首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Previous studies have demonstrated that 14-3-3 proteins exist in all the eukaryotic organisms studied; however, studies on the 14-3-3 proteins have not been involved in the halotolerant, unicellular green alga Dunaliella salina so far. In the present study, a cDNA encoding 14-3-3 protein of D. salina was cloned and sequenced by PCR and rapid amplification of cDNA end (RACE) technique based on homologous sequences of the 14-3-3 proteins found in other organisms. The cloned cDNA of 1485 bp in length had a 29.2 kDa of molecular weight and contained a 774 bp of open reading frame encoding a polypeptide of 258 amino acids. Like the other 14-3-3 proteins, the deduced amino acid sequences of the D. salina 14-3-3 protein also contained two putative phosphorylation sites within the N-terminal region (positions 62 and 67). Furthermore, an EF hand motif characteristic for Ca2+-binding sites was located within the C-terminal part of this polypeptide (positions 208–219). Analysis of bioinformatics revealed that the 14-3-3 protein of D. salina shared homology with that of other organisms. Real-time quantitative PCR demonstrated that expression of the 14-3-3 protein gene is cell cycle-dependent.  相似文献   

4.
Nuclear matrix attachment regions (MARs) are known to bind specifically to the nuclear scaffold and are thought to influence expression of the transgenes. In our previous studies, a new deoxyribonucleic acid fragment isolated from Dunaliella salina could bind to the nuclear matrix in vitro and had the typical characteristics of MARs. In this study, to investigate effects of MARs on expression of transgenes in the stably transformed cells of D. salina, expression vectors with and without MARs, which contained chloramphenicol acetyltransferase (CAT) reporter gene driven by D. salina ribulose 1,5-bisphosphate carboxylase/oxygenase promoter, were constructed and delivered, respectively, into cells of D. salina by electroporation. Twenty stably transformed colonies of D. salina were randomly picked out, and CAT gene expression was assayed. The results showed that the CAT enzyme of the colonies of D. salina transformed with the expression vector containing MARs averaged out about 4.5-fold higher than those without MARs, while the transgene expression variation among individuals of transformants decreased threefold. The CAT enzyme in the stably transformed lines was not significantly proportional to the gene copy numbers, suggesting that the effects of MARs on transgene expression may not be through increasing the transgene copy numbers.  相似文献   

5.
Genetic engineering of a wide variety of plant species has led to the improvement of plant traits. In this study, the genetic transformation of two potentially important flowering ornamentals, Melastoma malabathricum and Tibouchina semidecandra, with sense and antisense dihydroflavonol-4-reductase (DFR) genes using the Agrobacterium-mediated method was carried out. Plasmids pBETD10 and pBETD11, each harbouring the DFR gene at different orientations (sense and antisense) and selectable marker nptII for kanamycin resistance, were used to transform M. malabathricum and T. semidecandra under the optimized transformation protocol. Putative transformants were selected in the presence of kanamycin with their respective optimized concentration. The results indicated that approximately 4.0% of shoots and 6.7% of nodes for M. malabathricum regenerated after transforming with pBETD10, whereas only 3.7% (shoots) and 5.3% (nodes) regenerated with pBETD11 transformation. For the selection of T. semidecandra, 5.3% of shoots and 9.3% of nodes regenerated with pBETD10 transformation, while only 4.7% (shoots) and 8.3% (nodes) regenerated after being transformed with pBETD11. The presence and integration of the sense and antisense DFR genes into the genome of M. malabathricum and T. semidecandra were verified by polymerase chain reaction (PCR) and nucleotide sequence alignment and confirmed by southern analysis. The regenerated putative transformants were acclimatized to glasshouse conditions. Approximately 31.0% pBETD10-transformed and 23.1% pBETD11-transformed M. malabathricum survived in the glasshouse, whereas 69.4% pBETD10-transformed and 57.4% pBETD11-transformed T. semidecandra survived. The colour changes caused by transformation were observed at the budding stage of putative T. semidecandra transformants where greenish buds were produced by both T. semidecandra harbouring the sense and antisense DFR transgenes. Besides that, the production of four-petal flowers also indicated another morphological difference of putative T. semidecandra transformants from the wild type plants which produce five-petal flowers.  相似文献   

6.
Jia Y  Li S  Allen G  Feng S  Xue L 《Current microbiology》2012,64(5):506-513
A major challenge for efficient transgene expression in Dunaliella salina is to find strong endogenous promoters to drive the transgene expression. In the present study, a novel glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter was cloned and used to drive expressions of the bialaphos resistance (bar) gene and of the N-terminal fragment of human canstatin (Can-N). The results showed that the bar gene was transcribed by the GAPDH promoter and integrated into the genome of the transformants of D. salina. Furthermore, the PCR identification, Southern and western blots indicated that Can-N was expressed in transgenic D. salina, demonstrating that the promoter of the D. salina GAPDH gene is suitable for driving expression of heterologous genes in transgenic D. salina.  相似文献   

7.
We cloned a gene encoding the succinate dehydrogenase iron-sulfur protein subunit (sip) from a bipolar mushroom, Pholiota microspora, and introduced a point mutation that confers carboxin resistance into this gene. Using this homologous selective marker and also a heterologous drug selective marker, the hygromycin B phosphotransferase gene (hph), we successfully constructed a DNA-mediated transformation system in P. microspora. Both these selection markers have high transformation efficiency: the efficiency of carboxin resistance transformation was about 88.8 transformants/μg pMBsip2 DNA using 5 × 106 protoplasts in regeneration plates containing 1.0 μg/ml carboxin, and the efficiency of hygromycin B resistance transformation was about 122.4 transformants/μg pMBhph1 DNA using 5 × 106 protoplasts in regeneration plates containing 150 μg/ml hygromycin B. Southern hybridization analysis showed that the introduced sequence (mutant sip or hph) was integrated into the chromosomal DNA in these transformants with a copy number of one or more.  相似文献   

8.
The dairy yeast Kluyveromyces marxianus is a promising cell factory for producing bioethanol and heterologous proteins, as well as a robust synthetic biology platform host, due to its safe status and beneficial traits, including fast growth and thermotolerance. However, the lack of high-efficiency transformation methods hampers the fundamental research and industrial application of this yeast. Protoplast transformation is one of the most commonly used fungal transformation methods, but it yet remains unexplored in K. marxianus. Here, we established the protoplast transformation method of K. marxianus for the first time. A series of parameters on the transformation efficiency were optimized: cells were collected in the late-log phase and treated with zymolyase for protoplasting; the transformation was performed at 0 °C with carrier DNA, CaCl2, and PEG; after transformation, protoplasts were recovered in a solid regeneration medium containing 3–4% agar and 0.8 m sorbitol. By using the optimized method, plasmids of 10, 24, and 58 kb were successfully transformed into K. marxianus. The highest efficiency reached 1.8 × 104 transformants per μg DNA, which is 18-fold higher than the lithium acetate method. This protoplast transformation method will promote the genetic engineering of K. marxianus that requires high-efficiency transformation or the introduction of large DNA fragments.  相似文献   

9.
本文采用RT-PCR技术从人的胎盘组织中克隆canstatin基因,定向连接到表达载体pUΩ上,然后与筛选标记bar盒连接得到真核表达载体pUΩ-Can-Bar。采用玻璃珠转化法将该表达载体转化杜氏盐藻(以下简称盐藻),通过草丁膦固体平板筛选得到转化株,进而对转化株进行阳性鉴定。PCR结果显示,在盐藻转化株中均能够扩增出约700 bp特异的条带,而在阴性对照中没有扩增出该条带。Southern blot结果进一步证明人canstatin基因已经整合到盐藻细胞的基因组中。此外,本文对盐藻转化株的遗传稳定行进行了分析,结果表明canstatin基因能够在转化藻株中稳定遗传。人canstatin转基因盐藻株的成功制备为利用盐藻反应器大规模生产人canstatin蛋白提供了实验依据,为及早实现canstatin蛋白在治疗肿瘤上的临床应用提供了前期工作基础。  相似文献   

10.
Two transformation systems, based on the use of CaCl2/PEG and Agrobacterium tumefaciens, respectively, were developed for the zygomycete Rhizopus oryzae. Irrespective of the selection marker used, a pyr4 marker derived from R. niveus or a dominant amdS+ marker from Aspergillus nidulans, and irrespective of the configuration of the transforming DNA (linear or circular), the transformants obtained with the CaCl2/PEG transformation method were found to carry multiple copies of tandemly linked vector molecules, which failed to integrate into the genomic DNA. Furthermore, these transformants displayed low mitotic stability. In contrast, transformants obtained by Agrobacterium-mediated transformation were mitotically stable, even under non-selective conditions. Detailed analysis of these transformants revealed that the transforming DNA had integrated into the genome of R. oryzae at a single locus in independently obtained transformants. In addition, truncation of the transforming DNA was observed, resulting in the integration of the R. niveus pyr4 marker gene, but not the second gene located on the transferred DNA. Modification of the transforming DNA, resulting in partial resistance to restriction enzyme digestion, was observed in transformants obtained with the CaCl2/PEG transformation method, suggesting that a specific genome defence mechanism may exist in R. oryzae. It is likely that the unique mechanism used by A. tumefaciens to deliver its transferred DNA to its hosts facilitates bypass of the host defence mechanisms, thus allowing the DNA to integrate into the chromosomal genome.An erratum to this article can be found at Communicated by C. P. Hollenberg  相似文献   

11.
Efficient Agrobacterium -mediated transformation of Antirrhinum majus L. was achieved via indirect shoot organogenesis from hypocotyl explants of seedlings. Stable transformants were obtained by inoculating explants with A. tumefaciens strain GV2260 harboring the binary vector pBIGFP121, which contains the neomycin phosphotransferase gene (NPT II) as a selectable marker and the gene for the Green Fluorescent Protein (GFP) as a visual marker. Putative transformants were identified by selection for kanamycin resistance and by examining the shoots using fluorescence microscopy. PCR and Southern analyses confirmed integration of the GFP gene into the genomes of the transformants. The transformants had a morphologically normal phenotype. The transgene was shown to be inherited in a Mendelian manner. This improved method requires only a small number of seeds for explant preparation, and three changes of medium; the overall transformation efficiency achieved, based on the recovery of transformed plants after 4–5 months of culture, reached 8–9%. This success rate makes the protocol very useful for producing transgenic A. majus plants.Communicated by G. Jürgens  相似文献   

12.
Halophilic bacteria strain Halomonas salina DSM 5928 was found to excrete ectoine, suggesting its potential in the development of a new method of ectoine production. We performed HPLC and LC–MS analyses that showed that Halomonas salina DSM 5928 excreted ectoine under constant extracellular osmolarity. Medium adopting monosodium glutamate as a sole source of carbon and nitrogen was beneficial for ectoine synthesis. The total concentration of ectoine was not affected by NaCl concentration in the range 0.5–2 mol l−1. The total concentration of ectoine and productivity in a 10-l fermentor with 0.5 mol l−1 NaCl were 6.9 g l−1 and 7.9 g l−1 d−1, respectively. These findings show that Halomonas salina DSM 5928 efficiently produces ectoine at relatively low NaCl concentration. This research also indicates the potential application of free or immobilized cells for continuous culture to produce ectoine.  相似文献   

13.
Although glucose-6-phosphate isomerase (GPI) plays an important role in glycolysis of both the prokaryotes and eukaryotes, studies on the GPI have not been involved in the halotolerant, unicellular green alga Dunaliella salina (D. salina). In this study, a 2,338 bp of full-length cDNA cloned using rapid amplification of cDNA end (RACE) technique contained an open reading frame (ORF) of 1,980 bp encoding 660 amino acids, which has a predicted molecular weight of 73.3 kD and pI of 6.22 and shares high homology with other organisms. The cloned full-length cDNA was heterologously expressed in Escherichia coli and the recombinant GPI proteins purified using Ni-NTA His Bind column were consistent with the anticipated size of ~75 kD. Predicted 2D and 3D structures of GPI proteins possessed potential active motifs including “GEPGTNGQHSFYQLIHQG” and “VQGFIWGINSFDQWGVELGK”, and critical active site residues, such as Ser 241, Ser 296, Thr 298, Thr 301, Arg 358, Glu 444, His 475 and Lys 600. Real time quantitative RT-PCR demonstrated that the expression level of the GPI gene from D. salina (DsGPI) was induced by 3.5 M NaCl with 14-fold higher than that by 1.5 M NaCl (P < 0.01), but inhibited by the light with 4-fold lower than that in the dark (P < 0.05). It is concluded that the cloned GPI gene is indeed from D. salina and may respond to salt and light.  相似文献   

14.
A novel simple solid state fermentation method, netting bag bioreactor (Φ 120 × 800 mm), was developed and used to cultivate Bacillus licheniformis as probiotics. High spore yield (1.2 × 1011 CFU/g dry substrate) has been obtained by using this method. Comparing to the tray bioreactor and the packed bed bioreactor for Bacillus fermentation, the netting bag method was more cost-effective, time- and space-saving and the material cost is also as low as ca. US $293 per 1,000 kg spores. Thus, netting bag SSF can be widely applied to produce probiotic bacteria in developing areas.  相似文献   

15.
Agrobacterium tumefaciens strain LBA4404 containing the plasmid pBI121, carrying the reporter gene uidA and the kanamycin resistance gene nptII, was used for gene transfer experiments in selenium (Se)-hyperaccumulator Astragalus racemosus. The effects of kanamycin on cell growth and division and acetosyringone on transformation efficiency were evaluated. The optimal concentration of kanamycin that could effectively inhibit cell growth and division in non-transgenic tissues was 50 mg l−1 and thus all putative transgenic plants were obtained on induction medium containing 50 mg l−1 kanamycin. The verification of transformants was achieved by both histochemical GUS assay and PCR amplification of nptII gene. Southern blot analysis was performed to further confirm that transgene nptII was stably integrated into the A. racemosus genome. A transformation frequency of approximately 10% was achieved using this protocol, but no beneficial effect from the addition of acetosyringone (50 μM) was observed. This transformation system will be a useful tool for future studies of genes responsible for Se-accumulation in A. racemosus.  相似文献   

16.
Summary A heterologous gene mediated transformation system based on niaD, the structural gene encoding nitrate reductase, has been developed for Penicillium chrysogenum. Transformation frequencies of up to 20 transformants per microgram DNA were obtained using the Aspergillus nidulans gene and 9 transformants per microgram using the A. niger gene. Vector constructs carrying the A. nidulans ans-1 sequence and the A. niger niaD gene did not show increased transformation frequencies. Southern blot hybridisation analysis demonstrated that vector sequences had integrated into the recipient genome. The control of heterologous niaD gene expression generally agreed with that found in the wild-type strain, that is, induction by nitrate and repression in the presence of ammonium.  相似文献   

17.
Summary When a non-selected DNA sequence was added during the transformation of amdS320 deletion strains of Aspergillus nidulans with a vector containing the wild-type amdS gene the AmdS+ transformants were cotransformed at a high frequency. Cotransformation of an amdS320, trpC801 double mutant strain showed that both the molar ratio of the two vectors and the concentration of the cotransforming vector affected the cotransformation frequency. The maximum frequency obtained was defined by the gene chosen as selection marker for transformation. Cotransformation was used to induce a gene replacement in A. nidulans. An amdS320 strain was transformed to AmdS+ and cotransformed with a DNA fragment containing a fusion between a non-functional A. nidulans trpC gene and the Escherichia coli lacZ gene. Ten AmdS+, LacZ+ transformants with a Trp mutant phenotype were selected. All of these strains could be transformed with a functional copy of the A. nidulans trpC gene, but only two strains yielded TrpC+ transformants which, with a low frequency, had a LacZ phenotype. These latter transformants had also lost the AmdS+ phenotype. Southern blotting analysis of DNA from these transformants confirmed the inactivation of the wild-type trpC gene, but revealed that amdS vector sequences were also involved in the gene replacement events.  相似文献   

18.
19.
Real-time PCR analysis showed that yggE gene was about two and three times up-regulated in Escherichia coli cells exposed to UVA irradiation and thermal elevation, respectively, suggesting that this gene is responsive to physiological stress. The yggE gene was introduced into E. coli BL21 cells, together with a monoamine oxidase (MAO) gene as a model source for oxidative stress generation. The distribution of independently isolated transformants (two dozen isolates) was examined in terms of MAO activity and cell vitality. In the case of control strain expressing MAO alone, the largest number of transformants existed in the low range of MAO activity less than 2 units mg−1 and the number significantly decreased at increased MAO activity. On the other hand, the distribution of MAO/YggE-coexpressing transformants shifted to higher MAO activity with frequent appearance in the activity range of 4–8 units mg−1. The yggE gene product therefore has a possible function for alleviating the stress generated in the cells.  相似文献   

20.
A large-scale transformation procedure handling an adequate number of stable transformants with highly efficient positive-negative selection is a necessary prerequisite to successful gene targeting by homologous recombination, as the integration of a transgene by somatic homologous recombination in higher plants has been reported to be 10-3 to 10-5 compared with random integration by non-homologous end joining. We established an efficient and large-scale Agrobacterium-mediated rice transformation protocol that generated around 103 stable transformants routinely from 150 seeds and a strong positive-negative selection procedure that resulted in survivors at 10-2 using the gene for diphtheria toxin A fragment as a negative marker. The established transformation procedure provides a basis for efficient gene targeting in rice.Abbreviations AS: Acetosyringone - 5-FU: 5-Fluorouracil - FW: Fresh weight - GT: Gene targeting - HR: Homologous recombination - NHEJ: Non-homologous end joining Communicated by H. Ebinuma  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号