首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A receptor for bacteriophages of lactic acid bacteria, including Lactococcus lactis subsp. cremoris KH, was found on the cell wall and not on the cell membrane, as determined by a phage-binding assay of sodium dodecyl sulfate- and mutanolysin-treated cell walls. The cell wall carbohydrates of L. lactis subsp. cremoris KH were analyzed by gas chromatography and mass spectrometry and found to contain rhamnose, galactose, glucose and N-acetylglucosamine. Similar analysis of mutants that were reduced in the ability to bind phages kh, 643, c2, ml3, and 1 indicated that galactose was essential for binding all phages. In addition, rhamnose was required for binding phages kh and ml3. Inhibition studies of phage binding by using two different lectins with a specificity for galactose indicated that phage kh may not bind directly to galactose. Rather, galactose may be an essential structural component located in the vicinity of the receptor. Incubation of any of the five phages with rhamnose or of phage kh with purified cell walls inactivated the phages. Inactivation required divalent cations and was irreversible. Inactivation of phages was stereospecific for rhamnose, as neither L-(+)- nor D-(-)-fucose (the stereoisomers of rhamnose) inhibited the phage. Furthermore, phage infection of a culture was completely inhibited by the addition of rhamnose to the medium. Therefore, the receptor for phage kh appears to be a rhamnose component of the extracellular wall polysaccharide.  相似文献   

2.
Bacteriophage P008 revealed irreversible and uniform adsorption to cell walls of L. lactis subsp. 'diacetylactis' F7/2, whereas phage P127 adsorbed reversibly to a limited number of receptor sites on cell walls of L. lactis subsp. cremoris Wg2-1. Neither extraction of lipids, cell wall- and membrane-teichoic acids nor enzymatic degradation of proteins altered the binding efficiencies of both cell wall fractions. However, phage binding was inhibited, when cell walls were subjected to lysozyme, metaperiodate, or acid treatments. This reflects that a carbohydrate component embedded in the peptidoglycan matrix is part of the phage receptors of strains F7/2 and Wg2-1.  相似文献   

3.
The mechanism of the initial steps of bacteriophage infection in Lactococcus lactis subsp. lactis C2 was investigated by using phages c2, ml3, kh, l, h, 5, and 13. All seven phages adsorbed to the same sites on the host cell wall that are composed, in part, of rhamnose. This was suggested by rhamnose inhibition of phage adsorption to cells, competition between phage c2 and the other phages for adsorption to cells, and rhamnose inhibition of lysis of phage-inoculated cultures. The adsorption to the cell wall was found to be reversible upon dilution of the cell wall-adsorbed phage. In a reaction step that apparently follows adsorption to the cell wall, all seven phages adsorbed to a host membrane protein named PIP. This was indicated by the inability of all seven phages to infect a strain selected for resistance to phage c2 and known to have a defective PIP protein. All seven phages were inactivated in vitro by membranes from wild-type cells but not by membranes from the PIP-defective, phage c2-resistant strain. The mechanism of membrane inactivation was an irreversible adsorption of the phage to PIP, as indicated by adsorption of [35S] methionine-labeled phage c2 to purified membranes from phage-sensitive cells but not to membranes from the resistant strain, elimination of adsorption by pretreatment of the membranes with proteinase K, and lack of dissociation of 35S from the membranes upon dilution. Following membrane adsorption, ejection of phage DNA occurred rapidly at 30°C but not at 4°C. These results suggest that many lactococcal phages adsorb initially to the cell wall and subsequently to host cell membrane protein PIP, which leads to ejection of the phage genome.  相似文献   

4.
The aim of this work was to identify genes responsible for host recognition in the lactococcal phages sk1 and bIL170 belonging to species 936. These phages have a high level of DNA identity but different host ranges. Bioinformatic analysis indicated that homologous genes, orf18 in sk1 and orf20 in bIL170, could be the receptor-binding protein (RBP) genes, since the resulting proteins were unrelated in the C-terminal part and showed homology to different groups of proteins hypothetically involved in host recognition. Consequently, chimeric bIL170 phages carrying orf18 from sk1 were generated. The recombinant phages were able to form plaques on the sk1 host Lactococcus lactis MG1614, and recombination was verified by PCR analysis directly with the plaques. A polyclonal antiserum raised against the C-terminal part of phage sk1 ORF18 was used in immunogold electron microscopy to demonstrate that ORF18 is located at the tip of the tail. Sequence analysis of corresponding proteins from other lactococcal phages belonging to species 936 showed that the N-terminal parts of the RBPs were very similar, while the C-terminal parts varied, suggesting that the C-terminal part plays a role in receptor binding. The phages investigated could be grouped into sk1-like phages (p2, fd13, jj50, and phi 7) and bIL170-like phages (P008, P113G, P272, and bIL66) on the basis of the homology of their RBPs to the C-terminal part of ORF18 in sk1 and ORF20 in bIL170, respectively. Interestingly, sk1-like phages bind to and infect a defined group of L. lactis subsp. cremoris strains, while bIL170-like phages bind to and infect a defined group of L. lactis subsp. lactis strains.  相似文献   

5.
The fifth phage resistance factor from the prototype phage-insensitive strain Lactococcus lactis subsp. lactis ME2 has been characterized and sequenced. The genetic determinant for Prf (phage resistance five) was subcloned from the conjugative plasmid pTN20, which also encodes a restriction and modification system. Typical of other abortive resistance mechanisms, Prf reduces the efficiency of plaquing to 10(-2) to 10(-3) and decreases the plaque size and burst size of the small isometric-headed phage p2 in L. lactis subsp. lactis LM0230. However, normal-size plaques occurred at a frequency of 10(-4) and contained mutant phages that were resistant to Prf, even after repeated propagation through a sensitive host. Prf does not prevent phage adsorption or promote restriction and modification activities, but 90% of Prf+ cells infected with phage p2 die. Thus, phage infections in Prf+ cells are aborted. Prf is effective in both L. lactis subsp. lactis and L. lactis subsp. cremoris strains against several small isometric-headed phages but not against prolate-headed phages. The Prf determinant was localized by Tn5 mutagenesis and subcloning. DNA sequencing identified a 1,056-nucleotide structural gene designated abiC. Prf+ expression was obtained when abiC was subcloned into the lactococcal expression vector pMG36e. abiC is distinct from two other lactococcal abortive phage resistance genes, abiA (Hsp+, from L. lactis subsp. lactis ME2) and abi416 (Abi+, from L. lactis subsp. lactis IL416). Unlike abiA, the action of abiC does not appear to affect DNA replication. Thus, abiC represents a second abortive system found in ME2 that acts at a different point of the phage lytic cycle.  相似文献   

6.
The temperate phage TPW22, induced from Lactococcus lactis subsp. cremoris W22, and the evolutionarily interesting integrase of this phage were characterized. Phage TPW22 was propagated lytically on L. lactis subsp. cremoris 3107, which could also be lysogenized by site-specific integration. The attachment site (attP), 5'-TAAGGCGACGGTCG-3', of phage TPW22 was present on a 7.5-kb EcoRI fragment, a 3.4-kb EcoRI-HindIII fragment of which was sequenced. Sequence information revealed the presence of an integrase gene (int). The deduced amino acid sequence showed 42 and 28% identity with integrases of streptococcal and lactococcal phages, respectively. The identities with these integrase-encoding genes were 52 and 45%, respectively, at the nucleotide level. This could indicate horizontal gene transfer. A stable integration vector containing attP and int was constructed, and integration in L. lactis subsp. cremoris MG1363 was obtained. The existence of an exchangeable lactococcal phage integration module was suggested. The proposed module covers the phage attachment site, the integrase gene, and surrounding factor-independent terminator structures. The phages phiLC3, TP901-1, and TPW22 all have different versions of this module. Phylogenetically, the TPW22 Int links the phiLC3 lactococcal integrase with known Streptococcus thermophilus integrases.  相似文献   

7.
The cell envelope of the phage-resistant Lactococcus lactis subsp. cremoris SK110 differed from its phage-sensitive variant by the presence of a galactosyl-containing component. This component was present in material obtained from SK110 by a mild alkali treatment. In a similar fraction extracted from SK112, no galactosyl-containing components were detected. With respect to gel permeation chromatography and electrophoretic mobility, identical characteristics of the alkali-extracted material and purified lipoteichoic acid (LTA) were measured. Chemical analysis of the latter component showed the absence of galactose in LTA isolated from SK112, whereas it was present in LTA obtained from SK110. In this paper, we propose that galactosyl-containing LTA is involved in preventing phage adsorption to L. lactis subsp. cremoris SK110.  相似文献   

8.
Relatedness between Lactococcus lactis subsp. cremoris and L. lactis subsp. lactis was assessed by Southern hybridization analysis, with cloned chromosomal genes as probes. The results indicate that strains of the two subspecies form two distinct groups and that the DNA sequence divergence between L. lactis subsp. lactis and L. lactis subsp. cremoris is estimated to be between 20 and 30%. The previously used phenotypic criteria do not fully discriminate between the groups; therefore, we propose a new classification which is based on DNA homology. In agreement with this revised classification, the L. lactis subsp. lactis and L. lactis subsp. cremoris strains from our collection have distinct phage sensitivities.  相似文献   

9.
Spontaneous deletion mutants of the temperate lactococcal bacteriophage BK5-T were obtained when the phage was grown vegetatively on the indicator strain Lactococcus lactis subsp. cremoris H2. One deletion mutant was unable to form stable lysogens, and analysis of this mutant led to the identification of the BK5-T attP site and the integrase gene (int). The core sequences of the BK5-T attP and host attB regions are conserved in a number of lactococcal phages and L. lactis strains.  相似文献   

10.
Lipoteichoic acids (LTAs) have been shown to act as bacterial counterparts to the receptor binding proteins of LL-H, LL-H host range mutant LL-H-a21, and JCL1032. Here we have used LTAs purified by hydrophobic interaction chromatography from different phage-resistant and -sensitive strains of Lactobacillus delbrueckii subsp. lactis. Nuclear magnetic resonance analyses revealed variation in the degree of alpha-glucosyl and D-alanyl substitution of the 1,3-linked poly(glycerophosphate) LTAs between the phage-sensitive and phage-resistant strains. Inactivation of phages was less effective if there was a high level of D-alanine residues in the LTA backbones. Prior incubation of the LTAs with alpha-glucose-specific lectin inhibited the LL-H phage inactivation. The overall level of decoration or the specific spatial combination of alpha-glucosyl-substituted, D-alanyl-substituted, and nonsubstituted glycerol residues may also affect phage adsorption.  相似文献   

11.
Resistance of Lactococcus lactis subsp. cremoris SK110 to bacteriophage sk11G, encoded on the plasmid pSK112, is due to poor phage adsorption. Its phage-sensitive variant SK112, cured of pSK112, adsorbs phages effectively. Incubation of SK112 with concanavalin A remarkably reduced phage adsorption to this strain. This treatment also caused agglutination of SK112 that was not found with SK110, indicating different concanavalin A adsorption characteristics of cell walls of both strains. The differences between the two strains were reduced by a mild alkali treatment of cells. This resulted in a positive agglutination with concanavalin A for both strains and in parallel adsorption of phage sk11G to both. Moreover, isolated cell walls of the two strains were investigated, and both bound phage sk11G. These observations suggest the presence of phage receptor material in SK112 as well as in SK110. SK110 contained a relatively high level of bound galactose when compared with the phage-sensitive SK112. After the mild alkali treatment, however, the galactose content of SK110 was diminished such that it became comparable with that of SK112. It is hypothesized that the alkali treatment liberates a galactose-containing component from the cell wall and causes phage sensitivity in L. lactis subsp. cremoris SK110.  相似文献   

12.
Twenty-four bacteriophages of Lactococcus lactis subsp. lactis and L. lactis subsp. cremoris were classified. Two groups of bacteriophages morphologically defined as prolate or isometric types by electron microscopy were examined for their genome sizes, protein patterns and DNA homologies. These criteria showed that prolate phages are quite homogeneous. In contrast, isometric phages exhibit more differences, particularly in particle sizes and protein compositions. Analysis of DNA hybridizations confirmed that prolate phages can be grouped together as can be isometric phages but for one exception, phage I52. These two families were clearly defined. The unique phage which does not fit in either group probably belongs to a third one which is much less represented. No obvious relationships between these criteria and the lytic spectra were detected. Evidence of the presence of cohesive ends in phage genomes is also presented in this study. A more detailed analysis performed on one member of the prolate group revealed 3' protruding ends made up of around 13 nucleotides on complementary single strands.  相似文献   

13.
从丹麦乳酪发酵启子乳酸乳球菌乳脂亚种 (Lactococcuslactissubsp .cremoris)W56中 ,分离到一个 2 2 4kb的质粒pJW566,将该质粒转化到无质粒且噬菌体敏感的L .lactisMG1 61 4、SMQ86菌株中 ,所得转化子对常见 963、c2和P335属的噬菌体具有一定抗性。经测定噬菌体以及含有pJW566的菌株所繁育的噬菌体效价 ,发现该质粒对外源DNA具有限制和修饰 (Re strictionandModification ,R M)作用。将pJW566转化到一株噬菌体敏感的乳酪工业生产菌株L .lactisCHCC2 2 81 ,在牛奶发酵中 ,表现出较强的噬菌体抗性。体外内切酶活性测定表明 ,该质粒具有的限制性内切酶需要Mg2 +和ATP ,而AdoMet(S adenosylmethionine,AdoMet)对酶活有促进作用  相似文献   

14.
Abstract Streptococcus lactis subsp. cremoris W56 ( S. cremoris W56) is a strain partially resistant to phage attack. Derivatives which had lost either plasmid pJW563 or pJW566 no longer expressed the restriction and modification systems encoded by these plasmids. Genetic evidence for the correlation between the plasmids and the R/M systems was obtained by transformation. In addition, a third R/M system was discovered among the transformants and was shown to be encoded by pJW565. Thus, genetic evidence for at least 3 distinct R/M systems encoded by plasmids in S. cremoris W56 is presented. One of the R/M-systems showed stronger restriction of the isometric phage p2 than of the prolate phage c2. The other two systems restricted both classes of phages with equal efficiencies.  相似文献   

15.
Two highly autolytic Lactococcus lactis subsp. cremoris strains (CO and 2250) were selected and analyzed for their autolytic properties. Both strains showed maximum lysis when grown in M17 broth containing a limiting concentration of glucose (0.4 to 0.5%) as the carbohydrate source. Lysis did not vary greatly with pH or temperature but was reduced when strains were grown on lactose or galactose. Growth in M17 containing excess glucose (1%) prevented autolysis, although rapid lysis of L. lactis subsp. cremoris CO did occur in the presence of 1% glucose if sodium fluoride (an inhibitor of glycolysis) was added to the medium. Maximum cell lysis in a buffer system was observed early in the stationary phase, and for CO, two pH optima were observed for log-phase and stationary-phase cells (6.5 and 8.5, respectively). Autolysins were extracted from the cell wall fraction of each strain by using either 4% sodium dodecyl sulfate (SDS), 6 M guanidine hydrochloride, or 4 M lithium chloride, and their activities were analyzed by renaturing SDS-polyacrylamide gel electrophoresis on gels containing Micrococcus luteus or L. lactis subsp. cremoris CO cells as the substrate. More than one lytic band was observed on each substrate, with the major band having an apparent molecular mass of 48 kDa for CO. Each lytic band was present throughout growth and lysis. These results suggest that at least two different autolytic enzymes are present in the autolytic L. lactis subsp. cremoris strains. The presence of the lactococcal cell wall hydrolase gene, acmA (G. Buist, J. Kok, K. J. Leenhouts, M. Dabrowska, G. Venema, and A. J. Haandrikman, J. Bacteriol. 177:1554-1563, 1995), in strains 2250 and CO was confirmed by Southern hybridization. Analysis of an acmA deletion mutant of 2250 confirmed that the gene was involved in cell separation and had a role in cell lysis.  相似文献   

16.
A simple protocol was designed and applied to obtain Streptococcus thermophilus purified cell walls. To identify the structures involved in phage adsorption, the cell walls of two Strep. thermophilus strains were treated with sodium dodecyl sulphate and proteinase K. These treatments did not reduce the adsorption of phages CYM and 0BJ to the cell walls of Strep. thermophilus YSD10 and Strep. thermophilus BJ15, respectively. However, phage binding was reduced when the cell envelopes were treated with mutanolysin or trichloroacetic acid 5%, suggesting that the phage receptor component is part of the peptidoglycan or a polymer closely linked to it. The ability of several saccharides to inactivate both phages was also assayed. These phage inhibition experiments suggested that the phage CYM adsorbed to a component involving glucosamine and rhamnose, while glucosamine and ribose interfered with the adsorption of phage 0BJ.  相似文献   

17.
Evidence is presented that lactose-fermenting ability (Lac+) in Lactococcus lactis subsp. cremoris AM1, SK11, and ML1 is associated with plasmid DNA, even though these strains are difficult to cure of Lac plasmids. When the Lac plasmids from these strains were introduced into L. lactis subsp. lactis LM0230, they appeared to replicate in a thermosensitive manner; inheritance of the plasmid was less efficient at 32 to 40 degrees C than at 22 degrees C. The stability of the L. lactis subsp. cremoris Lac plasmids in lactococci appeared to be a combination of both host and plasmid functions. Stabilized variants were isolated by growing the cultures at 32 to 40 degrees C; these variants contained the Lac plasmids integrated into the L. lactis subsp. lactis LM0230 chromosome. In addition, the presence of the L. lactis subsp. cremoris Lac plasmids in L. lactis subsp. lactis resulted in a temperature-sensitive growth response; growth of L. lactis subsp. lactis transformants was significantly inhibited at 38 to 40 degrees C, thereby resembling some L. lactis subsp. cremoris strains with respect to temperature sensitivity of growth.  相似文献   

18.
Conjugal transfer of lactose-fermenting ability (Lac+), nisin resistance (Nisr), and phage resistance (Hsp+) was demonstrated in matings between Streptococcus lactis ME2 (donor) and Streptococcus cremoris M43a (recipient), a derivative of M12R. Transconjugants were detected by transfer of Lac+ and were found to exhibit Nisr and harbor a 40-megadalton plasmid (pTR1040). Fifty-six percent of Lac+ transconjugants were resistant to the S. cremoris M12R lytic phage. Efficiency of plaquing for phage m12r . M12 on a phage-resistant transconjugant, T2r-M43a, was less than 4.3 X 10(-10). Five additional phages which were virulent for S. cremoris M12R and isolated from industrial sources failed to plaque on S. cremoris T2r-M43a. Mating experiments with T2r-M43a revealed that phage resistance was accompanied by high-frequency conjugation ability (Tra+) and the appearance of both pTR1040 and pTR2030 encoding Lac+ Nisr and Tra+ Hsp+, respectively, in transconjugants of S. lactis LM2302. Phage-sensitive Lac+ transconjugants of S. cremoris M43a (T2s-M43a) showed no conjugal ability. These observations confirmed that pTR2030 was present and responsible for the phage resistance and conjugal ability exhibited by the S. cremoris transconjugant T2r-M43a. Unlike the S. lactis LM2302 transconjugant carrying pTR2030, resistance of T2r-M43a to phage was not affected at high temperatures (35 to 40 degrees C) or destabilized in repeated transfers through a starter culture activity test. These results demonstrated that phage resistance conferred by pTR2030 in the S. cremoris transconjugant was effective against industrially significant phages under fermentation conditions normally encountered during cheese manufacture.  相似文献   

19.
The temperate bacteriophage phiLC3, isolated from Lactococcus lactis subsp. cremoris, has an isometric head and a flexible tail containing 1 major protein and 8 minor proteins. Infection of a permissive L. lactis host strain yields a burst of about 50 phages per infected cell with a latent period of 60 min. A detailed restriction map of the phage chromosome was constructed by using 12 different restriction enzymes. The phage chromosome is a 33-kb linear double-stranded DNA molecule with unique cohesive ends and with a G + C content of 36.5%. Chemical sequencing of the DNA ends revealed 13-base 3' extended complementary single strands with a relatively high percentage of G + C. Pulsed-field gel electrophoretic analysis of DNA from a strain lysogenized with phiLC3 was used to localize the prophage to a 320-kb BamHI restriction endonuclease fragment from the host chromosomal DNA. This result indicates that lysogeny involves integration of the phage into the host chromosome. A spontaneous phiLC3 clear plaque mutant that was unable to give rise to lysogens was isolated.  相似文献   

20.
The temperate bacteriophage phiLC3, isolated from Lactococcus lactis subsp. cremoris, has an isometric head and a flexible tail containing 1 major protein and 8 minor proteins. Infection of a permissive L. lactis host strain yields a burst of about 50 phages per infected cell with a latent period of 60 min. A detailed restriction map of the phage chromosome was constructed by using 12 different restriction enzymes. The phage chromosome is a 33-kb linear double-stranded DNA molecule with unique cohesive ends and with a G + C content of 36.5%. Chemical sequencing of the DNA ends revealed 13-base 3' extended complementary single strands with a relatively high percentage of G + C. Pulsed-field gel electrophoretic analysis of DNA from a strain lysogenized with phiLC3 was used to localize the prophage to a 320-kb BamHI restriction endonuclease fragment from the host chromosomal DNA. This result indicates that lysogeny involves integration of the phage into the host chromosome. A spontaneous phiLC3 clear plaque mutant that was unable to give rise to lysogens was isolated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号