首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The response of forest soil CO2 efflux to the elevation of two climatic factors, the atmospheric concentration of CO2 (↑CO2 of 700 μmol mol−1) and air temperature (↑ T with average annual increase of 5°C), and their combination (↑CO2+↑ T ) was investigated in a 4-year, full-factorial field experiment consisting of closed chambers built around 20-year-old Scots pines ( Pinus sylvestris L.) in the boreal zone of Finland. Mean soil CO2 efflux in May–October increased with elevated CO2 by 23–37%, with elevated temperature by 27–43%, and with the combined treatment by 35–59%. Temperature elevation was a significant factor in the combined 4-year efflux data, whereas the effect of elevated CO2 was not as evident. Elevated temperature had the most pronounced impact early and late in the season, while the influence of elevated CO2 alone was especially notable late in the season. Needle area was found to be a significant predictor of soil CO2 efflux, particularly in August, a month of high root growth, thus supporting the assumption of a close link between whole-tree physiology and soil CO2 emissions. The decrease in the temperature sensitivity of soil CO2 efflux observed in the elevated temperature treatments in the second year nevertheless suggests the existence of soil response mechanisms that may be independent of the assimilating component of the forest ecosystem. In conclusion, elevated atmospheric CO2 and air temperature consistently increased forest soil CO2 efflux over the 4-year period, their combined effect being additive, with no apparent interaction.  相似文献   

2.
With the large extent and great amount of soil carbon (C) storage, drylands play an important role in terrestrial C balance and feedbacks to climate change. Yet, how dryland soils respond to gradual and concomitant changes in multiple global change drivers [e.g., temperature (Ts), precipitation (Ppt), and atmospheric [CO2] (CO2)] has rarely been studied. We used a process‐based ecosystem model patch arid land simulator to simulate dryland soil respiration (Rs) and C pool size (Cs) changes to abrupt vs. gradual and single vs. combined alterations in Ts, Ppt and CO2 at multiple treatment levels. Results showed that abrupt perturbations generally resulted in larger Rs and had longer differentiated impacts than did gradual perturbations. Rs was stimulated by increases in Ts, Ppt, and CO2 in a nonlinear fashion (e.g., parabolically or asymptotically) but suppressed by Ppt reduction. Warming mainly stimulated heterotrophic Rs (i.e., Rh) whereas Ppt and CO2 influenced autotrophic Rs (i.e., Ra). The combined effects of warming, Ppt, and CO2 were nonadditive of primary single‐factor effects as a result of substantial interactions among these factors. Warming amplified the effects of both Ppt addition and CO2 elevation whereas Ppt addition and CO2 elevation counteracted with each other. Precipitation reduction either magnified or suppressed warming and CO2 effects, depending on the magnitude of factor's alteration and the components of Rs (Ra or Rh) being examined. Overall, Ppt had dominant influence on dryland Rs and Cs over Ts and CO2. Increasing Ppt individually or in combination with Ts and CO2 benefited soil C sequestration. We therefore suggested that global change experimental studies for dryland ecosystems should focus more on the effects of precipitation regime changes and the combined effects of Ppt with other global change factors (e.g., Ts, CO2, and N deposition).  相似文献   

3.
We investigated the effects of elevated soil temperature and atmospheric CO2 on soil CO2 efflux (SCE) during the third and fourth years of study. We hypothesized that elevated temperature would stimulate SCE, and elevated CO2 would also stimulate SCE with the stimulation being greater at higher temperatures. The study was conducted in sun-lit controlled-environment chambers using Douglas-fir (Pseudotsuga menziesii) seedlings grown in reconstructed litter-soil systems. We used a randomized design with two soil temperature and two atmospheric CO2 treatments. The SCE was measured every 4 wk for 18 months. Neither elevated temperature nor CO2 stimulated SCE. Elevated CO2 increased the temperature sensitivity of SCE. During the winter, the relationship between SCE and soil moisture was negative but it was positive during the summer. The seasonal patterns in SCE were associated with seasonal changes in photosynthesis and above-ground plant growth. SCE acclimatized in the high-temperature treatment, probably because of a loss of labile soil carbon. Elevated CO2 treatment increased the temperature sensitivity of SCE, probably through an increase in substrate availability.  相似文献   

4.
Interactions between photosynthetic substrate supply and temperature in determining the rate of three respiration components (leaf, belowground and ecosystem respiration) were investigated within three environmentally controlled, Populus deltoides forest bays at Biosphere 2, Arizona. Over 2 months, the atmospheric CO2 concentration and air temperature were manipulated to test the following hypotheses: (1) the responses of the three respiration components to changes in the rate of photosynthesis would differ both in speed and magnitude; (2) the temperature sensitivity of leaf and belowground respiration would increase in response to a rise in substrate availability; and, (3) at the ecosystem level, the ratio of respiration to photosynthesis would be conserved despite week‐to‐week changes in temperature. All three respiration rates responded to the CO2 concentration‐induced changes in photosynthesis. However, the proportional change in the rate of leaf respiration was more than twice that of belowground respiration and, when photosynthesis was reduced, was also more rapid. The results suggest that aboveground respiration plays a key role in the overall response of ecosystem respiration to short‐term changes in canopy photosynthesis. The short‐term temperature sensitivity of leaf respiration, measured within a single night, was found to be affected more by developmental conditions than photosynthetic substrate availability, as the Q10 was lower in leaves that developed at high CO2, irrespective of substrate availability. However, the temperature sensitivity of belowground respiration, calculated between periods of differing air temperature, appeared to be positively correlated with photosynthetic substrate availability. At the ecosystem level, respiration and photosynthesis were positively correlated but the relationship was affected by temperature; for a given rate of daytime photosynthesis, the rate of respiration the following night was greater at 25 than 20°C. This result suggests that net ecosystem exchange did not acclimate to temperature changes lasting up to 3 weeks. Overall, the results of this study demonstrate that the three respiration terms differ in their dependence on photosynthesis and that, short‐ and medium‐term changes in temperature may affect net carbon storage in terrestrial ecosystems.  相似文献   

5.
    
As the second largest carbon (C) flux between the atmosphere and terrestrial ecosystems, soil respiration (Rs) plays vital roles in regulating atmospheric CO2 concentration ([CO2]) and climatic dynamics in the earth system. Although numerous manipulative studies and a few meta‐analyses have been conducted to determine the responses of Rs and its two components [i.e., autotrophic (Ra) and heterotrophic (Rh) respiration] to single global change factors, the interactive effects of the multiple factors are still unclear. In this study, we performed a meta‐analysis of 150 multiple‐factor (≥2) studies to examine the main and interactive effects of global change factors on Rs and its two components. Our results showed that elevated [CO2] (E), nitrogen addition (N), irrigation (I), and warming (W) induced significant increases in Rs by 28.6%, 8.8%, 9.7%, and 7.1%, respectively. The combined effects of the multiple factors, EN, EW, DE, IE, IN, IW, IEW, and DEW, were also significantly positive on Rs to a greater extent than those of the single‐factor ones. For all the individual studies, the additive interactions were predominant on Rs (90.6%) and its components (≈70.0%) relative to synergistic and antagonistic ones. However, the different combinations of global change factors (e.g., EN, NW, EW, IW) indicated that the three types of interactions were all important, with two combinations for synergistic effects, two for antagonistic, and five for additive when at least eight independent experiments were considered. In addition, the interactions of elevated [CO2] and warming had opposite effects on Ra and Rh, suggesting that different processes may influence their responses to the multifactor interactions. Our study highlights the crucial importance of the interactive effects among the multiple factors on Rs and its components, which could inform regional and global models to assess the climate–biosphere feedbacks and improve predictions of the future states of the ecological and climate systems.  相似文献   

6.
Hurricane disturbances have profound impacts on ecosystem structure and function, yet their effects on ecosystem CO2 exchange have not been reported. In September 2004, our research site on a fire‐regenerated scrub‐oak ecosystem in central Florida was struck by Hurricane Frances with sustained winds of 113 km h−1 and wind gusts as high as 152 km h−1. We quantified the hurricane damage on this ecosystem resulting from defoliation: we measured net ecosystem CO2 exchange, the damage and recovery of leaf area, and determined whether growth in elevated carbon dioxide concentration in the atmosphere (Ca) altered this disturbance. The hurricane decreased leaf area index (LAI) by 21%, which was equal to 60% of seasonal variation in canopy growth during the previous 3 years, but stem damage was negligible. The reduction in LAI led to a 22% decline in gross primary production (GPP) and a 25% decline in ecosystem respiration (Re). The compensatory declines in GPP and Re resulted in no significant change in net ecosystem production (NEP). Refoliation began within a month after the hurricane, although this period was out of phase with the regular foliation period, and recovered 20% of the defoliation loss within 2.5 months. Full recovery of LAI, ecosystem CO2 assimilation, and ecosystem respiration did not occur until the next growing season. Plants exposed to elevated Ca did not sustain greater damage, nor did they recover faster than plants grown under ambient Ca. Thus, our results indicate that hurricanes capable of causing significant defoliation with negligible damage to stems have negligible effects on NEP under current or future CO2‐enriched environment.  相似文献   

7.
EcoCELLs: tools for mesocosm scale measurements of gas exchange   总被引:1,自引:0,他引:1  
We describe the use of a unique plant growth facility, which has as its centerpiece four ‘EcoCELLs’, or 5x7 m mesocosms designed as open-flow, mass-balance systems for the measurement of carbon, water and trace gas fluxes. This system is unique in that it was conceived specifically to bridge the gap between measurement scales during long-term experiments examining the function and development of model ecosystems. There are several advantages to using EcoCELLs, including (i) the same theory of operation as leaf level gas exchange systems, but with continuous operation at a much larger scale: (ii) the ability to independently evaluate canopy-level and ecosystem models; (iii) simultaneous manipulation of environmental factors and measurement of system-level responses, and (iv) maximum access to, and manipulation of, a large rooting volume. In addition to discussing the theory, construction and relative merits of EcoCELLs, we describe the calibration and use of the EcoCELLs during a ‘proof of concept’ experiment. This experiment involved growing soybeans under two ambient CO2 concentrations (?360 and 710μmol mol?1. During this experiment, we asked ‘How accurate is the simplest model that can be used to scale from leaf-level to canopy-level responses?’ in order to illustrate the utility of the EcoCELLs in validating canopy-scale models.  相似文献   

8.
    
The degree to which climate warming will stimulate soil organic carbon (SOC) losses via heterotrophic respiration remains uncertain, in part because different or even opposite microbial physiology and temperature relationships have been proposed in SOC models. We incorporated competing microbial carbon use efficiency (CUE)–mean annual temperature (MAT) and enzyme kinetic–MAT relationships into SOC models, and compared the simulated mass‐specific soil heterotrophic respiration rates with multiple published datasets of measured respiration. The measured data included 110 dryland soils globally distributed and two continental to global‐scale cross‐biome datasets. Model–data comparisons suggested that a positive CUE–MAT relationship best predicts the measured mass‐specific soil heterotrophic respiration rates in soils distributed globally. These results are robust when considering models of increasing complexity and competing mechanisms driving soil heterotrophic respiration–MAT relationships (e.g., carbon substrate availability). Our findings suggest that a warmer climate selects for microbial communities with higher CUE, as opposed to the often hypothesized reductions in CUE by warming based on soil laboratory assays. Our results help to build the impetus for, and confidence in, including microbial mechanisms in soil biogeochemical models used to forecast changes in global soil carbon stocks in response to warming.  相似文献   

9.
Elevated atmospheric carbon dioxide (CO2e) increases soil respiration rates in forest, grassland, agricultural and wetland systems as a result of increased growth, root biomass and enhanced biological activity of soil microorganisms. Less is known about how forest floor fluxes respond to the combined effects of elevated CO2 and nutrient amendments; until now no experiments have been in place with large forest trees to allow even preliminary investigations. We investigated changes in forest floor respiration (Sff) in a Pinus taeda L. plantation fumigated with CO2 by using free‐air CO2 enrichment (FACE) technology and given nutrient amendments. The prototype FACE apparatus (FACEp; 707 m2) was constructed in 1993, 10 years after planting, on a moderate fertility site in Duke Forest, North Carolina, USA, enriching the stand to 55 Pa (CO2e). A nearby ambient CO2 (CO2a) plot (117 m2) was designated at the inception of the study as a reference (Ref). Both FACEp and Ref plot were divided in half and urea fertilizer was applied to one half at an annual rate of 11.2 g N m?2 in the spring of 1998, 1999 and 2000. Forest floor respiration was monitored continuously for 220 days – March through November 2000 – by using two Automated Carbon Efflux Systems. Thirty locations (491 cm2 each) were sampled in both FACEp and Ref, about half in each fertility treatment. Forest floor respiration was strongly correlated with soil temperature at 5 cm. Rates of Sff were greater in CO2e relative to CO2a (an enhancement of ~178 g C m?2) during the measurement period. Application of fertilizer resulted in a statistically significant depression of respiration rates in both the CO2a and CO2e plots (a reduction of ~186 g C m?2). The results suggest that closed canopy forests on moderate fertility sites cycle back to the atmosphere more assimilated carbon (C) than similar forests on sites of high fertility. We recognize the limitations of this non‐replicated study, but its clear results offer strong testable hypotheses for future research in this important area.  相似文献   

10.
Soil carbon is returned to the atmosphere through the process of soil respiration, which represents one of the largest fluxes in the terrestrial C cycle. The effects of climate change on the components of soil respiration can affect the sink or source capacity of ecosystems for atmospheric carbon, but no current techniques can unambiguously separate soil respiration into its components. Long‐term free air CO2 enrichment (FACE) experiments provide a unique opportunity to study soil C dynamics because the CO2 used for fumigation has a distinct isotopic signature and serves as a continuous label at the ecosystem level. We used the 13C tracer at the Duke Forest FACE site to follow the disappearance of C fixed before fumigation began in 1996 (pretreatment C) from soil CO2 and soil‐respired CO2, as an index of belowground C dynamics during the first 8 years of the experiment. The decay of pretreatment C as detected in the isotopic composition of soil‐respired CO2 and soil CO2 at 15, 30, 70, and 200 cm soil depth was best described by a model having one to three exponential pools within the soil system. The majority of soil‐respired CO2 (71%) originated in soil C pools with a turnover time of about 35 days. About 55%, 50%, and 68% of soil CO2 at 15, 30, and 70 cm, respectively, originated in soil pools with turnover times of less than 1 year. The rest of soil CO2 and soil‐respired CO2 originated in soil pools that turn over at decadal time scales. Our results suggest that a large fraction of the C returned to the atmosphere through soil respiration results from dynamic soil C pools that cannot be easily detected in traditionally defined soil organic matter standing stocks. Fast oxidation of labile C substrates may prevent increases in soil C accumulation in forests exposed to elevated [CO2] and may consequently result in shorter ecosystem C residence times.  相似文献   

11.
12.
    
To fully understand how soil respiration is partitioned among its component fluxes and responds to climate, it is essential to relate it to belowground carbon allocation, the ultimate carbon source for soil respiration. This remains one of the largest gaps in knowledge of terrestrial carbon cycling. Here, we synthesize data on gross and net primary production and their components, and soil respiration and its components, from a global forest database, to determine mechanisms governing belowground carbon allocation and their relationship with soil respiration partitioning and soil respiration responses to climatic factors across global forest ecosystems. Our results revealed that there are three independent mechanisms controlling belowground carbon allocation and which influence soil respiration and its partitioning: an allometric constraint; a fine‐root production vs. root respiration trade‐off; and an above‐ vs. belowground trade‐off in plant carbon. Global patterns in soil respiration and its partitioning are constrained primarily by the allometric allocation, which explains some of the previously ambiguous results reported in the literature. Responses of soil respiration and its components to mean annual temperature, precipitation, and nitrogen deposition can be mediated by changes in belowground carbon allocation. Soil respiration responds to mean annual temperature overwhelmingly through an increasing belowground carbon input as a result of extending total day length of growing season, but not by temperature‐driven acceleration of soil carbon decomposition, which argues against the possibility of a strong positive feedback between global warming and soil carbon loss. Different nitrogen loads can trigger distinct belowground carbon allocation mechanisms, which are responsible for different responses of soil respiration to nitrogen addition that have been observed. These results provide new insights into belowground carbon allocation, partitioning of soil respiration, and its responses to climate in forest ecosystems and are, therefore, valuable for terrestrial carbon simulations and projections.  相似文献   

13.
We investigated the effects of three elevated atmospheric CO2 levels on a Populus deltoides plantation at Biosphere 2 Laboratory in Oracle Arizona. Stable isotopes of carbon have been used as tracers to separate the carbon present before the CO2 treatments started (old C), from that fixed after CO2 treatments began (new C). Tree growth at elevated [CO2] increased inputs to soil organic matter (SOM) by increasing the production of fine roots and accelerating the rate of root C turnover. However, soil carbon content decreased as [CO2] in the atmosphere increased and inputs of new C were not found in SOM. Consequently, the rates of soil respiration increased by 141% and 176% in the 800 and 1200 μL L?1 plantations, respectively, when compared with ambient [CO2] after 4 years of exposure. However, the increase in decomposition of old SOM (i.e. already present when CO2 treatments began) accounted for 72% and 69% of the increase in soil respiration seen under elevated [CO2]. This resulted in a net loss of soil C at a rate that was between 10 and 20 times faster at elevated [CO2] than at ambient conditions. The inability to retain new and old C in the soil may stem from the lack of stabilization of SOM, allowing for its rapid decomposition by soil heterotrophs.  相似文献   

14.
15.
We investigated the effects of elevated atmospheric CO2 concentrations (ambient + 200 ppm) on fine root production and soil carbon dynamics in a loblolly pine (Pinus taeda) forest subject to free‐air CO2 enrichment (FACE) near Durham, NC (USA). Live fine root mass (LFR) showed less seasonal variation than dead fine root mass (DFR), which was correlated with seasonal changes in soil moisture and soil temperature. LFR mass increased significantly (by 86%) in the elevated CO2 treatment, with an increment of 37 g(dry weight) m?2 above the control plots after two years of CO2 fumigation. There was no long‐term increment in DFR associated with elevated CO2, but significant seasonal accumulations of DFR mass occurred during the summer of the second year of fumigation. Overall, root net primary production (RNPP) was not significantly different, but annual carbon inputs were 21.7 gC m?2 y?1 (68%) higher in the elevated CO2 treatment compared to controls. Specific root respiration was not altered by the CO2 treatment during most of the year; however, it was significantly higher by 21% and 13% in September 1997 and May 1998, respectively, in elevated CO2. We did not find statistically significant differences in the C/N ratio of the root tissue, root decomposition or phosphatase activity in soil and roots associated with the treatment. Our data show that the early response of a loblolly pine forest ecosystem subject to CO2 enrichment is an increase in its fine root population and a trend towards higher total RNPP after two years of CO2 fumigation.  相似文献   

16.
    
Terrestrial plant and soil respiration, or ecosystem respiration (Reco), represents a major CO2 flux in the global carbon cycle. However, there is disagreement in how Reco will respond to future global changes, such as elevated atmosphere CO2 and warming. To address this, we synthesized six years (2007–2012) of Reco data from the Prairie Heating And CO2 Enrichment (PHACE) experiment. We applied a semi‐mechanistic temperature–response model to simultaneously evaluate the response of Reco to three treatment factors (elevated CO2, warming, and soil water manipulation) and their interactions with antecedent soil conditions [e.g., past soil water content (SWC) and temperature (SoilT)] and aboveground factors (e.g., vapor pressure deficit, photosynthetically active radiation, vegetation greenness). The model fits the observed Reco well (R= 0.77). We applied the model to estimate annual (March–October) Reco, which was stimulated under elevated CO2 in most years, likely due to the indirect effect of elevated CO2 on SWC. When aggregated from 2007 to 2012, total six‐year Reco was stimulated by elevated CO2 singly (24%) or in combination with warming (28%). Warming had little effect on annual Reco under ambient CO2, but stimulated it under elevated CO2 (32% across all years) when precipitation was high (e.g., 44% in 2009, a ‘wet’ year). Treatment‐level differences in Reco can be partly attributed to the effects of antecedent SoilT and vegetation greenness on the apparent temperature sensitivity of Reco and to the effects of antecedent and current SWC and vegetation activity (greenness modulated by VPD) on Reco base rates. Thus, this study indicates that the incorporation of both antecedent environmental conditions and aboveground vegetation activity are critical to predicting Reco at multiple timescales (subdaily to annual) and under a future climate of elevated CO2 and warming.  相似文献   

17.
    
二氧化碳浓度增加和气候变暖导致太白山林线树木生长与氮有效性关系减弱全球气候变暖、大气二氧化碳浓度(Ca)升高和氮有效性正对全球森林生态系统产生深远影响,尤其是在高海拔林线地区。本研究结合树木生长指标和树轮稳定同位素指标,探讨了太白山林线树种太白红杉(Larix chinensis)对环境胁迫的生理生态响应。研究结果表明,近60年来太白红杉的生长速度显著增加,且该林线树木生长对春季温度特别敏感。太白红杉的潜在水分利用效率(iWUE)的持续上升与大气二氧化碳浓度升高和气候变暖紧密相关,共同促进了树木的生长。1851-1964年,树轮δ15N随树木生长速度的加快逐渐增大;1964年之后转变为不显著的下降,打破了原有的碳-氮平衡。分析结果表明,自20世纪60年代以来气候变暖和iWUE的迅速增加已经取代氮有效性成为树木生长的主要驱动因子。随着树木持续加速生长,氮有效性在未来可能会显著下降甚至供不应求。本研究深入揭示了植物对生长环境变化响应的生理生态机制,这将提高我们预测未来高海拔地区森林生态系统演变的能力。  相似文献   

18.
    
The rapid increase in atmospheric CO2 concentrations (Ca) has resulted in extensive research efforts to understand its impact on terrestrial ecosystems, especially carbon balance. Despite these efforts, there are relatively few data comparing net ecosystem exchange of CO2 between the atmosphere and the biosphere (NEE), under both ambient and elevated Ca. Here we report data on annual sums of CO2 (NEEnet) for 19 years on a Chesapeake Bay tidal wetland for Scirpus olneyi (C3 photosynthetic pathway)‐ and Spartina patens (C4 photosynthetic pathway)‐dominated high marsh communities exposed to ambient and elevated Ca (ambient + 340 ppm). Our objectives were to (i) quantify effects of elevated Ca on seasonally integrated CO2 assimilation (NEEnet = NEEday + NEEnight, kg C m?2 y?1) for the two communities; and (ii) quantify effects of altered canopy N content on ecosystem photosynthesis and respiration. Across all years, NEEnet averaged 1.9 kg m?2 y?1 in ambient Ca and 2.5 kg m?2 y?1 in elevated Ca, for the C3‐dominated community. Similarly, elevated Ca significantly (P < 0.01) increased carbon uptake in the C4‐dominated community, as NEEnet averaged 1.5 kg m?2 y?1 in ambient Ca and 1.7 kg m?2 y?1 in elevated Ca. This resulted in an average CO2 stimulation of 32% and 13% of seasonally integrated NEEnet for the C3‐ and C4‐dominated communities, respectively. Increased NEEday was correlated with increased efficiencies of light and nitrogen use for net carbon assimilation under elevated Ca, while decreased NEEnight was associated with lower canopy nitrogen content. These results suggest that rising Ca may increase carbon assimilation in both C3‐ and C4‐dominated wetland communities. The challenge remains to identify the fate of the assimilated carbon.  相似文献   

19.
While the influence of elevated CO2 on the production, mass and quality of plant seeds has been well studied, the effect of warming on these characters is largely unknown; and there is practically no information on possible interactions between warming and elevated CO2, despite the importance of these characters in population maintenance and recovery. Here, we present the impacts of elevated CO2 and warming, both in isolation and combination, on seed production, mass, quality, germination success and subsequent seedling growth of Austrodanthonia caespitosa , a dominant temperate C3 grass from Australia, using seeds collected from the TasFACE experiment. Mean seed production and mass were not significantly affected by either elevated CO2 or warming, but elevated CO2 more than doubled the proportion of very light, inviable seeds ( P < 0.05) and halved mean seed N concentration ( P < 0.04) and N content ( P < 0.03). The dependence of seed germination success on seed mass was affected by an elevated CO2× warming interaction ( P < 0.004), such that maternal exposure to elevated CO2 or warming reduced germination if applied in isolation, but not when applied in combination. Maternal effects were retained when seedlings were grown in a common environment for 6 weeks, with seedlings descended from warmed plants 20% smaller ( P < 0.008) with a higher root : shoot ratio ( P < 0.001) than those from unwarmed plants. Given that both elevated CO2 and warming reduced seed mass, quality, germinability or seedling growth, it is likely that global change will reduce population growth or distribution of this dominant species.  相似文献   

20.
Partitioning soil respiration (RS) into heterotrophic (RH) and rhizospheric (RR) components is an important step for understanding and modeling carbon cycling in forest ecosystems, but few studies on RR and RH exist in Chinese temperate forests. In this study, we used a trenching plot approach to partition RS in six temperate forests in northeastern China. Our specific objectives were to (1) examine seasonal patterns of soil surface CO2 fluxes from trenched (RT) and untrenched plots (RUT) of these forests; (2) quantify annual fluxes of RS components and their relative contributions in the forest ecosystems; and (3) examine effects of plot trenching on measurements of RS and related environmental factors. The RT maximized in early growing season, but the difference between RUT and RT peaked in later summer. The annual fluxes of RH and RR varied with forest types. The estimated values of RH for the Korean pine (Pinus koraiensis Sieb. et Zucc.), Dahurian larch (Larix gmelinii Rupr.), aspen‐birch (Populous davidiana Dode and Betula platyphylla Suk.), hardwood (Fraxinus mandshurica Rupr., Juglans mandshurica Maxim. and Phellodendron amurense Rupr.), Mongolian oak (Quercus mongolica Fisch.) and mixed deciduous (no dominant tree species) forests averaged 89, 196, 187, 245, 261 and 301 g C m−2 yr−1, respectively; those of RR averaged 424, 209, 628, 538, 524 and 483 g C m−2 yr−1, correspondingly; calculated contribution of RR to RS (RC) varied from 52% in the larch forest to 83% in the pine forest. The annual flux of RR was strongly correlated to biomass of roots <0.5 cm in diameter, while that of RH was weakly correlated to soil organic carbon concentration at A horizon. We concluded that vegetation type and associated carbon metabolisms of temperate forests should be considered in assessing and modeling RS components. The significant impacts of changed soil physical environments and substrate availability by plot trenching should be appropriately tackled in analyzing and interpreting measurements of RS components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号