repeats that are incorporated into the melted region undergo hairpin loop formation below 50 degrees C, and upon closure of the melted region, by reduction of temperature or increased ionic strength, they remain as a fully extruded cruciform structure.  相似文献   

14.
Length-dependent cruciform extrusion in d(GTAC)n sequences   总被引:1,自引:0,他引:1  
pBR322-derived plasmids have been constructed carrying d(GTAC)n.d(GTAC)n inserts of different lengths, in order to investigate the effect of insert size on cruciform extrusion and/or the B-Z transition. Plasmids with n ranging from 4 to 12 are hypersensitive to cleavage by the single-strand specific nucleases, S1 nuclease and Bal31 nuclease. Hypersensitive sites associated with the smaller alternating purine-pyrimidine tracts, however, coexist with the major pBR322 sites. Site-selective cleavage of these plasmids with the resolvase, T7 endonuclease I, demonstrates that all the inserts form cruciform structures when stably integrated into negatively supercoiled plasmids. An increase in the negative superhelical density of the DNA's induces cruciform formation within the insert region, resulting in a reduction in torsional stress consistent with the size of the insert. Moreover, as n decreases, the superhelical density required to stabilise the cruciform state increases. Therefore, the cruciform geometry is the favoured conformation of these d(GTAC)n.d(GTAC)n sequences under torsional stress. The stability of these cruciforms increases as n increases, with cruciformation occurring at lower superhelical densities and to the exclusion of the other pBR322 cruciforms.  相似文献   

15.
Repetitive sequences in DNA molecules, some of which are palindromic, tend to form stable cruciforms. These are frequently located in promoter regions of a specific operon and origin of replication. Temperature gradient gel electrophoresis can be used to distinguish among various supercoiled DNA topoisomers and to ascertain whether or not the cruciform motif has been extruded. In the current study, this technique is implemented for the first time to address the role of temperature in cruciform extrusion from plasmids.  相似文献   

16.
Specificity of the nick-closing activity of bacteriophage T4 DNA ligase   总被引:14,自引:0,他引:14  
D Y Wu  R B Wallace 《Gene》1989,76(2):245-254
Bacteriophage T4 DNA ligase effectively joins two adjacent, short synthetic oligodeoxyribonucleotides (oligos), as guided by complementary oligo, plasmid and genomic DNA templates. When a single bp mismatch exists at either side of the ligation junction, the efficiency of the enzyme to ligate the two oligos decreases. Mismatch ligation is approximately five-fold greater if the mismatch occurs at the 3' side rather than at the 5' side of the junction. During mismatch ligation the 5' adenylate of the 3' oligo accumulates in the reaction. The level of the adenylate formation correlates closely with the level of the mismatch ligation. Both mismatch ligation and adenylate formation are suppressed at elevated temperatures and in the presence of 200 mM NaCl or 2-5 mM spermidine. The apparent Km for the oligo template in the absence of salt is 0.05 microM, whereas the Km increases to 0.2 microM in the presence of 200 mM of NaCl. In this report, we demonstrate these properties of T4 DNA ligase for oligo pairs complementary to the beta-globin gene at the sequence surrounding the single bp mutation responsible for sickle-cell anemia. Because of the highly specific nature of the nick-closing reaction, ligation of short oligos with DNA ligase can be used to distinguish two DNA templates differing by a single nucleotide.  相似文献   

17.
Ozone-reactive sites on the nucleobase moieties in supercoiled pBR322 DNA were investigated by using sequencing procedures. Ozonolysis in the absence of salt resulted in degradation of thymine residues in the A + T rich region located at 3100-3400bp. In the presence of salt, such as NaCl or MgCl2, a conformational change of plasmid DNA was induced. Subsequently the thymine and guanine residues in the loop of the cruciform located at 3120bp and 3220bp were degraded. In addition, central thymine residues present in sequences GTA, GTT and ATA were also degraded.  相似文献   

18.
A family of plasmids which contain d(AT)n cruciforms are sensitive to "single strand specific" (SS) endonucleases and a variety of chemical probes in a "random sequence" region centered 10-30 residues away from the cruciform junction. The SS nuclease sensitive structures are dependent on the presence of the extruded cruciform and exhibit a degree of sequence independence. Their appearance depends upon the combined effects of slightly lower than neutral pH and superhelical coiling above the minimum required to drive the extrusion of the d(AT)n cruciform arms. The nuclease sensitive structure is therefore underwound with respect to the B conformation and contains protonated bases.  相似文献   

19.
Abstract

pBR322-derived plasmids have been constructed carrying d(GTAC)n·d(GTAC)n inserts of different lengths, in order to investigate the effect of insert size on cruciform extrusion and/or the B-Z transition. Plasmids with n ranging from 4 to 12 are hypersensitive to cleavage by the single-strand specific nucleases, S1 nuclease and Bal31 nuclease. Hypersensitive sites associated with the smaller alternating purine-pyrimidine tracts, however, coexist with the major pBR322 sites. Site-selective cleavage of these plasmids with the resolvase, T7 endonuclease I, demonstrates that all the inserts form cruciform structures when stably integrated into negatively supercoiled plasmids. An increase in the negative superhelical density of the DNA's induces cruciform formation within the insert region, resulting in a reduction in torsional stress consistent with the size of the insert. Moreover, as n decreases, the superhelical density required to stabilise the cruciform state increases. Therefore, the cruciform geometry is the favoured conformation of these d(GTAC)n·d(GTAC)n sequences under torsional stress. The stability of these cruciforms increases as n increases, with cruciformation occurring at lower superhelical densities and to the exclusion of the other pBR322 cruciforms.  相似文献   

20.
Large variations in alkylation intensities exist among guanines in a DNA sequence following treatment with chemotherapeutic alkylating agents such as nitrogen mustards, and the substituent attached to the reactive group can impose a distinct sequence preference for reaction. In order to understand further the structural and electrostatic factors which determine the sequence selectivity of alkylation reactions, the effect of increased ionic strength, the intercalator ethidium bromide, AT-specific minor groove binders distamycin A and netropsin, and the polyamine spermine on guanine N7-alkylation by L-phenylalanine mustard (L-Pam), uracil mustard (UM), and quinacrine mustard (QM) was investigated with a modification of the guanine-specific chemical cleavage technique for DNA sequencing. For L-Pam and UM, increased ionic strength and the cationic DNA affinity binders dose dependently inhibited the alkylation. QM alkylation was less inhibited by salt (100 mM NaCl), ethidium (10 microM), and spermine (10 microM). Distamycin A and netropsin (100 microM) gave an enhancement of overall QM alkylation. More interestingly, the pattern of guanine N7-alkylation was qualitatively altered by ethidium bromide, distamycin A, and netropsin. The result differed with both the nitrogen mustard (L-Pam less than UM less than QM) and the cationic agent used. The effect, which resulted in both enhancement and suppression of alkylation sites, was most striking in the case of netropsin and distamycin A, which differed from each other. DNA footprinting indicated that selective binding to AT sequences in the minor groove of DNA can have long-range effects on the alkylation pattern of DNA in the major groove.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号