首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bhattacharya I  Ullrich A 《FEBS letters》2006,580(24):5765-5771
In adipogenesis, growth factors play a crucial role. Using serum depleted condition, we studied the causal role of endothelin-1 (ET-1) and epidermal growth factor (EGF), separately or together, in adipocyte differentiation of 3T3-L1 cells. ET-1 stimulation caused an anti-adipogenic response and this effect was potentiated upon treatment with EGF. Co-treatment with EGF and ET-1 blocked the expression of C/EBPalpha and PPARgamma, the adipogenic markers. The inhibition of adipogenesis was preceded by a biphasic (early and late) attenuation of Akt phosphorylation. We suggest that treatment with ET-1 and EGF together induce a more potent anti-adipogenic response, involving increased Erk1/2 phosphorylation and biphasic attenuation of Akt phosphorylation.  相似文献   

2.
We have shown earlier a requirement for Ca2+ and calmodulin (CaM) in the H2O2-induced activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and protein kinase B (PKB), key mediators of growth-promoting, proliferative, and hypertrophic responses in vascular smooth muscle cells (VSMC). Because the effect of CaM is mediated through CaM-dependent protein kinase II (CaMKII), we have investigated here the potential role of CaMKII in H2O2-induced ERK1/2 and PKB phosphorylation by using pharmacological inhibitors of CaM and CaMKII, a CaMKII inhibitor peptide, and siRNA knockdown strategies for CaMKIIα. Calmidazolium and W-7, antagonists of CaM, as well as KN-93, a specific inhibitor of CaMKII, attenuated H2O2-induced responses of ERK1/2 and PKB phosphorylation in a dose-dependent fashion. Similar to H2O2, calmidazolium and KN-93 also exhibited an inhibitory effect on glucose/glucose oxidase-induced phosphorylation of ERK1/2 and PKB in these cells. Transfection of VSMC with CaMKII autoinhibitory peptide corresponding to the autoinhibitory domain (aa 281–309) of CaMKII and with siRNA of CaMKIIα attenuated the H2O2-induced phosphorylation of ERK1/2 and PKB. In addition, calmidazolium and KN-93 blocked H2O2-induced Pyk2 and insulin-like growth factor-1 receptor (IGF-1R) phosphorylation. Moreover, treatment of VSMC with CaMKIIα siRNA abolished the H2O2-induced IGF-1R phosphorylation. H2O2 treatment also induced Thr286 phosphorylation of CaMKII, which was inhibited by both calmidazolium and KN-93. These results demonstrate that CaMKII plays a critical upstream role in mediating the effects of H2O2 on ERK1/2, PKB, and IGF-1R phosphorylation.  相似文献   

3.
ERK1/2 (extracellular-signal-regulated kinase 1/2) MAPKs (mitogen-activated protein kinases) are tightly regulated by the cellular microenvironment in which they operate. Mxi2 is a p38α splice isoform capable of binding to ERK1/2 and ensuring their translocation to the nucleus. Therein Mxi2 sustains ERK1/2 phosphorylation levels and, as a consequence, ERK1/2 nuclear signals are enhanced. However, the molecular mechanisms underlying this process are still unclear. In the present study, we show that Mxi2 prevents nuclear but not cytoplasmic phosphatases from binding to and dephosphorylating ERK1/2, disclosing an unprecedented mechanism for the spatial regulation of ERK1/2 activation. We also demonstrate that the kinetics of ERK1/2 extranuclear signals can be significantly altered by artificially tethering Mxi2 to the cytoplasm. In this case, Mxi2 abolishes ERK1/2 inactivation by cytoplasmic phosphatases and potentiates ERK1/2 functions at this compartment. These results highlight Mxi2 as a key spatial regulator of ERK1/2 functions, playing a pivotal role in the balance between ERK1/2 nuclear and cytoplasmic signals.  相似文献   

4.
The pro-apoptotic BH3 only protein BIMEL is phosphorylated by ERK1/2 and this targets it for proteasome-dependent degradation. A recent study has shown that ERK5, an ERK1/2-related MAPK, is activated during mitosis and phosphorylates BIMEL to promote cell survival. Here we show that treatment of cells with nocodazole or paclitaxel does cause phosphorylation of BIMEL, which is independent of ERK1/2. However, this was not due to ERK5-catalysed phosphorylation, since it was not reversed by the MEK5 inhibitor BIX02189 and proceeded normally in ERK5−/− fibroblasts. Indeed, although ERK5 is phosphorylated at multiple sites in the C-terminal transactivation region during mitosis, these do not include the activation-loop and ERK5 kinase activity does not increase. Mitotic phosphorylation of BIMEL occurred at proline-directed phospho-acceptor sites and was abolished by selective inhibition of CDK1. Furthermore, cyclin B1 was able to interact with BIM and cyclin B1/CDK1 complexes could phosphorylate BIM in vitro. Finally, we show that CDK1-dependent phosphorylation of BIMEL drives its polyubiquitylation and proteasome-dependent degradation to protect cells during mitotic arrest. These results provide new insights into the regulation of BIMEL and may be relevant to the therapeutic use of agents such as paclitaxel.  相似文献   

5.
Extracellular signal-regulated kinases (ERKs) play important physiological roles in proliferation, differentiation and gene expression. ERK5 is twice the size of ERK1/2, the amino-terminal half contains the kinase domain that shares the homology with ERK1/2 and TEY activation motif, whereas the carboxy-terminal half is unique. In this study, we examined the cross-talk mechanism between G-protein-coupled receptors (GPCRs) and receptor tyrosine kinases, focusing on ERK1/2 and 5. The pretreatment of rat pheochromocytoma cells (PC12) with pertussis toxin (PTX) specifically enhanced epidermal growth factor (EGF)-induced ERK5 phosphorylation. In addition, lysophosphatidic acid (LPA) attenuated the EGF-induced ERK5 phosphorylation in LPA(1) receptor- and G(i/o)-dependent manners. On the other hand, LPA alone activated ERK1/2 via Gbetagamma subunits and Ras and potentiated EGF-induced ERK1/2 phosphorylation at late time points. These results suggest G(i/o) negatively regulates ERK5, while it positively regulates ERK1/2. LPA did not affect cAMP levels after EGF treatment, and the reagents promoting cAMP production such as forskolin and cholera toxin also attenuated the EGF-induced ERK5 phosphorylation, indicating that the inhibitory effect of LPA on ERK5 inhibition via G(i/o) is not due to inhibition of adenylyl cyclase by Galpha(i/o). However, the inhibitory effect of LPA on ERK5 was abolished in PC12 cells stably overexpressing C-terminus of GPCR kinase2 (GRK2), and overexpression of Gbeta(1) and gamma(2) subunits also suppressed ERK5 phosphorylation by EGF. In response to LPA, Gbetagamma subunits interacted with EGF receptor in a time-dependent manner. These results strongly suggest that LPA negatively regulates the EGF-induced ERK5 phosphorylation through Gbetagamma subunits.  相似文献   

6.
Docosahexaenoic acid (DHA), a PUFA of the n-3 family, inhibited the growth of FM3A mouse mammary cancer cells by arresting their progression from the late-G(1) to the S phase of the cell cycle. DHA upregulated p27(Kip1) levels by inhibiting phosphorylation of mitogen-activated protein (MAP) kinases, i.e., ERK1/ERK2. Indeed, inhibition of ERK1/ERK2 phosphorylation by DHA, U0126 [chemical MAPK extracellularly signal-regulated kinase kinase (MEK) inhibitor], and MEK(SA) (cells expressing dominant negative constructs of MEK) resulted in the accumulation of p27(Kip1). MAP kinase (MAPK) inhibition by DHA did not increase p27(Kip1) mRNA levels. Rather, this fatty acid stabilized p27(Kip1) contents and inhibited MAPK-dependent proteasomal degradation of this protein. DHA also diminished cyclin E phosphorylation, cyclin-dependent kinase-2 (CDK2) activity, and phosphorylation of retinoblastoma protein in these cells. Our study shows that DHA arrests cell growth by modulating the phosphorylation of cell cycle-related proteins.  相似文献   

7.
8.
Secretion of growth hormone (GH) in adult male rats is characterized by high peak and undetectable trough levels, both of which are required for male-specific pattern of liver gene expression and GH-induced phosphorylation of STAT5. The present study suggests that regulation of GH receptor (GHR) levels in rat hepatoma cells by repeated GH stimulation determines GH responsiveness via the JAK2/STAT5 pathway. A short exposure to GH rapidly reduced GHR levels which resulted in an equal desensitization of the JAK2/STAT5 pathway. Recovery of GH-induced STAT5 phosphorylation correlated with the time-dependent recovery of GHR levels during incubation in the absence of GH. Acute GH also induced phosphorylation of ERK1/2 and Akt, and this induction was also inhibited by prior exposure to GH. However, unlike the JAK2/STAT5 pathway, the effect of GH to activate the MEK/ERK and phosphatidylinositol 3-kinase/Akt pathways did not recover following prolonged incubation in the absence of GH. Thus, GH administration desensitizes the JAK2/STAT5 pathway, possibly because of down-regulation of GHR, whereas an additional post-receptor mechanism is required for the prolonged refractoriness of the MEK/ERK and phosphatidylinositol 3-kinase/Akt pathways toward a second GH stimulation. Our study suggests that both receptor and post-receptor mechanisms are important in GH-induced homologous desensitization.  相似文献   

9.
Recent studies have demonstrated that reactive oxygen species (ROS) mediate myocardial ischemia-reperfusion (I/R) and angiogenesis via the mitogen-activated protein kinases and the serine-threonine kinase Akt/protein kinase B pathways. NADPH oxidases are major sources of ROS in endothelial cells and cardiomyocytes. In the present study, we investigated the role of NADPH oxidase-derived ROS in hypoxia-reoxygenation (H/R)-induced Akt and ERK1/2 activation and angiogenesis using porcine coronary artery endothelial cells (PCAECs) and a mouse myocardial I/R model. Our data demonstrate that exposure of PCAECs to hypoxia for 2 h followed by 1 h of reoxygenation significantly increased ROS formation. Pretreatment with the NADPH oxidase inhibitors, diphenyleneiodonium (DPI, 10 microM) and apocynin (Apo, 200 and 600 microM), significantly attenuated H/R-induced ROS formation. Furthermore, exposure of PCAECs to H/R caused a significant increase in Akt and ERK1/2 activation. Exposure of PCAEC spheroids and mouse aortic rings to H/R significantly increased endothelial spheroid sprouting and vessel outgrowth, whereas pharmacological inhibition of NADPH oxidase or genetic deletion of the NADPH oxidase subunit, p47(phox) (p47(phox-/-)), significantly suppressed these changes. With the use of a mouse I/R model, our data further show that the increases in myocardial Akt and ERK1/2 activation and vascular endothelial growth factor (VEGF) expression were markedly blunted in the p47(phox-/-) mouse subjected to myocardial I/R compared with the wild-type mouse. Our findings underscore the important role of NADPH oxidase and its subunit p47(phox) in modulating Akt and ERK1/2 activation, angiogenic growth factor expression, and angiogenesis in myocardium undergoing I/R.  相似文献   

10.
Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation   总被引:17,自引:0,他引:17  
Sphingosine kinase 1 is an agonist-activated signalling enzyme that catalyses the formation of sphingosine 1-phosphate, a lipid second messenger that has been implicated in a number of agonist-driven cellular responses, including stimulation of cell proliferation, inhibition of apoptosis and expression of inflammatory molecules. Although agonist-induced stimulation of sphingosine kinase activity is critical in a number of signalling pathways, nothing has been known of the molecular mechanism of this activation. Here we show that this activation results directly from phosphorylation of sphingosine kinase 1 at Ser225, and present several lines of evidence to show compellingly that the activating kinase is ERK1/2 or a close relative. Furthermore, we show that phosphorylation of sphingosine kinase 1 at Ser225 results not only in an increase in enzyme activity, but is also necessary for translocation of the enzyme from the cytosol to the plasma membrane. Thus, these studies have elucidated the mechanism of agonist-mediated sphingosine kinase activation, and represent a key finding in understanding the regulation of sphingosine kinase/sphingosine 1-phosphate-controlled signalling pathways.  相似文献   

11.
Polychlorinated biphenyls (PCBs) may contribute to the pathology of atherosclerosis by activating inflammatory responses in vascular endothelial cells. Endothelial nitric oxide synthase (eNOS) is colocalized with caveolae and is a critical regulator of vascular homeostasis. PCBs may be proatherogenic by causing dysfunctional eNOS signaling. The objective of this study was to investigate the role of caveolin-1 in PCB-induced endothelial dysfunction with a focus on mechanisms associated with eNOS signaling. Cells derived from an immortalized human vascular endothelial cell line were treated with PCB77 to study nitrotyrosine formation through eNOS signaling. Phosphorylation studies of eNOS, caveolin-1, and kinases, such as Src, phosphatidylinositol 3-kinase (PI3K), and Akt, were conducted in cells containing either functional or small-interfering RNA-silenced caveolin-1 protein. We also investigated caveolin-1-regulated mechanisms associated with PCB-induced markers of peroxynitrite formation and DNA binding of NF-kappaB. Cellular exposure to PCB77 increased eNOS phosphorylation and nitric oxide production, as well as peroxynitrite levels. A subsequent PCB-induced increase in NF-kappaB DNA binding may have implications in oxidative stress-mediated inflammatory mechanisms. The activation of eNOS by PCB77 treatment was blocked by inhibitors of the Src/PI3K/Akt pathway. PCB77 also increased phosphorylation of caveolin-1, indicating caveolae-dependent endocytosis. Caveolin-1 silencing abolished both the PCB-stimulated Akt and eNOS phosphorylation, suggesting a regulatory role of caveolae in PCB-induced eNOS signaling. These findings suggest that PCB77 induces eNOS phosphorylation in endothelial cells through a Src/PI3K/Akt-dependent mechanism, events regulated by functional caveolin-1. Our data provide evidence that caveolae may play a critical role in regulating vascular endothelial cell activation and toxicity induced by persistent environmental pollutants such as coplanar PCBs.  相似文献   

12.
Primary cortical neurones exposed to an oxidative insult in the form of hydrogen peroxide (H(2)O(2)) for 30 min showed a concentration-dependent increase in oxidative stress followed by a delayed NMDA receptor-dependent cell death measured 24 h later. Extracellular signal-regulated protein kinase (ERK1/2), c-jun N-terminal kinase (JNK) and the kinase Akt/PKB may regulate neuronal viability in response to oxidative insults. Using phospho-specific antibodies, a 15-min stimulation of neurones with H(2)O(2) (100 microm - 1 mm) produced a concentration-dependent phosphorylation of ERK1/2 and Akt/PKB that was partly dependent on extracellular Ca(2+) and phosphatidylinositol 3-kinase (PI3-K). Higher concentrations of H(2)O(2) (1 mm) also stimulated a phosphorylation of JNK which was totally dependent on extracellular Ca(2+) but not PI3-K. H(2)O(2)-induced phosphorylation of ERK1/2, Akt/PKB or JNK were unaffected by the NMDA channel blocker MK801. Blocking ERK1/2 activation with the upstream inhibitor U0126 (10 microm) enhanced H(2)O(2)-induced (100-300 microm range) neurotoxicity and inhibited H(2)O(2)-mediated phosphorylation of the cyclic AMP regulatory binding protein (CREB), suggesting that ERK1/2 signals to survival under these conditions. At higher concentrations (mm), H(2)O(2)-stimulated a phosphorylation of c-jun. It is likely, therefore, that subjecting neurones to moderate oxidative-stress recruits pro-survival signals to CREB but during severe oxidative stress pro-death signals through JNK and c-jun are dominant.  相似文献   

13.
The potential role of Akt phosphorylation in human cancers   总被引:15,自引:0,他引:15  
Akt/protein kinase B (PKB) is a serine/threonine kinase which is implicated in mediating a variety of biological responses including cell growth, proliferation and survival. Akt is activated by phosphorylation on two critical residues, namely threonine 308 (Thr308) and serine 473 (Ser473). Several studies have found Akt2 to be amplified or overexpressed at the mRNA level in various tumor cell lines and in a number of human malignancies such as colon, pancreatic and breast cancers. Nevertheless, activation of Akt isoforms by phosphorylation appears to be more clinically significant than Akt2 amplification or overexpression. Many studies in the past 4-5 years have revealed a prognostic and/or predictive role of Akt phosphorylation in breast, prostate and non-small cell lung cancer. Several publications suggest a role of phosphorylated Akt also in endometrial, pancreatic, gastric, tongue and renal cancer. However, different types of assays were used in these studies. Before assessment of P-Akt can be incorporated into routine clinical practice, all aspects of the assay methodology will have to be standardized.  相似文献   

14.
Protein phosphorylation is an important mechanism that controls many cellular activities. Phosphorylation of a given protein is precisely controlled by two opposing biochemical reactions catalyzed by protein kinases and protein phosphatases. How these two opposing processes are coordinated to achieve regulation of protein phosphorylation is unresolved. We have developed a novel experimental approach to directly study protein dephosphorylation in cells. We determined the kinetics of dephosphorylation of insulin receptor substrate-1/2, Akt, and ERK1/2, phosphoproteins involved in insulin receptor signaling. We found that insulin-induced ERK1/2 and Akt kinase activities were completely abolished 10 min after inhibition of the corresponding upstream kinases with PD98059 and LY294002, respectively. In parallel experiments, insulin-induced phosphorylation of Akt, ERK1/2, and insulin receptor substrate-1/2 was decreased and followed similar kinetics. Our findings suggest that these proteins are dephosphorylated by a default mechanism, presumably via constitutively active phosphatases. However, dephosphorylation of these proteins is overcome by activation of protein kinases following stimulation of the insulin receptor. We propose that, during acute insulin stimulation, the kinetics of protein phosphorylation is determined by the interplay between upstream kinase activity and dephosphorylation by default.  相似文献   

15.
A synthetic 17-amino acid peptide (CKS-17) homologous to a highly conserved region of human and animal retroviral transmembrane proteins has been found to exhibit suppressive properties for numerous immune functions. It has been shown that CKS-17 causes an imbalance of human types 1 and 2 cytokines and inhibition of the immune responses of lymphocytes, monocytes, and macrophages. CKS-17 induced increased intracellular levels of cAMP, which plays an important role in regulation of cytokine biosynthesis. In this study, using a Jurkat T-cell line and Western blot analysis, CKS-17 induced phosphorylation of PLC-gamma1, Raf-1, MEK and ERK1/2. Using a PLC selective inhibitor U73122 or PLC-gamma1-deficient Jurkat cell line, phosphorylation induced by CKS-17 of ERK1/2, PLC-gamma1, or Raf-1, respectively, were undetectable or significantly reduced. Reintroduction of PLC-gamma1 into the PLC-gamma1-deficient Jurkat cells restored the phosphorylation of ERK1/2 and PLC-gamma1 induced by CKS-17. Further, pretreatment of Jurkat cells with PKC inhibitors blocks the phosphorylation of Raf-1, MEK, and ERK1/2 induced by CKS-17. These results indicate that CKS-17 induces the PLC-gamma1-PKC-Raf-1-MEK-ERK1/2 signaling pathway.  相似文献   

16.
Extracellular Regulated Kinases (ERK) and Protein Kinase B (Akt) are intermediaries in relaying extracellular growth signals to intracellular targets. Each pathway can become activated upon stimulation of G protein-coupled receptors mediated by G(q) and G(i/o) proteins subjected to regulation by RGS proteins. The goal of the study was to delineate the specificity in which cardiac RGS proteins modulate G(q)and G(i/o)-induced ERK and Akt phosphorylation. To isolate G(q)- and G(i/o)-mediated effects, we exclusively expressed muscarinic M(2) or M(3) receptors in COS-7 cells. Western blot analyses demonstrated increase of phosphorylation of ERK 1.7-/3.3-fold and Akt 2.4-/6-fold in M(2)-/M(3)- expressing cells through carbachol stimulation. In co-expressions, M(3)/G(q)-induced activation of Akt was exclusively blunted through RGS3s/RGS3, whereas activation of ERK was inhibited additionally through RGS2/RGS5. M(2)/G(i/o) induced Akt activation was inhibited by all RGS proteins tested. RGS2 had no effect on M(2)/G(i/o)-induced ERK activation. The high degree of specificity in RGS proteins-depending modulation of G(q)- and G(i/o)-mediated ERK and Akt activation in the muscarinic network cannot merely be attributed exclusively to RGS protein selectivity towards G(q) or G(i/o) proteins. Counter-regulatory mechanisms and inter-signaling cross-talk may alter the sensitivity of GPCR-induced ERK and Akt activation to RGS protein regulation.  相似文献   

17.
本研究主要从蛋白质结构分析Akt1 SUMO化的位点及位点的突变对其结构与功能的影响。采用多种软件分析Akt1 SUMO化位点和Akt1野生型(Akt1wt)及Akt1K64/276R的理化性质、亲/疏水性及二/三级结构;分析结果显示,Akt1K64/276R较Akt1wt,亲/疏水性未改变,α-螺旋和β-折叠都有少量的不同。三级结构分析显示,与野生型组相比,Akt1K64R氢键增多。以Myc-Akt1wt-pcDNA3.1为模板,采用PCR定点突变技术扩增出Myc-Akt1K64/276R。DNA序列分析结果显示,Myc-Akt1K64/276R基因序列编码赖氨酸(K)的密码子AAG被成功突变为精氨酸(R)密码子AGG。免疫沉淀和免疫印迹结果显示,不共转PIAS3,Akt1也能与SUMO1结合;Myc-Akt1wt和Myc-Akt1K64/276R均可在HEK293细胞中高效表达;转染Myc-Akt1K64/276R组SUMO化水平降低了70%左右(P<0.05)。免疫印迹结果显示,在小鼠海马神经细胞HT22中,Myc-Akt1wt组ERK1/2磷酸化水平及BDNF蛋白水平是突...  相似文献   

18.
Oxidative stress-induced apoptosis is mediated by ERK1/2 phosphorylation   总被引:7,自引:0,他引:7  
Oxidative stress is known to induce apoptosis in a wide variety of cell types, apparently by modulating intracellular signaling pathways. High concentrations of H2O2 have been found to induce apoptosis in L929 mouse fibroblast cells. To elucidate the mechanisms of H2O2-mediated apoptosis, ERK1/2, p38-MAPK, and JNK1/2 phosphorylation was examined, and ERK1/2 and JNK1/2 were found to be activated by H2O2. Inhibition of ERK1/2 activation by treatment of L929 cells with PD98059 or dominant-negative ERK2 transfection blocked H2O2-induced apoptosis, while inhibition of JNK1/2 by dominant-negative JNK1 or JNK2 or MKK4 or MKK7 transfection did not affect H2O2-mediated apoptosis. H2O2-mediated ERK1/2 activation was not only Ras-Raf dependent, but also both tyrosine kinase (PDGFbeta receptor and Src) and PKCdelta dependent. H2O2-mediated PKCdelta-dependent and tyrosine kinase-dependent ERK1/2 activations were independent from each other. Based on the above results, we suggest for the first time that oxidative damage-induced apoptosis is mediated by ERK1/2 phosphorylation which is not only Ras-Raf dependent, but also both tyrosine kinase and PKCdelta dependent.  相似文献   

19.
It has been suggested that electromagnetic (EM) fields can act as co-promoters during neoplastic transformation. To examine this possibility, we studied the effects of 0.8-, 8-, 80-, and 300-microT 60-Hz electromagnetic (EM) fields in INITC3H/10T1/2 mouse fibroblast cells. These cells are transformed carcinogenically by methylcholanthrene, but the neoplastic phenotype can be suppressed indefinitely by the presence of retinyl acetate (RAC) in the culture medium. The effects of EM field exposures were examined at three stages: (1) before initiation of transformation (i.e., RAC in the culture media); (2) early in the transformation process (4 days after withdrawal of RAC); and (3) at full of neoplastic transformation (10 days after withdrawal of RAC). EM field exposures induced significant increases in protein levels for hsp70 and c-Fos and in AP-1 binding activity. EM fields induced phosphorylation of MAPK/ERK1/2 before the onset of transformation, but these increases diminished during the transformation process. No phosphorylation in the other major extracellular stress pathway, SAPK/JNK, was detected in cells exposed to EM fields at any time before, during, or after neoplastic transformation. Human cells HL60, MCF7, and HTB124, exposed to EM fields, also showed MAPK/ERK1/2 phosphorylation. Cells treated with the phorbol ester, TPA, served as positive controls for AP-1 activation, c-Fos protein synthesis, and ERK1/2 phosphorylation. There was no indication that EM fields affected the rate of cell transformation or acted as a co-promoter, under the conditions of this study.  相似文献   

20.
Paul J  Maiti K  Read M  Hure A  Smith J  Chan EC  Smith R 《PloS one》2011,6(6):e21542
Human myometrium develops phasic contractions during labor. Phosphorylation of caldesmon (h-CaD) and extracellular signal-regulated kinase 1/2 (ERK 1/2) has been implicated in development of these contractions, however the phospho-regulation of these proteins is yet to be examined during periods of both contraction and relaxation. We hypothesized that protein phosphorylation events are implicated in the phasic nature of myometrial contractions, and aimed to examine h-CaD and ERK 1/2 phosphorylation in myometrium snap frozen at specific stages, including; (1) prior to onset of contractions, (2) at peak contraction and (3) during relaxation. We aimed to compare h-CaD and ERK 1/2 phosphorylation in vitro against results from in vivo studies that compared not-in-labor (NIL) and laboring (L) myometrium. Comparison of NIL (n = 8) and L (n = 8) myometrium revealed a 2-fold increase in h-CaD phosphorylation (ser-789; P = 0.012) during onset of labor in vivo, and was associated with significantly up-regulated ERK2 expression (P = 0.022), however no change in ERK2 phosphorylation was observed (P = 0.475). During in vitro studies (n = 5), transition from non-contracting tissue to tissue at peak contraction was associated with increased phosphorylation of both h-CaD and ERK 1/2. Furthermore, tissue preserved at relaxation phase exhibited diminished levels of h-CaD and ERK 1/2 phosphorylation compared to tissue preserved at peak contraction, thereby producing a phasic phosphorylation profile for h-CaD and ERK 1/2. h-CaD and ERK 1/2 are phosphorylated during myometrial contractions, however their phospho-regulation is dynamic, in that h-CaD and ERK 1/2 are phosphorylated and dephosphorylated in phase with contraction and relaxation respectively. Comparisons of NIL and L tissue are at risk of failing to detect these changes, as L samples are not necessarily preserved in the midst of an active contraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号