共查询到20条相似文献,搜索用时 15 毫秒
1.
María Florencia Iacaruso Soledad Galli Marcelo Martí Jorge Ignacio Villalta Darío Ariel Estrin Elizabeth Andrea Jares-Erijman Lía Isabel Pietrasanta 《Journal of molecular biology》2011,414(5):681
Nerve growth factor (NGF) is a member of the neurotrophins, which are important regulators of embryonic development and adult function in the vertebrate nervous systems. The signaling elicited by NGF regulates diverse activities, including survival, axon growth, and synaptic plasticity. NGF action is mediated by engagement with two structurally unrelated transmembrane receptors, p75NTR and TrkA, which are co-expressed in a variety of cells. The functional interactions of these receptors have been widely demonstrated and include complex formation, convergence of signaling pathways, and indirect interaction through adaptor proteins. Each domain of the receptors was shown to be important for the formation of TrkA and p75NTR complexes, but only the intramembrane and transmembrane domains seemed to be crucial for the creation of high-affinity binding sites. However, whether these occur through a physical association of the receptors is unclear. In the present work, we demonstrate by Förster resonance energy transfer that p75NTR and TrkA are physically associated through their intracellular (IC) domains and that this interaction occurs predominantly at the cell membrane and prior to NGF stimulation. Our data suggest that there is a pool of receptors dimerized before NGF stimulus, which could contribute to the high-affinity binding sites. We modeled the three-dimensional structure of the TrkA IC domain by homology modeling, and with this and the NMR-resolved structure of p75NTR, we modeled the heterodimerization of TrkA and p75NTR by docking methods and molecular dynamics. These models, together with the results obtained by Förster resonance energy transfer, provide structural insights into the receptors' physical association. 相似文献
2.
Marina Santic Christine Akimana Rexford Asare Joseph C. Kouokam Safinur Atay Yousef Abu Kwaik 《Environmental microbiology》2009,11(6):1473-1481
Since transmission of Francisella tularensis into the mammalian host occurs via arthropod vectors such as ticks, mosquitoes, horseflies and deerflies, recent studies have established Drosophila melanogaster as an arthropod vector model system. Nothing is known about the intracellular fate of F. tularensis within arthropod‐derived cells, and the role of this host‐parasite adaptation in the evolution of this pathogen to infect mammals. In this report, we explored intracellular trafficking of F. tularensis ssp. novicida in D. melanogaster‐derived S2 cells. First, we show that similar to the F. tularensis ssp. holarctica‐derived LVS strain, F. tularensis ssp. novicida is highly infectious, replicates exponentially within S2 cells and within adult flies, and is fatal to adult fruit flies in a dose‐dependent manner, while the iglC, iglD and mglA mutants are defective. Using electron and fluorescence microscopy‐based phagosome integrity assays, we show that the wild‐type strain escapes into the cytosol of S2 cells within 30–60 min post infection and by 6 h, 90% were cytosolic. In contrast, approximately 40–50% of the iglC and iglD mutants escape into the cytosol by 6 h while the other subpopulation becomes enclosed within multilamellar vesicles (MLVs). Pre‐treatment of S2 cells with the autophagy inhibitor methyl adenine blocks formation of the MLVs and all the vacuolar subpopulation of the iglC and iglD mutant bacteria become enclosed within single membrane‐surrounded vacuoles. Endocytic trafficking studies of F. tularensis within S2 cells show transient colocalization of the bacterial phagosome with D. melanogaster LAMP2–GFP fusion but not with lysosomes pre‐loaded with fluorescent dextran. Our data show that MLVs harbouring the iglC mutant acquire Lamp2 and dextran while MLVs harbouring the iglD mutant exclude these late endosomal and lysosomal markers. Our data indicate crucial differences in the role of the pathogenicity island‐encoded proteins in modulating intracellular trafficking within human macrophages and arthropod vector‐derived cells. 相似文献
3.
One of the major steps limiting nonviral gene transfer efficiency is the entry of plasmid DNA from the cytoplasm into the nucleus of the transfected cells. The nuclear localization signal (NLS) of the SV40 large T antigen is known to efficiently induce nuclear targeting of proteins. We have developed two chemical strategies for covalent coupling of NLS peptides to plasmid DNA. One method involves a site-specific labeling of plasmid DNA by formation of a triple helix with an oligonucleotide–NLS peptide conjugate. After such modification with one NLS peptide per plasmid molecule, plasmid DNA remained fully active in cationic lipid-mediated transfection. In the other method, we randomly coupled 5–115 p-azidotetrafluorobenzyllissamine–NLS peptide molecules per plasmid DNA by photoactivation. Oligonucleotide–NLS and plasmid–lissamine–NLS conjugates interacted specifically with the NLS-receptor importin . Plasmid–lissamine–NLS conjugates were not detected in the nucleus, after cytoplasmic microinjection. Plasmids did not diffuse from the site of injection and plasmid–lissamine–NLS conjugates appeared to be progressively degraded in the cytoplasm. The process of plasmid DNA sequestration/degradation stressed in this study might be as important in limiting the efficiency of nonviral gene transfer as the generally recognized entry step of plasmid DNA from the cytoplasm into the nucleus 相似文献
4.
Background
A number of RNA binding proteins (BPs) bind to A+U rich elements (AREs), commonly present within 3'UTRs of highly regulated RNAs. Individual RNA-BPs proteins can modulate RNA stability, RNA localization, and/or translational efficiency. Although biochemical studies have demonstrated selectivity of ARE-BPs for individual RNAs, less certain is the in vivo composition of RNA-BP multiprotein complexes and how their composition is affected by signaling events and intracellular localization. Using FRET, we previously demonstrated that two ARE-BPs, HuR and AUF1, form stable homomeric and heteromeric associations in the nucleus and cytoplasm. In the current study, we use immuno-FRET of endogenous proteins to examine the intracellular localization and interactions of HuR and AUF1 as well as KSRP, TIA-1, and Hedls. These results were compared to those obtained with their exogenously expressed, fluorescently labeled counterparts. 相似文献5.
6.
It is known that following iron overload newly synthesized ferritin molecules accumulate in lysosomes. However, the way in which these molecules enter the lysosomes has not been clarified. In order to assess if these molecules can be taken up by lysosomes from the cell sap, i.e., by way of autophagy, ferritin was introduced into HeLa cells through microinjection with a glass capillary. The fate of the ferritin was studied after varying intervals with the electron microscope. Shortly after microinjection ferritin molecules could be observed in the cell sap. After both 1 and 2 h, they were found in clusters and still mainly in the cell sap. After 4 h, ferritin molecules were present not only in the cell sap and in autophagic vacuoles but also in occasional secondary lysosomes. After 12 h, they were seen mainly in lysosomes, undergoing degradation. In no instance were ferritin molecules translocated into other organelles such as mitochondria, Golgi apparatus, or endoplasmic reticulum. The present study demonstrates that ferritin can be introduced into cells by glass capillary microinjection without cell damage. From its initial location in the cell sap ferritin is taken up into the lysosomal vacuome. Autophagy is considered to be the principal mechanism for the transfer of the ferritin molecules into lysosomes. 相似文献
7.
Intracellular oligonucleotide hybridization detected by fluorescence resonance energy transfer (FRET). 总被引:2,自引:4,他引:2 下载免费PDF全文
Fluorescence resonance energy transfer (FRET) was used to study hybrid formation and dissociation after microinjection of oligonucleotides (ODNs) into living cells. A 28-mer phosphodiester ODN (+PD) was synthesized and labeled with a 3' rhodamine (+PD-R). The complementary, antisense 5'-fluorescein labeled phosphorothioate ODN (-PT-F) was specifically quenched by addition of the +PD-R. In solution, the -PT-F/+PD-R hybrid had a denaturation temperature of 65 +/- 3 degrees C detected by both absorbance and FRET. Hybridization between the ODNs occurred within 1 minute at 17 microM and was not appreciably affected by the presence of non-specific DNA. The pre-formed hybrid slowly dissociated (T1/2 approximately 3 h) in the presence of a 300-fold excess of the unlabeled complementary ODN and could be degraded by DNAse I. Upon microinjection into the cytoplasm of cells, pre-formed fluorescent hybrids dissociated with a half-time of 15 minutes, which is attributed to the degradation of the phosphodiester. Formation of the hybrid from sequentially injected ODNs was detected by FRET transiently in the cytoplasm and later in the cell nucleus, where nearly all injected ODNs accumulate. This suggests that antisense ODNs can hybridize to an intracellular target, of exogenous origin in these studies, in both the cytoplasm and the nucleus. 相似文献
8.
The exact nature of membrane protein folding and assembly is not understood in detail yet. Addition of SDS to a membrane protein dissolved in mild, non-polar detergent results in formation of mixed micelles and in subsequent denaturation of higher ordered membrane protein structures. The exact nature of this denaturation event is, however, enigmatic, and separation of an individual helix pair in mixed micelles has also not been reported yet. Here we followed unfolding of the human glycophorin A transmembrane helix dimer in mixed micelles by fluorescence spectroscopy. Energy transfer between differently labelled glycophorin A transmembrane helices decreased with increasing SDS mole fractions albeit without modifying the helicity of the peptides. The energetics and kinetics of the dimer dissociation in mixed micelles is analyzed and discussed, and the experimental data demonstrate that mixed micelles can be used as a general method to investigate unfolding of α-helical membrane proteins. 相似文献
9.
Sebastian L. B. K?nig Mélodie Hadzic Erica Fiorini Richard B?rner Danny Kowerko Wolf U. Blanckenhorn Roland K. O. Sigel 《PloS one》2013,8(12)
Time-binned single-molecule Förster resonance energy transfer (smFRET) experiments with surface-tethered nucleic acids or proteins permit to follow folding and catalysis of single molecules in real-time. Due to the intrinsically low signal-to-noise ratio (SNR) in smFRET time traces, research over the past years has focused on the development of new methods to extract discrete states (conformations) from noisy data. However, limited observation time typically leads to pronounced cross-sample variability, i.e., single molecules display differences in the relative population of states and the corresponding conversion rates. Quantification of cross-sample variability is necessary to perform statistical testing in order to assess whether changes observed in response to an experimental parameter (metal ion concentration, the presence of a ligand, etc.) are significant. However, such hypothesis testing has been disregarded to date, precluding robust biological interpretation. Here, we address this problem by a bootstrap-based approach to estimate the experimental variability. Simulated time traces are presented to assess the robustness of the algorithm in conjunction with approaches commonly used in thermodynamic and kinetic analysis of time-binned smFRET data. Furthermore, a pair of functionally important sequences derived from the self-cleaving group II intron Sc.ai5γ (d3''EBS1*/IBS1*) is used as a model system. Through statistical hypothesis testing, divalent metal ions are shown to have a statistically significant effect on both thermodynamic and kinetic aspects of their interaction. The Matlab source code used for analysis (bootstrap-based analysis of smFRET data, BOBA FRET), as well as a graphical user interface, is available via http://www.aci.uzh.ch/rna/. 相似文献
10.
K Carlson 《Journal of virology》1968,2(10):1230-1233
11.
Fluorescence resonance energy transfer (FRET) is a technique used to measure the interaction between two molecules labeled with two different fluorophores (the donor and the acceptor) by the transfer of energy from the excited donor to the acceptor. In biological applications, this technique has become popular to qualitatively map protein-protein interactions, and in biophysical projects it is used as a quantitative measure for distances between a single donor and acceptor molecule. Numerous approaches can be found in the literature to quantify and map FRET, but the measures they provide are often difficult to interpret. We propose here a quantitative comparison of these methods by using a surface FRET system with controlled amounts of donor and acceptor fluorophores and controlled distances between them. We support the system with a Monte Carlo simulation of FRET, which provides reference values for the FRET efficiency under various experimental conditions. We validate a representative set of FRET efficiencies and indices calculated from the different methods with different experimental settings. Finally, we test their sensitivity and draw conclusions for the preparation of FRET experiments in more complex and less-controlled systems. 相似文献
12.
The delivery of oligodeoxynucleotides (ODNs) into cells is widely utilized for antisense, antigene, aptamer, and similar approaches to regulate gene and protein activities based upon the ODNs' sequence-specific recognition. Short pieces of DNA can also be generated in biological processes, for example, after degradation of viral or bacterial DNA. However, the mechanisms that regulate intracellular trafficking and localization of ODNs are not fully understood. Here we study the effects of major transporters of microRNA, exportin-1 (Exp1) and exportin-5 (Exp5), on the transport of single-stranded ODNs in and out of the nucleus. For this, we employed a fluorescent microscopy-based assay to quantitatively measure the redistribution of ODNs between the nucleus and cytoplasm of live cells. By measuring the fluorescent signal of the nuclei we observed that after delivery into cells via cationic liposomes ODNs rapidly accumulated inside nuclei. However, after removal of the ODN/liposome containing media, we found re-localization of ODNs from the nuclei to cytoplasm of the cells over the time course of several hours. Downregulation of the Exp5 gene by siRNA resulted in a slight increase of ODN uptake into the nucleus, but the kinetics of ODN efflux to the cytoplasm was not affected. Inhibition of Exp1 with leptomycin B somewhat slowed down the clearance of ODNs from the nucleus; however, within 6 hours most of the ODN were still being cleared form the nucleus. ODNs that could form intramolecular G-quadruplex structures behaved differently. They also accumulated in nuclei, although at a lesser extent than unstructured ODN, but they remained there for up to 20 hours after transfection, causing significant cell death. We conclude that Exp1 and Exp5 are not the major transporters of our ODNs out of the nucleus, and that the transport of ODNs is strongly affected by their secondary structure. 相似文献
13.
《Biophysical journal》2021,120(17):3747-3763
Linker histones (LHs) bind to nucleosomes with their globular domain (gH) positioned in either an on- or an off-dyad binding mode. Here, we study the effect of the linker DNA (L-DNA) sequence on the binding of a full-length LH, Xenopus laevis H1.0b, to a Widom 601 nucleosome core particle (NCP) flanked by two 40 bp long L-DNA arms, by single-pair FRET spectroscopy. We varied the sequence of the 11 bp of L-DNA adjoining the NCP on either side, making the sequence either A-tract, purely GC, or mixed with 64% AT. The labeled gH consistently exhibited higher FRET efficiency with the labeled L-DNA containing the A-tract than that with the pure-GC stretch, even when the stretches were swapped. However, it did not exhibit higher FRET efficiency with the L-DNA containing 64% AT-rich mixed DNA when compared to the pure-GC stretch. We explain our observations with a model that shows that the gH binds on dyad and that two arginines mediate recognition of the A-tract via its characteristically narrow minor groove. To investigate whether this on-dyad minor groove-based recognition was distinct from previously identified off-dyad major groove-based recognition, a nucleosome was designed with A-tracts on both the L-DNA arms. One A-tract was complementary to thymine and the other to deoxyuridine. The major groove of the thymine-tract was lined with methyl groups that were absent from the major groove of the deoxyuridine tract. The gH exhibited similar FRET for both these A-tracts, suggesting that it does not interact with the thymine methyl groups exposed on the major groove. Our observations thus complement previous studies that suggest that different LH isoforms may employ different ways of recognizing AT-rich DNA and A-tracts. This adaptability may enable the LH to universally compact scaffold-associated regions and constitutive heterochromatin, which are rich in such sequences. 相似文献
14.
Membrane fusion is one of the most important cellular processes by which two initially distinct lipid bilayers merge their hydrophobic cores, resulting in one interconnected structure. Proteins, called SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein receptor), play a central role in the fusion process that is also regulated by several accessory proteins. In order to study the SNARE-mediated membrane fusion, the in vitro protein reconstitution assay involving ensemble FRET (fluorescence resonance energy transfer) has been used over a decade. In this mini-review, we describe several single-molecule-based FRET approaches that have been applied to this field to overcome the shortage of the bulk assay in terms of protein and fusion dynamics. 相似文献
15.
Intracellular availability of unmodified, phosphorothioated and liposomally encapsulated oligodeoxynucleotides for antisense activity. 总被引:3,自引:0,他引:3 下载免费PDF全文
We have studied factors which may effect the intracellular availability of oligonucleotides to achieve antisense activity. 15-20 mer unmodified, phosphorothioate modified and liposomally encapsulated oligodeoxynucleotides have been tested in leukemia MOLT-3 cells. Phosphorothioate analogs penetrated and accumulated intact in cells in contrast to unmodified oligomers, which showed a high instability in cell culture medium. A slow decrease of intracellular concentration of undegraded phosphorothioate oligodeoxynucleotides was observed after cell treatment and could be predominantly explained by a significant efflux transport. Using laser-assisted confocal microscopy we have observed that fluorescein 5-end-labeled phosphorothioate derivatives predominantly distributed in intracytoplasmic endocytic vesicles following cell treatment. The end-capped version of phosphorothioate oligodeoxynucleotides exhibited greater cellular uptake than fully modified analogues while exhibiting similar biological stability. Liposome encapsulation made possible oligomer protection in serum-containing medium and substantially improved cellular accumulation. Furthermore, the efflux rate of oligomer initially introduced within liposomes is 2-fold lower than that observed in cells which have been incubated with free oligonucleotides. Liposomal preparations of oligodeoxynucleotides facilitate release from endocytic vesicles, and thus, cytoplasmic and nuclear localization are observed following cell treatment. Furthermore, intracellular distribution studies demonstrate that intracellular transport of unmodified oligomers is effectively achieved using the liposomal carrier. 相似文献
16.
Full-length fibrinogen B beta cDNA was subcloned into an expression vector, pBC12BI, and transfected into COS cells. B beta chain expression was measured by pulse-labelling cells with L-[35S]methionine, immunoprecipitating the B beta chain with antibody to fibrinogen and separating the nascent radioactive protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). B beta chain was expressed in transfected COS cells but was not secreted into the medium. Treatment with endoglycosidase H showed that non-secreted B beta chain contains mannose-rich carbohydrates rather than the complex form of carbohydrate which occurs in plasma fibrinogen and indicates that B beta chain is not transported to the Golgi apparatus. In transfected COS cells, antibody to fibrinogen co-immunoprecipitated B beta chain and 78 kDa immunoglobulin-binding protein (BiP) and antibody to BiP immunoprecipitated BiP and nascent B beta chains. Non-secreted B beta chain was degraded intracellularly with a half-life of 5 h by enzymes which were not affected by incubating transfected cells with NH4Cl, which indicates a non-lysosomal pathway of degradation. These studies indicate that B beta chain by itself does not contain the signal for fibrinogen secretion and that non-secreted B beta chain is associated with BiP and degraded in the rough endoplasmic reticulum. 相似文献
17.
In vivo fate of phosphorothioate antisense oligodeoxynucleotides: predominant uptake by scavenger receptors on endothelial liver cells. 总被引:1,自引:0,他引:1 下载免费PDF全文
M K Bijsterbosch M Manoharan E T Rump R L De Vrueh R van Veghel K L Tivel E A Biessen C F Bennett P D Cook T J van Berkel 《Nucleic acids research》1997,25(16):3290-3296
Systemically administered phosphorothioate antisense oligodeoxynucleotides can specifically affect the expression of their target genes, which affords an exciting new strategy for therapeutic intervention. Earlier studies point to a major role of the liver in the disposition of these oligonucleotides. The aim of the present study was to identify the cell type(s) responsible for the liver uptake of phosphorothioate oligodeoxynucleotides and to examine the mechanisms involved. In our study we used ISIS-3082, a phosphorothioate antisense oligodeoxynucleotide specific for murine ICAM-1. Intravenously injected [3H]ISIS-3082 (dose: 1 mg/kg) was cleared from the circulation of rats with a half-life of 23.3+/-3.8 min. At 90 min after injection (>90% of [3H]ISIS-3082 cleared), the liver contained the most radioactivity, whereas the second-highest amount was recovered in the kidneys (40.5+/-1.4% and 17.9+/-1.3% of the dose, respectively). Of the remaining tissues, only spleen and bone marrow actively accumulated [3H]ISIS-3082. By injecting different doses of [3H]ISIS-3082, it was found that uptake by liver, spleen, bone marrow, and kidneys is saturable, which points to a receptor-mediated process. Subcellular fractionation of the liver indicates that ISIS-3082 is internalized and delivered to the lysosomes. Liver uptake occurs mainly (for 56.1+/-3.0%) by endothelial cells, whereas parenchymal and Kupffer cells account for 39.6+/-4.5 and 4.3+/-1.7% of the total liver uptake, respectively. Preinjection of polyinosinic acid substantially reduced uptake by liver and bone marrow, whereas polyadenylic acid was ineffective, which indicates that in these tissues scavenger receptors are involved in uptake. Polyadenylic acid, but not polyinosinic acid, reduced uptake by kidneys, which suggests renal uptake by scavenger receptors different from those in the liver. We conclude that scavenger receptors on rat liver endothelial cells play a predominant role in the plasma clearance of ISIS-3082. As scavenger receptors are also expressed on human endothelial liver cells, our findings are probably highly relevant for the therapeutic application of phosphorothioate oligodeoxynucleotides in humans. If the target gene is not localized in endothelial liver cells, the therapeutic effectiveness might be improved by developing delivery strategies that redirect the oligonucleotides to the actual target cells. 相似文献
18.
Scarbrough K 《Methods (San Diego, Calif.)》2000,22(3):255-260
Perturbation analysis has been crucial in the study of biological rhythms. Antisense technology provides investigators with new means to alter the internal milieu of the circadian clock itself. Practical aspects of the method and the theoretical background are presented in sufficient detail to enable others to design appropriate antisense oligodeoxynucleotides and use them for research purposes. This strategy will contribute substantially to the understanding of the influence of individual genes on rhythms in hormone secretion, metabolism, and behavior. 相似文献
19.
A practical guide to single-molecule FRET 总被引:1,自引:0,他引:1
Single-molecule fluorescence resonance energy transfer (smFRET) is one of the most general and adaptable single-molecule techniques. Despite the explosive growth in the application of smFRET to answer biological questions in the last decade, the technique has been practiced mostly by biophysicists. We provide a practical guide to using smFRET, focusing on the study of immobilized molecules that allow measurements of single-molecule reaction trajectories from 1 ms to many minutes. We discuss issues a biologist must consider to conduct successful smFRET experiments, including experimental design, sample preparation, single-molecule detection and data analysis. We also describe how a smFRET-capable instrument can be built at a reasonable cost with off-the-shelf components and operated reliably using well-established protocols and freely available software. 相似文献
20.
V. V. Speransky T. M. Novikova A. L. Metlina 《Biochemistry (Moscow) Supplemental Series A: Membrane and Cell Biology》2008,2(4):341-348
The intracellular disc-like lamellar structure (DLS) earlier detected in the motility apparatus of Halobacterum salinarum and details of insertion of proximal ends of flagella into DLS were studied using electron microscopy. Analysis of ultrathin sections obtained after fixation with potassium permanganate established that DLS, absent in bacteria, contains a membrane-like structure. Electron microscopic studies of cell ghosts obtained by mild cytolysis in low-NaCl solutions shed additional light as on details of DLS structure and so on localization of flagellar proximal ends. Structural organization of the motility apparatus of bacteria and archaebacteria as representatives of two distinct taxonomic domains is discussed. 相似文献