首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The tributylammonium salt of a porcine heparin subfraction with low affinity for antithrombin III (Mr 7,500-18,000; anti-clotting activity, 7 USP units/mg), having degrees of sulfate substitution at D-glucosamine and L-iduronic acid residues of GlcNS 0.786, GlcN6s 0.628, and IdoA2s 0.682 mol, was reacted with 10 or 20 mol of pyridine-sulfur trioxide per mol equiv. of available hydroxyl groups in N,N-dimethylformamide at -10 degrees C for 1 h. Both chemical and NMR spectroscopic analyses revealed that sulfation proceeded exclusively at HO-6 in D-glucosamine and HO-2 in L-iduronic acid residues, according to the amount of the sulfating reagent used (GlcNS: 0.825, 0.830; GlcN6s: 0.872, 0.928; IdoA2s: 0.687, 0.749 mol, respectively). Affinity chromatography of the sulfated products on antithrombin III-Sepharose gel indicated that the polysaccharide acquired some affinity for the protein following the sulfation, as shown by the increase in the proportion of the high-affinity heparin fraction (%) from 1.1 to 6.7. Biological examination of these products indicated that sulfation at natural positions along with the polysaccharide chain resulted in significant increases in all the activities (blood anti-clotting, anti-Factor IIa, and anti-Factor Xa), and in the strength of intrinsic fluorescence of antithrombin III.  相似文献   

2.
Although 2-O-sulfated L-iduronic acid (IdoA) residues have been known to occur in heparin, 2-O-sulfated D-glucuronic acid (GlcA) residues have been reported only recently (Bienkowski, M. J., and Conrad, H. E. (1985) J. Biol. Chem. 250, 356-365). Disaccharides prepared by cleavage of heparin and N-deacetylated chondroitin 6-sulfate with nitrous acid were used to demonstrate a new sulfatase that catalyzed the removal of the 2-O-sulfate substituents from GlcA but not IdoA residues. The deamination products were labeled by NaB3H4 reduction to give disaccharides from heparin and chondroitin sulfate which had reducing terminal 2,5-anhydro-D-mannitol ([3H]AManR) and 2,5-anhydro-D-talitol ([3H]ATalR) residues, respectively. IdoA(2-SO4)-[3H]AManR(6-SO4) from heparin and GlcA(2-SO4)-[3H]ATalR(6-SO4) from chondroitin sulfate were purified for use as substrates. GlcA(2-SO4)-[3H]AManR(6-SO4) was prepared by epimerization of IdoA(2-SO4)-[3H]AManR(6-SO4) with hydrazine at 100 degrees C. Lysosomal enzyme preparations from chick embryo chondrocytes and from two normal human fibroblast cell lines catalyzed the removal of the 2-O-SO4 substituent from the uronic acid residues of IdoA(2-SO4)-[3H]AManR(6-SO4), GlcA(2-SO4)-[3H] AManR(6-SO4), and GlcA(2-SO4)-[3H]ATalR(6-SO4). In contrast, a lysosomal enzyme preparation from a human fibroblast cell line deficient in idurono-2-sulfatase (Hunter's-syndrome), which had no activity on the IdoA(2-SO4)-[3H]AManR(6-SO4), converted GlcA(2-SO4)-[3H]AManR(6-SO4) to a mixture of GlcA-[3H] AManR(6-SO4) and [3H]AManR(6-SO4). This enzyme also converted GlcA(2-SO4)-[3H]ATalR(6-SO4) to a mixture of GlcA-[3H]ATalR(6-SO4) and [3H]ATalR(6-SO4). Digestion of both GlcA(2-SO4)-[3H]AManR(6-SO4) and GlcA(2-SO4)-[3H]ATalR(6-SO4) was inhibited by 35SO2-4 and was arrested at the monosulfated disaccharide stage by 1,4-saccharolactone. The glucurono-2-sulfatase exhibited a pH optimum of 4. The results indicate that there exists a separate sulfatase for the removal of sulfate substituents from C-2 of GlcA residues in glycosaminoglycans.  相似文献   

3.
Structure and activity of a unique heparin-derived hexasaccharide   总被引:2,自引:0,他引:2  
A hexasaccharide representing a major sequence in porcine mucosal heparin has been enzymatically prepared from heparin. Its structure was determined by an integrated approach using chemical, enzymatic, and spectroscopic methods. Two-dimensional 1H homonuclear COSY, C-H correlation NMR, and selective irradiation were used to assign many of the NMR resonances. In addition, new techniques including sulfate determination by ion chromatography and Fourier transform IR and californium plasma desorption mass spectroscopy have been applied, resulting in an unambiguous structural assignment of delta IdoAp2S(1----4)-alpha-D-GlcNp2S6S(1----4)-alpha-L-IdoAp++ +(1----4)-alpha-D-GlcNA cp6S-(1----4)-beta-D-GlcAp(1----4)-alpha-D-GlcNp2S3S6S (where delta IdoA represents 4-deoxy-alpha-L-threo-hex-4-enopyranosyluronic acid, p represents pyranose, and GlcA and IdoA represent glucuronic and iduronic acid). This hexasaccharide contains a portion of the antithrombin III-binding site and has a Kd of 4 X 10(-5) M. Unlike other small heparin oligosaccharides, which are specific for coagulation factor Xa, it inhibits both factors IIa and Xa equally through antithrombin III. This hexasaccharide may have the unique capacity to act primarily through heparin cofactor II to inhibit thrombin (factor IIa) and shows over half of heparin's heparin cofactor II-mediated anti-factor IIa activity. These studies suggest the occurrence of contiguous binding sites on heparin for Xa, antithrombin III, and heparin cofactor II.  相似文献   

4.
Oligosaccharides of well-defined molecular size were prepared from heparin by nitrous acid depolymerization, affinity chromatography on immobilized antithrombin III (see footnote on Nomenclature) and gel chromatography on Sephadex G-50. High affinity (for antithrombin III) octa-, deca-, dodeca-, tetradeca-, hexadeca- and octadeca-saccharides were prepared, as well as oligosaccharides of larger size than octadecasaccharide. The inhibition of Factor Xa by antithrombin III was greatly accelerated by all of these oligosaccharides, the specific anti-Factor Xa activity being invariably greater than 1300 units/mumol. The anti-Factor Xa activity of the decasaccharide was not significantly decreased in the presence of platelet factor 4, even at high platelet factor 4/oligosaccharide ratios. Measurable but incomplete neutralization of the anti-Factor Xa activities of the tetradeca- and hexadeca-saccharides was observed, and complete neutralization of octadeca- and larger oligo-saccharides was achieved with excess platelet factor 4. The octa-, deca-, dodeca-, tetradeca- and hexadeca-saccharides had negligible effect on the inhibition of thrombin by antithrombin III, whereas specific anti-thrombin activity was expressed by the octadeca-saccharide and by the larger oligosaccharides. An octadecasaccharide is therefore the smallest heparin fragment (prepared by nitrous acid depolymerization) that can accelerate thrombin inhibition by antithrombin III. The anti-thrombin activities of the octadecasaccharide and larger oligosaccharides were more readily neutralized by platelet factor 4 than were their anti-Factor Xa activities. These findings are compatible with two alternative mechanisms for the action of platelet factor 4, both involving the binding of the protein molecule adjacent to the antithrombin III-binding site. Such binding results in either steric interference with the formation of antithrombin III-proteinase complexes or in displacement of the antithrombin III molecule from the heparin chain.  相似文献   

5.
Dermatan sulfate increases the rate of inhibition of thrombin by heparin cofactor II (HCII) approximately 1000-fold by providing a catalytic template to which both the inhibitor and the protease bind. Dermatan sulfate is a linear polymer of D-glucuronic acid (GlcA) or L-iduronic acid (IdoA) alternating with N-acetyl-D-galactosamine (GalNAc) residues. Heterogeneity in dermatan sulfate results from varying degrees of O-sulfation and from the presence of the two types of uronic acid residues. To characterize the HCII-binding site in dermatan sulfate, we isolated the smallest fragment of dermatan sulfate that bound to HCII with high affinity. Dermatan sulfate was partially N-deacetylated by hydrazinolysis, cleaved with nitrous acid at pH 4, and reduced with [3H]NaBH4. The resulting fragments, containing an even number of monosaccharide units with the reducing terminal GalNAc converted to [3H]2,5-anhydro-D-talitol (ATalR), were size-fractionated and then chromatographed on an HCII-Sepharose column. The smallest HCII-binding fragments were hexasaccharides, of which approximately 6% bound. Based on ion-exchange chromatography, the bound material appeared to comprise a heterogeneous mixture of molecules possessing four, five, or six sulfate groups per hexasaccharide. Subsequently, hexasaccharides with the highest affinity for HCII were isolated by overloading the HCII-Sepharose column. The high-affinity hexasaccharides were fractionated by strong anion-exchange chromatography, and one major peak representing approximately 2% of the starting hexasaccharides was isolated. The high-affinity hexasaccharide was cleaved to disaccharides that were analyzed by anion-exchange chromatography, paper electrophoresis, and paper chromatography. A single disulfated disaccharide, IdoA(2-SO4)----ATalR(4-SO4) was observed, indicating that the hexasaccharide has the following structure: IdoA(2-SO4)----GalNAc(4-SO4)----IdoA(2-SO4)---- GalNAc(4-SO4)----IdoA(2-SO4)----ATalR(4-SO4). Since IdoA(2-SO4)----GalNAc(4-SO4) comprises only approximately 5% of the disaccharides present in intact dermatan sulfate, clustering of these disaccharides must occur during biosynthesis to form the high-affinity binding site for HCII.  相似文献   

6.
The tributylammonium salt of whale (Balaenoptera borealis L.) intestinal heparin with high affinity for antithrombin III, whose degrees of sulfate-substitution in D-glucosamine and L-iduronic acid residues are GlcNS 0.738, GlcN6S 0.384, and IdoA2S 0.510 mol, was reacted with 2.5, 5.0, or 10.0 mol of pyridine-sulfur trioxide/mol of available hydroxyl groups in N,N-dimethylformamide at -10 degrees C for 1 h. Both chemical and NMR spectroscopic analyses revealed that an exclusive 6-O-sulfation of the D-glucosamine residues proceeded, according to the amount of the sulfating reagent used (GlcN6S: 0.476, 0.585, and 0.641 mol, respectively), the degree of sulfation at other natural substitution positions in the polysaccharide being unchanged, without any detectable unnatural sulfate-substitution. Biological examination of these products indicated that the 6-O-sulfation in the original whale heparin resulted in significant increases in blood clotting and anti-Factor IIa activities (maximal 43 and 82% increases, respectively), and in a moderate increase in the ability to bind antithrombin III, that is, in anti-Factor Xa activity and in intrinsic fluorescence enhancement of the protein (maximal 28 and 30% increases, respectively), together with a maximal 10% increase in the proportion of heparin species with higher affinity for antithrombin III, released with 1.0-3.0 M NaCl from antithrombin III-Sepharose.  相似文献   

7.
Heparin-derived pentasaccharides with the general structures GlcN-GlcA/IdoA-GlcN-GlcA/IdoA-GlcN (where GlcA represents D-glucuronic acid and IdoA represents L-iduronic acid) and GlcNSO3-GlcA/IdoA-GlcNSO3-GlcA/IdoA- GlcNSO3 (where -NSO3 represents an N-sulfate group) were tested as exogenous sulfate acceptors in incubations with adenosine 3'-phosphate 5'-[35S]phosphosulfate and microsomal enzymes from a heparin-producing mouse mastocytoma. No transfer occurred to the N-unsubstituted pentasaccharide containing only L-iduronic acid, but the other three isomers incorporated various amounts of 35S, which was totally present in N-sulfate groups. After complete chemical N-sulfation, all four pentasaccharides served as acceptors in O-sulfotransferase reactions and incorporated from 20 to greater than 200 times as much radioactivity as did the nonsulfated parent compounds. The C-6 position of the internal glucosamine unit was labeled preferentially, irrespective of the structures of the adjacent hexuronic acid units. Significant 2-O-35S-sulfation of IdoA units occurred in both -IdoA-Glc-NSO3-GlcA- and -GlcA-GlcNSO3-IdoA- sequences, whereas no significant sulfation of GlcA residues was detected. The pentasaccharide GlcNSO3-GlcA-Glc-NSO3-GlcA-GlcNSO3 thus can be used as a selective substrate in assays for glucosaminyl-6-O-sulfotransferase activity. The antithrombin-binding region, essential for the blood anticoagulant activity of heparin, has been identified as a pentasaccharide sequence with the predominant structure GlcNR(6-OSO3)-GlcA-GlcNSO3(3,6-di-OSO3)-++ +IdoA(2-OSO3)-GlcNSO3(6-OSO3) (where R represents either a sulfate or an acetyl group and -OSO3 represents an O-sulfate/ester sulfate group, with locations of O-sulfate groups indicated in parentheses) (Lindahl U., Thunberg, L., B?ckstr?m, G., Riesenfeld, J., Nordling, K., and Bj?rk, I. (1984) J. Biol. Chem. 259, 12368-12376). The products of [35S]sulfate transfer to the pentasaccharide GlcNSO3-GlcA-GlcNSO3-IdoA-GlcNSO3 contained molecules with high affinity for antithrombin, corresponding to 0.3-0.5% of the total label. Structural analysis suggested the occurrence of O-[35S]sulfate groups at both C-6 of the nonreducing terminal glucosamine unit and C-3 of the internal glucosamine unit. No products with high affinity for antithrombin were formed from the pentasaccharides that had a different monosaccharide sequence than the binding region; and moreover, these oligosaccharides appeared unable to incorporate glucosaminyl 3-O-sulfate groups. These findings point to the importance of the uronic acid sequence in the generation of the antithrombin-binding region of heparin.  相似文献   

8.
Chondroitin sulfate E (CS-E), a chondroitin sulfate isomer containing GlcAbeta1-3GalNAc(4,6-SO(4)) repeating unit, was found in various mammalian cells in addition to squid cartilage and is predicted to have several physiological functions in various mammalian systems such as mast cell maturation, regulation of procoagulant activity of monocytes, and binding to midkine or chemokines. To clarify the physiological functions of GalNAc(4,6-SO(4)) repeating unit, preparation of CS-E with a defined content of GalNAc(4,6-SO(4)) residues is important. We report here the in vitro synthesis of CS-E from chondrotin sulfate A (CS-A) by the purified squid N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) which catalyzed transfer of sulfate from 3(')-phosphoadenosine-5(')-phosphosulfate to position 6 of GalNAc(4SO(4)) residues of CS-A and dermatan sulfate (DS). When CS-A was used as an acceptor, about half of GalNAc(4SO(4)) residues, on average, were converted to GalNAc(4,6-SO(4)) residues. Anion exchange chromatography of the CS-E synthesized in vitro showed marked heterogeneity in negative charge; the proportion of GalNAc(4,6-SO(4)) in the most negative fraction exceeded 70% of the total sulfated repeating units. GalNAc4S-6ST also catalyzed the synthesis of oversulfated DS with GalNAc(4,6-SO(4)) residues from DS. Squid GalNAc4S-6ST thus should provide a useful tool for preparing CS-E and oversulfated DS with a defined proportion of GalNAc(4,6-SO(4)) residues.  相似文献   

9.
Chondroitin 4-sulphate, chondroitin 6-sulphate, dermatan sulphate and keratan sulphate were N-deacetylated by treatment with hydrazine and then cleaved with HNO2 at pH 4.0, and the resulting products were reduced with NaB3H4. This reaction sequence cleaved the glycosaminoglycans at their N-acetyl-D-glucosamine or N-acetyl-D-galactosamine residues, which were converted into 3H-labelled 2,5-anhydro-D-mannitol (AManR) or 2,5-anhydro-D-talitol (ATalR) residues respectively. The end-labelled disaccharides, composed of D-glucuronic acid (GlcA), L-iduronic acid (IdoA) or D-galactose (Gal) and one of the anhydrohexitols, were identified as follows: both chondroitin 4-sulphate and chondroitin 6-sulphate gave GlcA----ATalR(4-SO4), GlcA----ATalR(6-SO4), IdoA----ATalR (4-SO4) and GlcA(2-SO4)----ATalR(6-SO4); dermatan sulphate gave IdoA----ATalR(4-SO4), GlcA----ATalR(4-SO4), GlcA----ATalR(6-SO4)----IdoA(2-SO4)ATalR(4-SO4) and IdoA----ATalR (4,6-diSO4); keratan sulphate gave Gal(6-SO4)----AManR(6-SO4), Gal----AManR(6-SO4), Gal(6-SO4)----AManR and Gal----AManR. Several additional disaccharides were generated by treatment of the uronic acid-containing disaccharides with hydrazine to epimerize their uronic acid residues at C-5. A number of these disaccharides were found to be substrates for lysosomal sulphatases and glycuronidases. Methods were developed for the separation of all of the disaccharide products by h.p.l.c. The rate of N-deacetylation of chondroitin 4-sulphate by hydrazinolysis was significantly lower than the rate of N-deacetylation of chondroitin 6-sulphate or chondroitin. Dermatan sulphate was N-deacetylated at an intermediate rate. The relative amounts of disaccharides obtained from chondroitin 4-sulphate, chondroitin 6-sulphate and dermatan sulphate under optimum hydrazinolysis/deamination conditions were comparable with the amounts of the corresponding products released from the polymers by chondroitinase treatment.  相似文献   

10.
2-O-Sulfo-alpha-l-iduronic acid (IdoA2S) is one of the main components of heparin, an anticoagulant and antithrombotic polysaccharide able to potentiate the inhibitory effect of antithrombin over plasma serine proteases. This monosaccharide unit adopts an equilibrium between chair (1C4) and skew-boat (2SO) forms as a function of heparin sequence size and composition. Although the prevalence of the 1C4 chair conformation in monosaccharides is understood, the reasons for the increase in 2SO contribution in the whole polysaccharide chain are still uncertain. In this context, 0.2 mus molecular dynamics simulations of IdoA2S-containing oligosaccharides indicated that stabilization due to intramolecular hydrogen bonds around IdoA2S is highly correlated (p0.001) with the expected conformational equilibrium for this residue in solution. This behavior explains the known effect of different heparin compositions, at the monosaccharide level, on IdoA2S conformation in biological solutions.  相似文献   

11.
S protein, a major inhibitor of the assembly of the membrane attack complex of complement, has recently been shown to be identical to the serum spreading factor vitronectin. It also neutralizes the anticoagulant activities of heparin. We have studied the structural requirements for the heparin neutralizing properties of S protein/vitronectin using heparin, heparan sulfate, and heparin oligosaccharides with well defined anticoagulant specificities. The abilities of heparin fractions, Mr 7,800-18,800, with high affinity for antithrombin, and of the International Heparin Standard, to accelerate the inactivation of thrombin and Factor Xa by antithrombin were readily neutralized by S protein/vitronectin. Binding and neutralization of heparin by S protein/vitronectin was inhibited by heparin with low affinity for antithrombin, indicating that S protein/vitronectin can interact with a region on the heparin chain that might serve as a proteinase binding site. S protein/vitronectin efficiently neutralized oligosaccharides of Mr 2,400-7,200, unlike the two other physiologically occurring heparin neutralizing proteins histidine-rich glycoprotein and platelet factor 4. Furthermore, S protein/vitronectin neutralized the anti-Factor Xa activity of a synthetic pentasaccharide comprising the antithrombin-binding sequence of heparin. High molar excess of a synthetic tridecapeptide corresponding to part (amino acids 374-359) of the proposed glycosaminoglycan binding domain of S protein/vitronectin neutralized high affinity heparin and some oligosaccharides, but failed to neutralize the synthetic antithrombin-binding pentasaccharide. Like platelet factor 4, but unlike histidine-rich glycoprotein, S protein/vitronectin readily neutralized the anticoagulant activities of heparan sulfate of Mr approximately 20,000. These findings suggest that S protein/vitronectin may interact through its glycosaminoglycan binding domain(s) with various functional domains of the heparin (heparan sulfate) molecule, including the antithrombin-binding pentasaccharide sequence. Furthermore, the results suggest that S protein/vitronectin may be a physiologically important modulator of the anticoagulant activity of heparin-like material on or near the vascular endothelium.  相似文献   

12.
Binding of platelet factor 4 to heparin oligosaccharides.   总被引:4,自引:1,他引:3       下载免费PDF全文
Heparin fractions of differing Mr (7800-18 800) prepared from commercial heparin by gel filtration and affinity chromatography on immobilized anti-thrombin III had specific activities when determined by anti-Factor Xa and anti-thrombin assays that ranged from 228 to 448 units/mg. The anti-Factor Xa activity of these fractions could be readily and totally neutralized by increasing concentrations of platelet factor 4 (PF4). That these fractions bound to immobilized PF4 was indicated by the complete binding under near physiological conditions of 3H-labelled unfractionated commercial heparin. An anti-thrombin III-binding oligosaccharide preparation (containing predominantly eight to ten saccharide units), prepared by degradation of heparin with HNO2 had high (800 units/mg) anti-Factor Xa, but negligible anti-thrombin, specific activity. The anti-Factor Xa activity of this material could not be readily neutralized by PF4, and the 3H-labelled oligosaccharides did not completely bind to immobilized PF4. A heterogeneous anti-thrombin III-binding preparation containing upwards of 16 saccharides had anti-thrombin specific activity of just less than one-half the anti-Factor Xa specific activity. This material was completely bound to immobilized PF4 and was eluted with similar concentrations of NaCl to those that were required to elute unfractionated heparins from these columns. Furthermore, increasing concentrations of PF4 neutralized the anti-Factor Xa activity of this material in a manner similar to that of unfractionated heparin. It is concluded that heparin oligosaccharides require saccharide units in addition to the anti-thrombin III-binding sequence in order to fully interact with PF4.  相似文献   

13.
The 1H-n.m.r. 3J values for the L-iduronic acid (IdoA) residues for solutions in D2O of natural and synthetic oligosaccharides that represent the biologically important sequences of dermatan sulfate, heparan sulfate, and heparin have been rationalized by force-field calculations. The relative proportions of the low-energy conformers 1C4, 2S0, and 4C1 vary widely as a function of sequence and of pattern of sulfation. When IdoA or IdoA-2-sulfate units are present inside saccharide sequences, only 1C4 and 2S0 conformations contribute significantly to the equilibrium. This equilibrium is displaced towards the 2S0 form when IdoA-2-sulfate is preceded by a 3-O-sulfated amino sugar residue, and towards the 1C4 form when it is a non-reducing terminal. For terminal non-sulfated IdoA, the 4C1 form also contributes to the equilibrium. N.O.e. data confirm these conclusions. Possible biological implications of the conformational flexibility and the counter-ion induced changes in conformer populations are discussed.  相似文献   

14.
Dermatan sulfate (DS) accelerates the inhibition of thrombin by heparin cofactor II (HCII). A hexasaccharide consisting of three l-iduronic acid 2-O-sulfate (IdoA2SO3)-->N-acetyl-D-galactosamine 4-O-sulfate (GalNAc4SO3) subunits was previously isolated from porcine skin DS and shown to bind HCII with high affinity. DS from porcine intestinal mucosa has a much lower content of this disaccharide but activates HCII with potency similar to that of porcine skin DS. Therefore, we sought to characterize oligosaccharides from porcine mucosal DS that interact with HCII. DS was partially depolymerized with chondroitinase ABC, and oligosaccharides containing 2-12 monosaccharide units were isolated. The oligosaccharides were then fractionated by anion-exchange and affinity chromatography on HCII-Sepharose, and the disaccharide compositions of selected fractions were determined. We found that the smallest oligosaccharides able to bind HCII were hexasaccharides. Oligosaccharides 6-12 units long that lacked uronic acid (UA)2SO3 but contained one or two GalNAc4,6SO3 residues bound, and binding was proportional to both oligosaccharide size and number of GalNAc4,6SO3 residues. Intact DS and bound dodecasaccharides contained predominantly IdoA but little D-glucuronic acid. Decasaccharides and dodecasaccharides containing one or two GalNAc4,6SO3 residues stimulated thrombin inhibition by HCII and prolonged the clotting time of normal but not HCII-depleted human plasma. These data support the hypothesis that modification of IdoA-->GalNAc4SO3 subunits in the DS polymer by either 2-O-sulfation of IdoA or 6-O-sulfation of GalNAc can generate molecules with HCII-binding sites and anticoagulant activity.  相似文献   

15.
We have prepared a series of oligosaccharides to assess the substrate specificity of exo sulfatase activity in cultured human skin fibroblasts toward N-acetylglucosamine-6-sulfate residues present in keratan sulfate (KS) and heparan sulfate (HS). Non-reducing end alpha-GlcNAc-6-SO4 residues (derived from HS) were desulfated by a specific sulfatase that when deficient leads to the accumulation of HS and the expression of mucopolysaccharidosis type IIID (Sanfilippo D). Under the in vitro conditions studied there are two pathways for the degradation of oligosaccharides containing non-reducing end beta-GlcNAc-6-SO4 residues (derived from KS). In one pathway beta-N-acetylglucosaminidase produces GlcNAc-6-SO4 which is then desulfated. In the other pathway the beta-GlcNAc-6-SO4 residue is desulfated and then cleaved by the action of an beta-N-acetylglucosaminidase activity. There was no detectable beta-N-acetylglucosaminidase activity in fibroblasts from a Tay-Sachs patient to produce GlcNAc-6-SO4 from beta-GlcNAc-6-SO4 residues in KS of oligosaccharides. There was approximately 10% of this normal beta-N-acetylglucosaminidase activity in fibroblasts from a Sandhoff patient, suggesting the A and S forms may be involved in this reaction. Desulfation of GlcNAc-6-SO4 residues in KS, HS and the monosaccharide GlcNAc-6-SO4 was considerably reduced or not detected in fibroblasts from a Sanfilippo D patient. As KS was not detected in the urine of a Sanfilippo D patient we propose that KS degradation in these patients proceeds by the action of a beta-N-acetylglucosaminidase activity to produce GlcNAc-6-SO4 which is not further degraded.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Oversulfated chondroitin sulfate H (CS-H) isolated from hagfish notochord is a unique dermatan sulfate consisting mainly of IdoAalpha1-3GalNAc(4S,6S), where IdoA, GalNAc, 4S and 6S represent L-iduronic acid, Nacetyl-D-galactosamine, 4-O-sulfate and 6-O-sulfate, respectively. Several tetra- and hexasccharide fractions were isolated from CS-H after partial digestion with bacterial chondroitinase B to investigate the sequential arrangement of the IdoAalpha1-3GalNAc(4S,6S) unit in the CS-H polysaccharide. A structural analysis of the isolated oligosaccharides by enzymatic digestions, mass spectrometry and 1H NMR spectroscopy demonstrated that the major tetrasaccharides shared the common disulfated core structure delta4,5HexAalpha1-3GalNAc(4S)beta1-4IdoAalpha1-3 GalNAc (4S) with 0 approximately 3 additional O-sulfate groups, where delta4,5HexA represents 4-deoxy-alpha-L-threo-hex-4-enepyranosyluronic acid. The major hexasaccharides shared the common trisulfated core structure delta4,5HexAalpha1-3 GalNAc(4S)beta1-4 IdoAalpha1-3 GalNAc(4S)beta1-4IdoAalpha1-3 GalNAc(4S) with 1 approximately 4 additional O-sulfate groups. Some extra sulfate groups in both tetra- and hexasaccharides were located at the C-2 position of a delta4,5HexA or an internal IdoA residue, or C-6 position of 4-O-sulfated GalNAc residues, forming the unique disulfated or trisulfated disaccharide units, IdoA (2S)-GalNAc(4S), IdoA-GalNAc(4S,6S) and IdoA (2S)-GalNAc(4S,6S), where 2S represents 2-O-sulfate. Of the demonstrated sequences, five tetra- and four hexasaccharide sequences containing these units were novel.  相似文献   

17.
Examination of the substrate specificity of heparin and heparan sulfate lyases   总被引:15,自引:0,他引:15  
We have examined the activities of different preparations of heparin and heparan sulfate lyases from Flavobacterium heparinum. The enzymes were incubated with oligosaccharides of known size and sequence and with complex polysaccharide substrates, and the resulting degradation products were analyzed by strong-anion-exchange high-performance liquid chromatography and by oligosaccharide mapping using gradient polyacrylamide gel electrophoresis. Heparinase (EC 4.2.2.7) purified in our laboratory and a so-called Heparinase I (Hep I) from a commercial source yielded similar oligosaccharide maps with heparin substrates and displayed specificity for di- or trisulfated disaccharides of the structure----4)-alpha-D-GlcNp2S(6R)(1----4)-alpha-L-IdoAp2S( 1----(where R = O-sulfo or OH). Oligosaccharide mapping with two different commercial preparations of heparan sulfate lyase [heparitinase (EC 4.2.2.8)] indicated close similarities in their depolymerization of heparan sulfate. Furthermore, these enzymes only degraded defined oligosaccharides at hexosaminidic linkages with glucuronic acid:----4)-alpha-D-GlcNpR(1----4)-beta-D-GlcAp(1----(where R = N-acetamido or N-sulfo). The enzymes showed activity against solitary glucuronate-containing disaccharides in otherwise highly sulfated domains including the saccharide sequence that contains the antithrombin binding region in heparin. A different commercial enzyme, Heparinase II (Hep II), displayed a broad spectrum of activity against polysaccharide and oligosaccharide substrates, but mapping data indicated that it was a separate enzyme rather than a mixture of heparinase and heparitinase/Hep III. When used in conjunction with the described separation procedures, these enzymes are powerful reagents for the structural/sequence analysis of heparin and heparan sulfate.  相似文献   

18.
Thrombin-inhibitory activity of whale heparin oligosaccharides   总被引:1,自引:0,他引:1  
Whale heparin was partially digested with a purified heparinase and the oligosaccharide fractions with 8-20 monosaccharide units were isolated from the digest by gel filtration on Sephadex G-50, followed by affinity chromatography on a column of antithrombin III immobilized on Sepharose 4B. A marked difference in the inhibitory activity for thrombin in the presence of antithrombin III was observed between the high-affinity fractions for antithrombin III of octasaccharide approximately hexadecasaccharide and those of octadecasaccharide approximately eicosasaccharide. The disaccharide compositions of these hexadeca-, octadeca-, and eicosasaccharides were analyzed by high-performance liquid chromatography after digestion with a mixture of purified heparitinases 1 and 2 and heparinase. The analytical data indicated that the proportions of trisulfated disaccharide (IdUA(2S)alpha 1----4GlcNS(6S)) and disulfated disaccharide (UA1----4GlcNS(6S)) increased with the manifestation of high thrombin-inhibitory activity, while that of monosulfated disaccharide (UA1----4GlcNS) decreased. The present observations, together with those so far reported, suggest that the presence of the former structural elements, specifically IdUA(2S)alpha 1----4GlcNS(6S), as well as the antithrombin III-binding pentasaccharide at the proper positions in the molecules of whale heparin oligosaccharides is essential for the manifestation of high inhibitory activity for thrombin in the presence of antithrombin III. The structural bases for the manifestation of the anticoagulant activity of whale and porcine heparins and their oligosaccharides are also discussed.  相似文献   

19.
Heparin and heparin oligosaccharides prepared by nitrous acid depolymerization were fractionated by affinity chromatography on immobilized antithrombin and by gel chromatography. The anticoagulant activities of high affinity heparin of Mr greater than or equal to 7,800 could be readily neutralized by the plasma protein histidine-rich glycoprotein (see also Lijnen, H.R., Hoylaerts, M., and Collen, D. (1983) J. Biol. Chem. 258, 3803-3808), whereas oligosaccharides falling below 18 saccharide units (Mr 5,400) became increasingly resistant to neutralization. An octasaccharide with characteristic marked ability to accelerate the inactivation of Factor Xa by antithrombin retained greater than 50% of its activity even at a histidine-rich glycoprotein/oligosaccharide molar ratio of 500:1. Histidine-rich glycoprotein, like the platelet-derived heparin neutralizing protein platelet factor 4 (Lane, D.A., Denton, J., Flynn, A.M., Thunberg, L. and Lindahl, U. (1984) Biochem J. 218, 725-732), therefore requires interaction with saccharide sequences in addition to the antithrombin-binding pentasaccharide of heparin in order to efficiently express its antiheparin activity. Heparan sulfate isolated from pig intestinal mucosa (HS I, Mr approximately 20,000) and from human aorta (HS II, Mr approximately 40,000) exhibited anti-Factor Xa activities of 180 and 20 units/micromol [corrected], respectively. A fraction corresponding to about 5% of HS I bound with high affinity to immobilized antithrombin and contained all of the anticoagulant activity of the starting material. While these heparan sulfates were readily neutralized by platelet factor 4, they were relatively resistant to neutralization by histidine-rich glycoprotein, although complete neutralization could be attained in the presence of molar excess of this protein. These findings may be of importance in relation (a) to the functional role of endogenous anticoagulant polysaccharides at the vascular wall and (b) to clinical situations in which heparin or heparin-related compounds are administered as exogenous anticoagulants.  相似文献   

20.
Biosynthesis of heparin, a mast cell-derived glycosaminoglycan with widespread importance in medicine, has not been fully elucidated. In biosynthesis of heparan sulfate (HS), a structurally related polysaccharide, HS glucuronyl C5-epimerase (Hsepi) converts D-glucuronic acid (GlcA) to L-iduronic acid (IdoA) residues. We have generated Hsepi-null mouse mutant mast cells, and we show that the same enzyme catalyzes the generation of IdoA in heparin and that 'heparin' lacking IdoA shows a distorted O-sulfation pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号