首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
[14C]Formate is incorporated into the C-2 of the pyrimidine moiety of thiamin by Escherichia coli and Salmonella typhimurium. In Saccharomyces cerevisiae, it is incorporated into C-4. Radioactive carbons of [1-14C]glycine and [2-14C]glycine are incorporated by S. typhimurium into the C-4 and C-6 of the pyrimidine, respectively, but not by S. cerevisiae. These facts suggest that procaryotes and eucaryotes have different biosynthetic pathways for pyrimidine. In this study, the procaryotes tested incorporated [14C]formate into the C-2 and the eucaryotes incorporated it into the C-4 of the pyrimidine.  相似文献   

2.
[14C]Formate is incorporated into the C-2 of the pyrimidine moiety of thiamin by Escherichia coli and Salmonella typhimurium. In Saccharomyces cerevisiae, it is incorporated into C-4. Radioactive carbons of [1-14C]glycine and [2-14C]glycine are incorporated by S. typhimurium into the C-4 and C-6 of the pyrimidine, respectively, but not by S. cerevisiae. These facts suggest that procaryotes and eucaryotes have different biosynthetic pathways for pyrimidine. In this study, the procaryotes tested incorporated [14C]formate into the C-2 and the eucaryotes incorporated it into the C-4 of the pyrimidine.  相似文献   

3.
1. Yeast was grown in a minimal synthetic medium together with a range of (14)C-labelled substrates under standardized conditions. After isolation, the purified thiamine was cleaved by sulphite and the pyrimidine and thiazole moieties were purified and assayed for radioactivity. 2. In order of decreasing incorporation, [(14)C]formate, [3-(14)C]serine, [2-(14)C]glycine and [2-(14)C]acetate supplied label for the pyrimidine, and [2-(14)C]glycine, [3-(14)C]serine, [1-(14)C]glycine, [(14)C]formate and [2-(14)C]acetate for the thiazole. Incorporation of label into the fragments from several other (14)C-labelled substrates, including [Me-(14)C]- and [3,4-(14)C(2)]-methionine, was insignificant. 3. [3-(14)C]Serine was shown not to contribute label to C-2 of the thiazole ring. 4. Significant incorporation of nitrogen from [(15)N]glycine into the thiazole moiety, but not into the pyrimidine moiety, was established. 5. It appears that C-2 and N-3 of the thiazole ring are formed from C-2 and the nitrogen atom of glycine, but the entire methionine molecule does not appear to be implicated.  相似文献   

4.
The amide nitrogen atom of glutamine is incorporated into the pyrimidine moiety of thiamin in Escherichia coli and Saccharomyces cerevisiae. However, addition of casamino acids to the medium increases incorporation of the amide nitrogen atom of glutamine in E. coli, but decreases it in S. cerevisiae. This suggests that some amino acids other than glutamine in casamino acids are more direct precursors of the pyrimidine moiety in S. cerevisiae. To determine the direct precursor, we investigated the competitive effect of 14N-amino acids on the incorporation of 15NH4Cl into the pyrimidine moiety and found that histidine decreased the incorporation of 15N. Thus, histidine was concluded to be the direct precursor of the nitrogen atom of the pyrimidine moiety of thiamin in S. cerevisiae.  相似文献   

5.
We studied the incorporation of radioactive glucose into the pyrimidine moiety of thiamin in the eucaryote Candida utilis. Three carbons of glucose were incorporated into the pyrimidine, and the C-2 of glucose into the C-6 of the pyrimidine. We concluded that the C-5, -6, and hydroxymethyl carbon atoms of the pyrimidine in this eucaryote originate from the C-2, -3 and -4 of glucose via ribose.  相似文献   

6.
The nitrogen atom of glycine was incorporated into the thiazole moiety of thiamin in the aerobic microorganisms Bacillus subtilis, Pseudomonas putida, Saccharomyces cerevisiae, Mucor racemosus, Neurospora crassa, and Emericella nidulans. It was not incorporated in the case of the facultative anaerobic microorganisms Escherichia coli and Enterobacter aerogenes, which, however, did incorporate the nitrogen atom of tyrosine. These results show that aerobic microorganisms and facultative anaerobic microorganisms have different biosynthetic pathways for the thiazole moiety of thiamin.  相似文献   

7.
Radioactivity from [2-14C]glycine enters C-2 of the thiazole moiety of thiamin and no other site, in Saccharomyces cerevisiae (strains A.T.C.C. 24903 and 39916, H.J. Bunker). Radioactivity from L-[Me-14C]methionine or from DL-[2-14C]tyrosine does not enter thiamin.  相似文献   

8.
The precursor of the thiazole moiety of thiamin in Candida utilis was identified. Radioactive C-2, 3, 4, 5 and 6 of glucose was incorporated into C-4', 4, 5, 5' and 5" of the thiazole. This experiment shows that the precursor of the five carbon unit of thiazole is a 5-carbon compound such as ribose or ribulose derived from glucose.  相似文献   

9.
Precursors of the pyrimidine moiety of thiamine   总被引:13,自引:2,他引:11  
1. A method was devised for obtaining the pyrimidine moiety of thiamine in a pure form after its excretion into the medium by de-repressed washed-cell suspensions of mutants of Salmonella typhimurium LT2. 2. By using amino acid-requiring mutants, this excretion of pyrimidine moiety was shown to be dependent on the presence of both methionine and glycine. 3. In the presence of either [Me-14C]methionine or [G-14C]methionine, methionine-requiring mutants did not incorporate radioactivity into the pyrimidine moiety. 4. In contrast, both [1-14C]glycine and [2-14C]glycine were incorporated into the pyrimidine moiety excreted by glycine-requiring mutants, and this occurred with little or no dilution of specific radioactivity. 5. The possible requirement for methionine as a cofactor and the significance of the incorporation of both carbon atoms of glycine are discussed.  相似文献   

10.
The incorporation of the sulfur atom of 35S-labeled amino acids into thiamin in Escherichia coli and Saccharomyces cerevisiae was studied. The specific radioactivity of the S atoms was incorporated at similar levels into thiamin and cysteine residues in cell proteins. However, the specific radioactivity of the S atoms from [35S]methionine was not incorporated into thiamin but into methionine residues in cell proteins. Thus, the origin of the S atom of thiamin was established as being the S atom of cysteine. No activity from [U-14C]cysteine was recovered in thiamin, proving that the carbon skeleton of this amino acid was not utilized in synthesizing the thiazole moiety of thiamin.  相似文献   

11.
Ma JF  Nomoto K 《Plant physiology》1994,105(2):607-610
The biosynthetic pathway of 2[prime]-deoxymugineic acid, a key phytosiderophore, was investigated by feeding 13C-, 2H-, and 15N-labeled methionine, the first precursor, to the roots of hydroponically cultured wheat (Triticum aestivum L. cv Minori). The incorporation of label from each methionine species was observed during their conversion to 2[prime]-deoxymugineic acid, using 2H-, 15N-, and 13C-nuclear magnetic resonance (NMR). L-[1-13C]Methionine (99% 13C) was efficiently incorporated, resulting in 13C enrichment of the three carboxyl groups of 2[prime]-deoxymugineic acid. Use of D,L-[15N]methionine (95% 15N) resulted in 15N enrichment of 2[prime]-deoxymugineic acid at the azetidine ring nitrogen and the secondary amino nitrogen. When D,L-[2,3,3,-2H3-S-methyl-2H3]methionine (98.2% 2H) was fed to the roots, 2H-NMR results indicated that only six deuterium atoms were incorporated, and that the deuterium atom from the C-2 position of each methionine was almost completely lost. [2,2,3,3-2H4]1-Aminocyclopropane-1-carboxylic acid (98% 2H) was not incorporated into 2[prime]-deoxymugineic acid. These data and our previous findings demonstrated that only the deuterium atom from the C-2 position of L-methionine was lost, and that other atoms were completely incorporated when three molecules of methionine were converted to 2[prime]-deoxymugineic acid. These observations are consistent with the conversion of L-methionine to azetidine-2-carboxylic acid, suggesting that L-methionine is first converted to azetidine-2-carboxylic acid during biosynthesis leading to 2[prime]-deoxymugineic acid. Based on these results, a hypothetical pathway from L-methionine to 2[prime]-deoxymugineic acid was postulated.  相似文献   

12.
The pathway of vitamin B-12 biosynthesis in anaerobic bacteria differs in several respects from the pathway found in aerobic or aerotolerant microorganisms. The aim of this investigation was to elucidate the formation of the 5,6-dimethylbenzimidazole part and the amide groups of vitamin B-12 in anaerobic bacteria. [15N]Ammonium chloride or L-[amido-15N]glutamine or a mixture of [15N]ammonium sulfate and [15N]glycine was added to fermentations with Eubacterium limosum. The vitamin B-12 isolated from these fermentations was methylated and degraded to cobinamide and 1,5,6-trimethylbenzimidazole. The amide groups of cobinamide were hydrolyzed and the amide nitrogen of the side chains a, b, c, d, e and g trapped as benzamide. The 15N incorporation was determined by mass spectroscopy. Thus in the experiment with [15N]ammonium chloride the benzamide and the 1,5,6-trimethylbenzimidazole contained 9.6% 15N, whereas in the experiment with L-[amido-15N]glutamine 37.5% of the molecules were 15N labeled. The 1H-NMR spectrum of 1,5,6-trimethylbenzimidazole revealed that the 15N from the ammonium salts and from glutamine was incorporated into N-3 of the 5,6-dimethylbenzimidazole moiety of vitamin B-12. With a mixture of [15N]ammonium sulfate and [15N]glycine both nitrogens of 5,6-dimethylbenzimidazole became 15N-labeled. These experiments demonstrate that in E. limosum the amide nitrogen of glutamine is not only the precursor of the six amide groups of the corrin ring, but also of N-3 of the 5,6-dimethylbenzimidazole moiety of vitamin B-12.  相似文献   

13.
The binding of Ni-2+ and Mn-2+ to thiamin phosphate and thiamin pyrophosphate (thiamin-PP) has been compared with the binding of these ions to oxythiamin phosphate and oxythiamin pyrophosphate, analogues of thiamin in which the C-4 amino group has been replaced by an -OH group. The replacement of the NH2 group results in reduced basicity of N-1 of the pyrimidine ring of oxythiamine derivatives. The effects of pD, ligand concentration, and temperature on the binding of metal ions to N-1 have been studied by observing the metal ion-induced shifting and broadening of the C-6-H signal of these compounds. The results indicate the following: (a) the metal ion is held near N-1, resulting in a "folded" conformation, because of a favorable bonding interaction between N-1 and the metal ion rather than for general conformational reasons alone; and (b) the amount of "folded" conformation present in the different pyrophosphate complexes at neutral pH follows the order: Ni-2+-thiamin-PP greater than Mn-2+-thiamin-PP greater than Mn-2+-oxythiamin-PP and Ni-2+-oxythiamin-PP It is concluded that the strength of the metal ion-pyrimidine interaction in the "folded" conformation depends strongly both on the coordination affinity of the metal ion and on the basicity of N-1. Since the interaction of the phosphate-bound metal ion with the pyrimidine ring in the Mg-2+-thiamin-PP complex is probably weaker than the corresponding interaction in the Mn-2+-thiamin-PP complex, these results predict that the Mg-2+-thiamin-PP complex in solution, at neutral pH, exists predominantly in an "unfolded" conformation.  相似文献   

14.
Abstract

A number of pyrimidine acyclic nucleosides in which the acyclic moiety is attached to the C-6 position rather than N-1 of the pyrimidine ring have been prepared. This was accomplished via treatment of lithiated 2,4-dimethoxy-5,6-dimethylpyrimidine, or, 2,4-dimethoxy-6-methylpyrirnidine with 1,3-bis-(benzyloxy)-2-propanone, benzyl chloromethyl ether or oxirane, respectively, to give the corresponding key intermediates 6-[3-benzyloxy-2-[(benzyloxy)methyl]-2-hydroxypropyl]-2,4-dimethoxy-5-methylpyrimidine (2a), 6-[3-Denzyloxy-2-[(benzyloxy)methyl]-2-hydroxypropyl]-2,4-dimethoxypyrimidine(2b), 6-(2-benzyloxyethyl)-2,4-dimethoxy-5-methylpyrimidine (3), and2,4-dunethoxy-6-(3-hydroxypropyl)-5-methylpyrimidine (4a). After acidic hydrolysis, followed by debenzylation with boron trichloride these key intermediates were converted to the target C-6 pyrimidine acyclic derivatives. Compounds 6–8b, 11–13, 15, 16, 20, 22, 26, and 29–32 were evaluated for activity against herpes viruses and human immunodeficiency virus. None of the compounds were active against the viruses nor were they cytotoxic at the highest concentration tested.  相似文献   

15.
Carbon 13 NMR spectra have been obtained for aqueous solutions of DL-2-(alpha-hydroxyethyl)thiamin, DL-2-(alpha-hydroxybenzyl)thiamin, DL-2-(alpha-hydroxybenzyl)oxythiamin, and related N-3 methyl and N-3 benzyl analogs. The unusually large downfield shift of the 13C resonance of C-2 of hydroxyethylthiamin suggests that this carbon bears a partial positive charge. This result stands in contrast to results of x-ray crystallographic studies of hydroxyethylthiamin, which place a partial negative charge on C-2 (Pletcher, J., and Sax, M. (1974) J. Am. Chem. Soc. 96, 155-165). A partial positive charge on C-2 helps to explain the facility of carbanion formation at the alpha carbon both enzymatically and in model systems. The rates of proton-deuteron exchange of (C-alpha)-H with solvent deuterium, and of release of aldehyde to regenerate thiamin have been measured for hydroxyethylthiamin and analogs. The differences in kinetic acidity of (C-alpha)-H and of rates of aldehyde release are rationalized in terms of differing electron-withdrawing abilities of the substituents attached to N-3, and appear not to be related to intramolecular basic catalysis of these processes by the C-4' amino group.  相似文献   

16.
Observations on the biosynthesis of thiamine in yeast   总被引:7,自引:5,他引:2       下载免费PDF全文
1. Methods are described for the isolation of radioactively pure thiamine from yeast and its degradation on a small scale to its cyclic components. 2. A degradation of the pyrimidine ring and a thin-layer method for the separation of thiamine, its derivatives and pyrimidine and thiazole residues are described. 3. [(14)C]Formate is more effectively incorporated into the pyrimidine residue than into the thiazole residue, whereas the reverse is true with l-[Me-(14)C]methionine. 4. Experiments with [Me-(14)C,(35)S]methionine demonstrate that methionine provides an intact unit for the biosynthesis of the thiazole ring. 5. [6-(14)C]Orotic acid is insignificantly incorporated into the pyrimidine residue of thiamine. 6. Experiments with [1-(14)C]- and [2-(14)C]-acetate indicate that it is incorporated as a unit into the thiazole residue, but that only C-2 is incorporated into the pyrimidine residue. 7. l-[U-(14)C]Alanine is also effectively incorporated into the thiazole residue. 8. These results are discussed in relation to possible pathways of biosynthesis of the two ring components of the thiamine molecule.  相似文献   

17.
In the present study, we synthesized a series of pyrimidine acyclic nucleoside phosphonates bearing a number of substituents in C-5 position of uracil moiety and in the N-1-side chain. In addition, we have investigated in particular the novel syntheses of fluorinated derivatives substituted in the N-1-side chain and uracil C-5 position because fluorine-containing substituents are often powerful modifiers of chemical and biological properties. The obtained compounds exhibit a considerable inhibitory potency of thymidine phosphorylase from SD-lymphoma. In contrast, the synthesized phosphonates are not efficient inhibitors of E. coli and human thymidine phosphorylase.  相似文献   

18.
Solid-state 15N- and [13C] NMR have been used to measure quantitatively the utilization of glycine in the presence of glutamine for the synthesis of storage protein in immature cotyledons of soybean (Glycine max L. cv. Elf) in culture. The presence of an equal molar amount of glycine in the medium causes a decrease in the use of glutamine-amide nitrogen. Glycine nitrogen is incorporated extensively into peptide bonds (in amounts greater than what would be expected if it appeared solely in glycine residues), but is used sparingly for synthesis of histidine ring residues, guanidino nitrogen residues of arginine, and lysine residues. The modest use of glycine carbon in protein synthesis does not parallel the use of glycine nitrogen.  相似文献   

19.
Lyophilized samples of Pseudomonas sp. PG2982 grown on 13C- and 15N-labeled glyphosate have been analyzed by single and double cross-polarization 13C NMR. Both the carbon and nitrogen metabolism of glyphosate are significantly influenced by the nitrogen source used for the growth of the organism. When ammonium sulfate is the source of nitrogen, the glycyl moiety of glyphosate is utilized intact for the biosynthesis of purines and proteins. But when the organism is grown on glycine as the source of nitrogen, the carbons and nitrogen of glyphosate are scrambled, consistent with incorporation into serine and pyruvate, and hence participation in general metabolism. When both ammonium and glycine are present in the growth medium, regulation of the metabolic fluxes along each of the two major pathways appears to be determined by the intracellular glycine concentration.  相似文献   

20.
We studied the incorporation of [1-13C]ribose and [1,3-13C2]glycerol into the riboflavin precursor 6,7-dimethyl-8-ribityllumazine, using a riboflavin-deficient mutant of Bacillus subtilis. The formation of the pyrazine ring requires the addition of a four-carbon moiety to a pyrimidine precursor. The results show that C-6 alpha, C-6, C-7, and C-7 alpha of 6,7-dimethyl-8-ribityllumazine were biosynthetically equivalent to C-1, C-2, C-3, and C-5 of a pentose phosphate. C-4 of the pentose precursor was lost through an intramolecular skeletal rearrangement. Thus, the last steps in the biosynthesis of 6,7-dimethyl-8-ribityllumazine apparently involve the same mechanism in bacteria as in fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号