首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Adenosine, a purine nucleoside, acts as a regulatory molecule, by binding to specific G-protein-coupled A1, A2A, A2B, and A3 cell surface receptors. We have recently demonstrated that adenosine induces a differential effect on tumor and normal cells. While inhibiting in vitro tumor cell growth, it stimulates bone marrow cell proliferation. This dual activity was mediated through the A3 adenosine receptor. This study showed that a synthetic agonist to the A3 adenosine receptor, 2-chloro-N6-(3-iodobenzyl)-adenosine-5′-N-methyl-uronamide (Cl-IB-MECA), at nanomolar concentrations, inhibited tumor cell growth through a cytostatic pathway, i.e., induced an increase number of cells in the G0/G1 phase of the cell cycle and decreased the telomeric signal. Interestingly, Cl-IB-MECA stimulates murine bone marrow cell proliferation through the induction of granulocyte-colony-stimulating factor. Oral administration of Cl-IB-MECA to melanoma-bearing mice suppressed the development of melanoma lung metastases (60.8 ± 6.5% inhibition). In combination with cyclophosphamide, a synergistic anti-tumor effect was achieved (78.5 ± 9.1% inhibition). Furthermore, Cl-IB-MECA prevented the cyclophosphamide-induced myelotoxic effects by increasing the number of white blood cells and the percentage of neutrophils, demonstrating its efficacy as a chemoprotective agent. We conclude that A3 adenosine receptor agonist, Cl-IB-MECA, exhibits systemic anticancer and chemoprotective effects.  相似文献   

2.
Adenosine is an ubiquitous nucleoside present in all body cells. It is released from metabolically active or stressed cells and subsequently acts as a regulatory molecule through binding to specific A1, A2A, A2B and A3 cell surface receptors. The synthesis of agonists and antagonists to the adenosine receptors and their cloning enabled the exploration of their physiological functions. As nearly all cells express specific adenosine receptors, adenosine serves as a physiological regulator and acts as a cardioprotector, neuroprotector, chemoprotector, and as an immunomodulator. At the cellular level, activation of the receptors by adenosine initiates signal transduction mechanisms through G-protein associated receptors. Adenosine's unique characteristic is to differentially modulate normal and transformed cell growth, depending upon its extracellular concentration, the expression of adenosine cell surface receptors, and the physiological state of the target cell. Stimulation of cell proliferation following incubation with adenosine has been demonstrated in a variety of normal cells in the range of low micromolar concentrations, including mesangial and thymocyte cells, Swiss mouse 3T3 fibroblasts, and bone marrow cells. Induction of apoptosis in tumor or normal cells was shown at higher adenosine concentrations (>100 microM) such as in leukemia HL-60, lymphoma U-937, A431 epidermoid cells, and GH3 tumor pituitary cell lines. It was further noted that the A3 adenosine receptor (A3AR) plays a key role in the inhibitory and stimulatory growth activities of adenosine. Modulation of the A3AR was found to affect cell growth either positively or negatively depending on the concentration of the agonist, similar to the effect described for adenosine. At nanomolar concentrations, the A3AR agonists possess dual activity, i.e., antiproliferative activity toward tumor cells and stimulatory effect on bone marrow cells. In vivo, these agonists exerted anti-cancer effects, and when given in combination with chemotherapy, they enhanced the chemotherapeutic index and acted as chemoprotective agents. Taken together, activation of the A3AR, by minute concentrations of its natural ligand or synthetic agonists, may serve as a new approach for cancer therapy.  相似文献   

3.
Adenosine may affect several pathophysiological processes, including cellular proliferation, through interaction with A(1), A(2A), A(2B), and A(3) receptors. In this study we characterized adenosine receptors in human colon cancer tissues and in colon cancer cell lines Caco2, DLD1, HT29. mRNA of all adenosine subtypes was detected in cancer tissues and cell lines. At a protein levels low amount of A(1), A(2A), and A(2B) receptors were detected, whilst the A(3) was the most abundant subtype in both cancer tissues and cells, with a pharmacological profile typical of the A(3) subtype. All the receptors were coupled to stimulation/inhibition of adenylyl-cyclase in cancer cells, with the exception of A(1) subtype. Adenosine increased cell proliferation with an EC(50) of 3-12 microM in cancer cells. This effect was not essentially reduced by adenosine receptor antagonists. However dypiridamol, an adenosine transport inhibitor, increased the stimulatory effect induced by adenosine, suggesting an action at the cell surface. Addition of adenosine deaminase makes the A(3) agonist 2-chloro-N6-(3-iodobenzyl)-N-methyl-5'-carbamoyladenosine (Cl-IB-MECA) able to stimulate cell proliferation with an EC(50) of 0.5-0.9 nM in cancer cells, suggesting a tonic proliferative effect induced by endogenous adenosine. This effect was antagonized by 5-N-(4-methoxyphenyl-carbamoyl)amino-8-propyl-2(2furyl)-pyrazolo-[4,3e]-1,2,4-triazolo [1,5-c] pyrimidine (MRE 3008F20) 10 nM. Cl-IB-MECA-stimulated cell proliferation involved extracellular-signal-regulated-kinases (ERK1/2) pathway, as demonstrated by reduction of proliferation with 1,4-diamino-2,3-dicyano-1,4-bis-[2-amino-phenylthio]-butadiene (U0126) and by ERK1/2 phosphorylation. In conclusion this study indicates for the first time that in colon cancer cell lines endogenous adenosine, through the interaction with A(3) receptors, mediates a tonic proliferative effect.  相似文献   

4.
Two adenosine receptor agonists, N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA) and N6-cyclopentyladenosine (CPA), which selectively activate adenosine A3 and A1 receptors, respectively, were tested for their ability to influence proliferation of granulocytic and erythroid cells in femoral bone marrow of mice using morphological criteria. Agonists were given intraperitoneally to mice in repeated isomolar doses of 200 nmol/kg. Three variants of experiments were performed to investigate the action of the agonists under normal resting state of mice and in phases of cell depletion and subsequent regeneration after treatment with the cytotoxic drug 5-fluorouracil. In the case of granulopoiesis, IB-MECA 1) increased by a moderate but significant level proliferation of cells under normal resting state; 2) strongly increased proliferation of cells in the cell depletion phase; but 3) did not influence cell proliferation in the regeneration phase. CPA did not influence cell proliferation under normal resting state and in the cell depletion phase, but strongly suppressed the overshooting cell proliferation in the regeneration phase. The stimulatory effect of IB-MECA on cell proliferation of erythroid cells was observed only when this agonist was administered during the cell depletion phase. CPA did not modulate erythroid proliferation in any of the functional states investigated, probably due to the lower demand for cell production as compared with granulopoiesis. The results indicate opposite effects of the two adenosine receptor agonists on proliferation of hematopoietic cells and suggest the plasticity and homeostatic role of the adenosine receptor expression.  相似文献   

5.
Adenosine, acting at its receptors, particularly A(2A) receptors, is a potent endogenous anti-inflammatory agent that modulates the functions and differentiation of inflammatory and immune cells. Because the inflammatory milieu abounds in proinflammatory cytokines, we investigated the effects of Th1-inflammatory cytokines on function and expression of adenosine A(2A) receptors in the human monocytic cell line THP-1. We found that, consistent with previous reports, adenosine and 2-[p-(2-carnonylethyl)phenylethylamino]-5'-N-ethylcarboxamidoadenosine (CGS-21680), a selective A(2A) receptor agonist, suppress IL-12 production but increase IL-10 production in LPS-activated THP-1 cells. These effects were blocked by the A(2A) receptor antagonist 4-(2-[7-amino-2-(2-furyl)[1,2,4-triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM-241385). More importantly, the suppressive effect of adenosine and CGS-21680 on IL-12 production was significantly enhanced in cells pretreated with either IL-1 (10 U/ml) or TNF-alpha (100 U/ml) but markedly attenuated in cells pretreated with IFN-gamma (100 U/ml). Similarly, IL-1 and TNF-alpha treatment potentiated the stimulatory effect of adenosine and CGS-21680 on IL-10 production, whereas IFN-gamma treatment almost completely abolished this effect. CGS-21680 stimulated an increase in intracellular cAMP in a time- and dose-dependent manner in IL-1- and TNF-alpha-treated cells but not in control or IFN-gamma-treated cells. Both IL-1 and TNF-alpha increased A(2A) receptor mRNA and protein. In parallel with its effect on A(2A) receptor function, IFN-gamma down-regulated A(2A) receptor message and protein. Because adenosine mediates many of the antiinflammatory effects of drugs such as methotrexate, these observations suggest that local changes in the cytokine milieu may influence the therapeutic response to those drugs by altering the expression and function of adenosine receptors on inflammatory cells.  相似文献   

6.
Adenosine is produced during inflammation and modulates different functional activities in macrophages. In murine bone marrow-derived macrophages, adenosine inhibits M-CSF-dependent proliferation with an IC50 of 45 microM. Only specific agonists that can activate A2B adenosine receptors such as 5'-N-ethylcarboxamidoadenosine, but not those active on A1 (N6-(R)-phenylisopropyladenosine), A2A ([p-(2-carbonylethyl)phenylethylamino]-5'-N-ethylcarboxamido adenosine), or A3 (N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide) receptors, induce the generation of cAMP and modulate macrophage proliferation. This suggests that adenosine regulates macrophage proliferation by interacting with the A2B receptor and subsequently inducing the production of cAMP. In fact, both 8-Br-cAMP (IC50 85 microM) and forskolin (IC50 7 microM) inhibit macrophage proliferation. Moreover, the inhibition of adenylyl cyclase and protein kinase A blocks the inhibitory effect of adenosine and its analogues on macrophage proliferation. Adenosine causes an arrest of macrophages at the G1 phase of the cell cycle without altering the activation of the extracellular-regulated protein kinase pathway. The treatment of macrophages with adenosine induces the expression of p27kip-1, a G1 cyclin-dependent kinase inhibitor, in a protein kinase A-dependent way. Moreover, the involvement of p27kip-1 in the adenosine inhibition of macrophage proliferation was confirmed using macrophages from mice with a disrupted p27kip-1 gene. These results demonstrate that adenosine inhibits macrophage proliferation through a mechanism that involves binding to A2B adenosine receptor, the generation of cAMP, and the induction of p27kip-1 expression.  相似文献   

7.
8.
The aim of the study was to investigate the effects of stable adenosine receptor agonists on bone marrow hematopoiesis by utilizing the model of hematopoietic damage induced by 5-fluorouracil (5-FU), a cycle-specific cytotoxic agent. Effects of a non-selective agonist NECA activating all the known adenosine receptors (A1, A2A, A2B, A3) and of the selective agonists for A1 (CPA), A2A (CGS 21680), and A3 (IB-MECA) adenosine receptors were investigated. Experiments were performed with B10CBAF1 mice under in vivo conditions. Adenosine receptor agonists were given in single injections before 5-FU administration and the effects were determined 4 days later. The numbers of femoral marrow nucleated cells and hematopoietic progenitor cells (CFC-GM and BFU-E) were taken as indices of the effects. The non-selective agonist NECA given at a dose of 200 nmol/kg induced biphasic time-dependent effects, i.e. protection and sensitization, when given 10 h and 22 h before 5-FU administration, respectively. The use of isomolar doses of selective receptor agonists indicated that the protective effects of NECA were induced by activation of A2A and A2B receptors, while the sensitizing action of NECA was mediated via A3 receptors. In addition, it was observed that A1 receptors induced protection when activated by administration of CPA 22 h before 5-FU. These findings are discussed with respect to the action of adenosine receptor agonists on the cell cycle state and on the cell cycle-independent cellular protective mechanisms.  相似文献   

9.
We and others have shown that adenosine, acting at its receptors, is a potent modulator of inflammation and angiogenesis. To better understand the regulation of adenosine receptors during these processes we studied the effects of IL-1, TNF-alpha, and IFN-gamma on expression and function of adenosine receptors and select members of their coupling G proteins in human dermal microvascular endothelial cells (HMVEC). HMVEC expressed message and protein for A(2A) and A(2B), but not A(1) or A(3) receptors. IL-1 and TNF-alpha treatment increased message and protein expression of A(2A) and A(2B) receptor. IFN-gamma treatment also increased the expression of A(2B) receptors, but decreased expression of A(2A) receptors. Resting HMVEC and IFN-gamma-treated cells showed minimal cAMP response to the selective A(2A) receptor agonist 2-[2-(4-chlorophenyl)ethoxy]adenosine (MRE0094). In contrast, MRE0094 stimulated a dose-dependent increase in cAMP levels in TNF-alpha-treated cells that was almost completely blocked by the A(2A) receptor antagonist ZM-241385 (4-[2-[7-amino-2-(2-furyl)[1,2,4]triazolo-[2,3-a][1,3,5]triazin-5-ylamino]ethyl]phenol). The nonselective adenosine receptor agonist 5'-(N-ethylcarboxamido)adenosine increased cAMP levels in both TNF-alpha- and IFN-gamma-treated cells, but not control cells, and its effect was only partially reversed by ZM-241385 in TNF-alpha-treated cells and not affected in IFN-gamma-treated cells. HMVEC expressed a higher level of G protein beta1 isoform than beta4 isoform. Although none of the cytokines tested affected G(beta1) expression, both IL-1 and TNF-alpha significantly up-regulated G(beta4) expression. These findings indicate that inflammatory cytokines modulate adenosine receptor expression and function on HMVECs and suggest that the interaction between proinflammatory cytokines and adenosine receptors may affect therapeutic responses to anti-inflammatory drugs that act via adenosine-dependent mechanisms.  相似文献   

10.
The effect of adenosine and related compounds on the proliferation of cultured TM4 cells, a Sertoli-like cell line, has been examined. Adenosine, as well as A1 and A2 adenosine receptor agonists (cyclohexyladenosine and N6-[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]adenosine) inhibited cell proliferation. These effects were prevented by 8-cyclopentyl theophylline, 1,3-dimethyl-propargylxanthine and caffeine, antagonists at the A1, A2 and both receptors, respectively. The xanthines had no effect by themselves and, consistent with this, the bathing medium was found not to contain detectable levels of adenosine. It is concluded that TM4 cell proliferation can be regulated by receptors for adenosine.  相似文献   

11.
When guinea pig bone marrow cells were incubated in the presence of 10(-7) to 10(-5) M platelet-activating factor (PAF) for 24 to 72 hours, [3H]thymidine incorporation of cells was time-dependently augmented. The enantiomer of PAF and lysoPAF, a major metabolite of PAF, did not show significant enhancement. A non-metabolizable potent PAF agonist, 1-O-octadecyl-2-O-(N,N-dimethylcarbamoyl)-sn-glycero-3-phospholine, enhanced the [3H]thymidine incorporation at 10(-10) to 10(-8) M. This augmentation of DNA synthesis in bone marrow cells was abolished by specific PAF antagonists, CV-6209 or FR-900452. When the conditioned medium of PAF-stimulated bone marrow cells was added to another culture of bone marrow cells, the augmentation of DNA synthesis was also observed. These results suggest that PAF may affect the proliferation of one or some classes of guinea pig bone marrow cells through release of soluble factor(s).  相似文献   

12.
Otsuka, K., Koana, T., Tomita, M., Ogata, H. and Tauchi, H. Rapid Myeloid Recovery as a Possible Mechanism of Whole-Body Radioadaptive Response. Radiat. Res. 170, 307- 315 (2008).We investigated the mechanism underlying the radioadaptive response that rescues mice from hematopoietic failure. C57BL/6 mice were irradiated with low-dose acute X rays (0.5 Gy) for priming 2 weeks prior to a high-dose (6 Gy) challenge irradiation. Bone marrow cells, erythrocytes and platelets in low-dose-preirradiated mice showed earlier recovery after the challenge irradiation than those in mice subjected only to the challenge irradiation. This suggests that hematopoiesis is enhanced after a challenge irradiation in preirradiated mice. The rapid recovery of bone marrow cells after the challenge irradiation was consistent with the proliferation of hematopoietic progenitors expressing the cell surface markers Lin(-), Sca-1(-) and c-Kit(+) in low-dose-preirradiated mice. A subpopulation of myeloid (Mac-1(+)/Gr-1(+)) cells, which were descendants of Lin(-), Sca-1(-) and c-Kit(+) cells, rapidly recovered in the bone marrow of low-dose-preirradiated mice, whereas the number of B-lymphoid (CD19(+)/B220(+)) cells did not show a statistically significant increase. Plasma cytokine profiles were analyzed using antibody arrays, and results indicated that the concentrations of several growth factors for myelopoiesis after the challenge irradiation were considerably increased by low-dose preirradiation. The rapid recovery of erythrocytes and platelets but not leukocytes was observed in the peripheral blood of preirradiated mice, suggesting that low-dose preirradiation triggered the differentiation to myelopoiesis. Thus the adaptive response induced by low-dose preirradiation in terms of the recovery kinetics of the number of hematopoietic cells may be due to the rapid recovery of the number of myeloid cells after high-dose irradiation.  相似文献   

13.
MRE 2029-F20 [N-benzo[1,3]dioxol-5-yl-2-[5-(2,6-dioxo-1,3-dipropyl-2,3,6,7-tetrahydro-1H-purin-8-yl)-1-methyl-1H-pyrazol-3-yloxy]-acetamide] is a selective antagonist ligand of A2B adenosine receptors. For use as a radioligand, 1,3-diallyl-xanthine, the precursor of [3H]-MRE 2029-F20, was synthesized, and tritiated on the allyl groups. [3H]-MRE 2029-F20 bound to human A2B receptors expressed in CHO cells showed a KD value of 1.65+/-0.10 nM and Bmax value of 36+/-4 fmol/mg protein. [3H]-MRE2029-F20 represents a useful tool for the pharmacological characterization of human A2B adenosine receptor subtype.  相似文献   

14.
The accumulation of high levels of adenosine in tumors activates A(2A) and A(2B) receptors on immune cells and inhibits their ability to suppress tumor growth. Deletion of adenosine A(2A) receptors (A(2A)ARs) has been reported to activate antitumor T cells, stimulate dendritic cell (DC) function, and inhibit angiogenesis. In this study, we evaluated the effects of intermittent intratumor injection of a nonselective adenosine receptor antagonist, aminophylline (AMO; theophylline ethylenediamine) and, for the first time to our knowledge, a selective A(2B)AR antagonist, ATL801. AMO and ATL801 slowed the growth of MB49 bladder and 4T1 breast tumors in syngeneic mice and reduced by 85% metastasizes of breast cancer cells from mammary fat to lung. Based on experiments with A(2A)AR(-/-) or adenosine A(2B) receptor(-/-) mice, the effect of AMO injection was unexpectedly attributed to A(2B)AR and not to A(2A)AR blockade. AMO and ATL801 significantly increased tumor levels of IFN-γ and the IFN-inducible chemokine CXCL10, which is a ligand for CXCR3. This was associated with an increase in activated tumor-infiltrating CXCR3(+) T cells and a decrease in endothelial cell precursors within tumors. Tumor growth inhibition by AMO or ATL801 was eliminated in CXCR3(-/-) mice and RAG1(-/-) mice that lack mature T cells. In RAG1(-/-) mice, A(2B)AR deletion enhanced CD86 expression on CD11b(-) DCs. Bone marrow chimera experiments demonstrated that CXCR3 and A(2B)AR expression on bone marrow cells is required for the antitumor effects of AMO. The data suggest that blockade of A(2B)ARs enhances DC activation and CXCR3-dependent antitumor responses.  相似文献   

15.
Adenosine is a potent endogenous anti-inflammatory agent released by cells in metabolically unfavorable conditions, such as hypoxia or ischemia. Adenosine modulates different functional activities in macrophages. Some of these activities are believed to be induced through the uptake of adenosine into the macrophages, while others are due to the interaction with specific cell surface receptors. In murine bone marrow-derived macrophages, the use of different radioligands for adenosine receptors suggests the presence of A2B and A3 adenosine receptor subtypes. The presence of A2B receptors was confirmed by flow cytometry using specific Abs. The A2B receptor is functional in murine macrophages, as indicated by the fact that agonists of A2B receptors, but not agonists for A1, A2A, or A3, lead to an increase in cAMP levels. IFN-gamma up-regulates the surface protein and gene expression of the A2B adenosine receptor by induction of de novo synthesis. The up-regulation of A2B receptors correlates with an increase in cAMP production in macrophages treated with adenosine receptor agonist. The stimulation of A2B receptors by adenosine or its analogues inhibits the IFN-gamma-induced expression of MHC class II genes and also the IFN-gamma-induced expression of nitric oxide synthase and of proinflammatory cytokines. Therefore, the up-regulation of the A2B adenosine receptor expression induced by IFN-gamma could be a feedback mechanism for macrophage deactivation.  相似文献   

16.
In this study we evaluated the role of adenosine receptor activation on the K+-evoked D-[3H]aspartate release in cultured chick retina cells exposed to oxidant conditions. Oxidative stress, induced by ascorbate (3.5 mM)/Fe2+ (100 microM), increased by about fourfold the release of D-[3H]aspartate, evoked by KCl 35 mM in the presence and in the absence of Ca2+. The agonist of A1 adenosine receptors, N6-cyclopentyladenosine (CPA; 10 nM), inhibited the K+-evoked D-[3H]aspartate release in control in oxidized cells. The antagonist of A1 adenosine receptor, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX; 50 nM), potentiated the release of D-[3H]aspartate in oxidized cells, and reverted the effect observed in the presence of CPA 10 nM. However, in oxidized cells, when DPCPX was tested together with CPA 100 nM the total release of D-[3H]aspartate increased from 5.1 +/- 0.4% to 11.4 +/- 1.0%, this increase being reverted by 3,7-dimethyl-1-propargylxanthine (DMPX; 100 nM), an antagonist of A2A adenosine receptors. In cells of both experimental conditions, the K+-evoked release of D-[3H]aspartate was potentiated by the selective agonist of A2A adenosine receptors, 2-[4-(2-carboxyethyl)phenethylamino]-5'-N-ethylcarboxamidoadenosin e (CGS 21680; 10 nM), whereas the antagonist of these receptors, DMPX (100 nM), inhibited the release of D-[3H]aspartate in oxidized cells, but not in control cells. Adenosine deaminase (ADA; 1 U/ml), which is able to remove adenosine from the synaptic space, reduced the K+-evoked D-[3H]aspartate release, from 5.1 +/- 0.4% to 3.1 +/- 0.3% in oxidized cells, and had no significant effect in control cells. The extracellular accumulation of endogenous adenosine, upon K+-depolarization, was higher in oxidized cells than in control cells, and was reduced by the inhibitors of adenosine transporter (NBTI) and of ecto-5'-nucleotidase (AOPCP). This suggests that adenosine accumulation resulted from the outflow of adenosine mediated by the transporter, and from extracellular degradation of adenine nucleotide. Our data show that both inhibitory A1 and excitatory A2A adenosine receptors are present in cultured retina cells, and that the K+-evoked D-[3H]aspartate release is modulated by the balance between inhibitory and excitatory responses. Under oxidative stress conditions, the extracellular accumulation of endogenous adenosine seems to reach levels enough to potentiate the release of D-[3H]aspartate by the tonic activation of A2A adenosine receptors.  相似文献   

17.
The clinical management of neuroendocrine tumours is complex. Such tumours are highly vascular suggesting tumour-related angiogenesis. Adenosine, released during cellular stress, damage and hypoxia, is a major regulator of angiogenesis. Herein, we describe the expression and function of adenosine receptors (A(1), A(2A), A(2B) and A(3)) in neuroendocrine tumours. Expression of adenosine receptors was investigated in archival human neuroendocrine tumour sections and in two human tumour cell lines, BON-1 (pancreatic) and KRJ-I (intestinal). Their function, with respect to growth and chromogranin A secretion was carried out in vitro. Immunocytochemical data showed that A(2A) and A(2B) receptors were strongly expressed in 15/15 and 13/18 archival tumour sections. Staining for A(1) (4/18) and A(3) (6/18) receptors was either very weak or absent. In vitro data showed that adenosine stimulated a three- to fourfold increase in cAMP levels in BON-1 and KRJ-1 cells. The non-selective adenosine receptor agonist (adenosine-5'N-ethylcarboxamide, NECA) and the A(2A)R agonist (CGS21680) stimulated cell proliferation by up to 20-40% which was attenuated by A(2B) (PSB603 and MRS1754) and A(2A) (SCH442416) receptor selective antagonists but not by the A(1) receptor antagonist (PSB36). Adenosine and NECA stimulated a twofold increase in chromogranin A secretion in BON-1 cells. Our data suggest that neuroendocrine tumours predominantly express A(2A) and A(2B) adenosine receptors; their activation leads to increased proliferation and secretion of chromogranin A. Targeting adenosine signal pathways, specifically inhibition of A(2) receptors, may thus be a useful addition to the therapeutic management of neuroendocrine tumours.  相似文献   

18.
Propentofylline is neuroprotective in vivo, but its mechanism of action is not completely understood. Previously, propentofylline was shown to block adenosine transport processes, to inhibit three adenosine receptor subtypes, and to inhibit cAMP phosphodiesterase. We tested the effect of propentofylline on adenosine receptor function in Chinese hamster ovary (CHO) cells transfected with human adenosine A1, A2A, or A2B receptors and a luciferase reporter gene under control of a promoter sequence containing several copies of the cAMP response element. We investigated the concentration-dependent inhibitory effects of propentofylline on cAMP phosphodiesterase, adenosine transport processes, and adenosine A1, A2A, and A2B receptors. At concentrations > or = 1 mM, propentofylline increased luciferase activity probably as a result of inhibition of cAMP phosphodiesterase. Inhibition of [3H]adenosine uptake by propentofylline was concentration dependent, with IC50 values of 37-39 microM for the three cell types. Agonist-activated adenosine A1 receptors were antagonized by 100 microM propentofylline, but inhibition of agonist-stimulated A2A or A2B receptors was not observed. In contrast, A1 and A2A receptor mediated effects of adenosine were enhanced by propentofylline at concentrations of 1 and 100 microM, respectively. These data indicate that the net effects of propentofylline in vivo will be dependent on the concentrations of propentofylline and adenosine available and on the subtypes of adenosine receptors, phosphodiesterases, and nucleoside transporters present.  相似文献   

19.
Uustare A  Vonk A  Terasmaa A  Fuxe K  Rinken A 《Life sciences》2005,76(13):1513-1526
We have characterized the binding of [2-(3)H]-4-(2-[7-Amino-2-(2-furyl)-[1,2,4]-triazolo-[2,3-a]-[1,3,5]-triazin-5-ylamino]ethyl)phenol ([(3)H]ZM241385) to adenosine A(2A) receptors in membranes of rat striatum and transfected CHO cells. Saturation experiments showed that [(3)H]ZM241385 binds to a single class of binding sites with high affinity (K(d) = 0.23 nM and 0.14 nM in CHO cell and striatal membranes, respectively). The membranes of CHO cells required pretreatment with adenosine deaminase (ADA) to achieve high-affinity binding, while ADA had no influence on the ligand binding properties in striatal membranes. The binding of [(3)H]ZM241385 was fast and reversible, achieving equilibrium within 20 minutes at all radioligand concentrations. The kinetic analysis of the [(3)H]ZM241385 interaction with A(2A) receptors indicated that the reaction had at least two subsequent steps. The first step corresponds to a fast equilibrium, which also determines the antagonist potency to competitively inhibit CGS21680-induced accumulation of cAMP (first equilibrium constant K(A) = 6.6 nM). The second step corresponds to a slow process of conformational isomerization (equilibrium constant K(i) = 0.03). The combination of the two steps gives the dissociation constant K(d) = 0.20 nM based on the kinetic data, which is in good agreement with the directly measured value. The data obtained shed light on the mechanism of the [(3)H]ZM241385 interaction with adenosine A(2A) receptors from different sources in vitro. The isomerization step of the A(2A) antagonist radioligand binding has to be taken into account for the interpretation of the binding parameters obtained from the various competition assays and explain the discrepancy between antagonist affinity in saturation experiments versus its potency in functional assays.  相似文献   

20.
Alpha-Fetoprotein (AFP) is a major serum glycoprotein during embryonic and early postnatal life. A number of diverse biologic functions have been attributed to AFP, including osmotic and carrier function and immunosuppressive activity. In this study we demonstrate that AFP selectively stimulates in vitro proliferation of two distinct subsets of adult murine bone marrow cells. One population of AFP-reactive bone marrow cells expresses surface receptors for soybean agglutinin (SBA) lectin. SBA+ bone marrow cells are resistant to cytotoxic pretreatment with T-cell-specific antisera and are not retained on Ig-anti-Ig affinity columns. The absence of conventional T- and B-cell markers, coupled with the presence of SBA receptors, suggests that AFP-activated non-T bone marrow cells may belong to an immature set of B lymphocytes. A second population of AFP-responsive bone marrow cells expresses the Thy-1+ Lyt 1+2- phenotype characteristic of conventional mature adult T helper cells. The potential physiological relevance of the mitogenic effects of AFP on bone marrow cells with respect to immunoregulatory processes in the fetal/newborn environments is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号