首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
摘要:【目的】为了构建表达口蹄疫病毒(O/China/99)VP1基因的牛疱疹病毒1型,将人工合成的口蹄疫病毒VP1基因插入到巨细胞病毒(CMV)启动子之下构建gE基因缺失转移载体。【方法】利用磷酸钙介导转染法将该转移载体与亲本病毒BHV-1/gE-/LacZ+的基因组DNA共转染牛鼻甲细胞后收获增殖的病毒。通过筛选白色病毒蚀斑,得到重组病毒BHV-1/gE-/VP1。【结果】PCR检测结果表明VP1基因已经插入到了重组病毒BHV-1/gE-的基因组中,间接免疫荧光试验和Western blot证实了BHV-1/gE-/VP1中的VP1基因在感染的细胞中获得了表达。【结论】本研究成功的构建了表达口蹄疫病毒VP1基因的重组病毒BHV-1/gE-/VP1,为研制口蹄疫及其他重要牛传染病的BHV-1病毒载体疫苗奠定了基础。  相似文献   

2.
【背景】蓝舌病病毒(Bluetongue virus,BTV)是一种严重危害反刍动物的虫媒病毒,我国存在12种血清型BTV (BTV-1、-2、-3、-4、-5、-7、-9、-12、-15、-16、-21和-24)的流行。【目的】建立12种血清型BTV的RT-qPCR定型方法,为BTV的诊断与流行病学研究提供技术保障。【方法】根据我国流行BTV基因节段2 (Seg-2)序列设计引物和TaqMan探针,对引物的特异性与敏感性进行评估;以12种血清型BTV毒株和核酸阳性血液样本验证建立的血清型RT-qPCR检测方法;将其应用于库蠓与动物血液样本中BTV的定型。【结果】建立的BTV血清型RT-qPCR检测方法具有良好的特异性与灵敏性,反应的扩增效率(E)值90.3%,相关系数(R2)值在0.991-0.999之间,对12种血清型BTV核酸的检测下限在25-48拷贝之间。对165株BTV的RT-qPCR定型结果与病毒的Seg-2测序鉴定结果一致;对194份采集于哨兵动物的BTV核酸阳性血液样本的RT-qPCR定型结果与感染动物上分离BTV的血清型一致。采用建立的方法,从2019年云南省师宗县与景洪市采集的库蠓与牛血液样本中鉴定出6种血清型的BTV(BTV-1、-2、-4、-5、-16和-24)。【结论】研究建立的12种BTV血清型RT-qPCR定型方法具有特异、敏感和省时的优点,可用于媒介与动物感染BTV的血清型定型,具有良好的应用与推广价值。  相似文献   

3.
我国存在多种血清型流行性出血热病毒(Epizootic haemorrhagic disease virus,EHDV)的流行,但尚未有关于EHDV-10型毒株的分离报道。为了解云南省EHDV的流行情况,2012~2015年,本研究在云南省设立江城、师宗、芒市三个监控点,定期采集监控动物血液,接种幼仓鼠肾细胞(Baby hamster kidney cell,BHK-21)进行病毒分离;通过PCR检测、血清中和试验、琼脂糖凝胶电泳和电镜观察等方法对分离病毒进行鉴定;对分离毒株的Seg-2/VP2与Seg-3/VP3基因节段进行克隆、测序与序列分析。2013年在云南省师宗县的哨兵牛上分离出一株EHDV毒株(YNSZ-V277-2013),病毒可引起BHK-21细胞出现圆缩、裂解的细胞病变(Cytopathic effect,CPE);电镜下病毒粒子呈球形,无囊膜,表面有大量纤维突,直径在70~80nm之间;病毒基因组dsRNA的琼脂糖凝胶电泳显示分离毒株与其他血清型EHDV一致,呈现"3-3-3"的电泳带型;序列分析显示YNSZ-V277-2013毒株的Seg-2/VP2与Seg-3/VP3序列与日本EHDV-10型毒株(ON-4/N/98)相似度最高,分别为97.5%/98.5%与98.1%/99.8%,证实分离毒株为EHDV-10型;系统发育分析显示YNSZ-V277-2013毒株的Seg-2与日本EHDV-10型毒株(ON-4/N/98)的亲缘关系最近,Seg-3与分离至日本和澳大利亚的EHDV毒株同属Eastern型。本研究首次报道了EHDV-10型毒株在我国的分离以及分离毒株的Seg-2与Seg-3基因序列特征,为进一步开展中国EHDV-10型的流行病学调查与致病性研究提供了基础。  相似文献   

4.
摘要:【目的】获得猪繁殖与呼吸综合征病毒(Porcine Reproductive and Respiratory Syndrome virus, PRRSV)M蛋白基因及其与泛素(Ubiquitin, Ub)基因融合的真核表达质粒,并进一步研究Ub对M基因免疫效果的影响。【方法】利用RT-PCR技术以PRRSV CH-1a株和BALB/c小鼠脾脏组织总RNA为模板,分别扩增出PRRSV M蛋白基因与小鼠的Ub基因,利用SOE技术将PRRSV M基因与小鼠Ub基因进行融合,最终构建真核表达质粒pVAX1-M与pVAX1-U-M。以两种真核表达质粒DNA肌肉免疫BALB/c小鼠后,分别检测体液免疫反应与细胞免疫反应,比较M单基因与Ub-M融合基因DNA免疫所诱生的免疫应答强度【结果】IFA试验表明,pVAX1-M与pVAX1-U-M均能BHK-21细胞内成功表达目的基因;两种重组质粒免疫小鼠后均可诱生PRRSV ELISA抗体与细胞免疫反应,但是pVAX1-U-M诱导的细胞免疫反应明显高于pVAX1-M,差异显著(P<0.05);而其诱导的抗体水平明显低于pVAX1-M,二者差异也显著(P<0.05)。【结论】泛素在一定程度上可以促进PRRSV M基因诱导细胞免疫反应,但对体液免疫未见到同样作用。  相似文献   

5.
【目的】测定一株A型口蹄疫流行毒株的全基因组序列,并构建其全长感染性克隆。【方法】参照已公布的A型口蹄疫病毒序列设计引物,将分离的口蹄疫病毒株A/Sea-97/CHA/2014全基因组分为4个重叠的片段进行RT-PCR扩增,并对其进行序列测定与分析。利用酶切连接法将4个基因片段依次克隆至p Blue Script SKhdv载体中,构建该流行毒株的全长c DNA克隆p QAHN。pQAHN经NotⅠ线性化后转染表达T7 RNA聚合酶的BSR/T7细胞,拯救病毒。【结果】口蹄疫病毒全基因组序列测定结果表明该毒株基因组全长8 171 bp[不包括poly(C)区段和poly(A)尾巴],开放阅读框为6 996 bp,编码2 332个氨基酸,5′和3′非编码区分别为1 091 bp和95 bp。VP1系统发生树分析表明该毒株与A/GDMM/CHA/2013毒株亲缘关系最近,相似性为99.1%。线化全长质粒转染BSR/T7细胞68 h后可观察到典型的细胞病变。拯救病毒的间接免疫荧光、RT-PCR和序列测定结果表明成功拯救出了具有感染性的FMDV。拯救病毒与亲本病毒的噬斑表型及生长曲线试验表明二者具有相似的生长表型和增殖能力。【结论】该研究为我国口蹄疫病原生态分布、分子流行病学调查以及A型FMD新型疫苗的研究提供了有益的材料。  相似文献   

6.
犬细小病毒VP2蛋白在真核细胞中的分泌表达及特性   总被引:1,自引:1,他引:0  
摘要:【目的】利用真核细胞分泌表达犬细小病毒VP2蛋白和研究其特性。【方法】为构建犬细小病毒(Canine parvovirus, CPV)VP2基因的真核分泌型表达载体,首先通过酶切从含有人CD5信号肽序列的质粒中将CD5信号肽基因片段切出,将其连接到真核表达载体pcDNA3.1A的多克隆位点上,构建成pcDNA3.1-CD5sp质粒。然后再通过PCR方法从含有犬细小病毒VP2基因的质粒中扩增VP2基因,并将其插入到pcDNA3.1- CD5sp载体中CD5信号肽的下游,构建成VP2基因的真核分泌型表达载体pcDNA-CD5sp-VP2。经磷酸钙介导转染293T细胞,使其在真核细胞中进行分泌表达,并通过ELISA检测表达的VP2蛋白与犬转铁蛋白受体(TfR)结合的活性。【结果】序列分析结果表明,本实验构建的犬细小病毒VP2基因真核分泌型表达载体结构正确,将该表达载体转染的293T细胞,在培养基中通过Western-blot检测到有VP2重组蛋白的存在。经ELISA检测表明表达的重组VP2蛋白具有与犬转铁蛋白受体结合的活性。【结论】 利用人的CD5信号肽实现了犬细小病毒VP2蛋白在真核细胞中的分泌表达,表达的VP2蛋白具有与犬转铁蛋白受体结合的活性。  相似文献   

7.
【目的】为加深云南省动物虫媒病毒多样性的认知。【方法】在云南省景洪市设立哨兵牛,定期采血接种细胞进行虫媒病毒的分离;通过RT-PCR、电镜观察与基因组琼脂糖凝胶电泳对分离病毒进行初步鉴定;扩增分离病毒的基因节段2 (Seg-2)与基因节段3 (Seg-3)全长序列进行分析与系统发生树的构建,明确病毒的分类地位;通过qRT-PCR与血清中和试验对病毒在动物上的感染进行回溯分析。【结果】2019年7月,从哨兵牛上采集的血液中分离到1株可在BHK-21细胞上引起细胞病变的病毒;电镜下观察,病毒粒子呈球形,直径约70nm;琼脂糖凝胶电泳显示病毒基因组由双链RNA组成,呈现"3-3-3"的带型特征。分离毒株的Seg-2编码环状病毒属病毒保守的T2蛋白,与Mobuck virus具有最近的亲缘关系,核酸与氨基酸序列相似度分别为72.8%与84.0%;分离毒株的Seg-3编码决定环状病毒属病毒血清型的OC1蛋白,与Mobuckvirus的核酸与氨基酸序列相似度仅为60.2%与56.5%;在T2与OC1蛋白构建的系统发生树上,分离毒株形成独立于Mobuckvirus的进化分支。对哨兵牛血液中的病毒核酸与血清中和抗体回溯分析结果显示,从病毒感染哨兵动物至监测期结束的17周内,动物血液中均可检测到病毒核酸;动物感染病毒1周后,开始产生特异性中和抗体,随后上升至最高水平(抗体效价1:226),至监测期结束,中和抗体仍维持在较高水平(抗体效价1:113)。【结论】本研究首次报道了1种新型Mobuckvirus在云南省哨兵牛上的分离与感染特性。研究结果丰富了对我国环状病毒属病毒的认知,为开展病毒的诊断、流行病学与致病性研究奠定了基础。  相似文献   

8.
【目的】为了研究O型口蹄疫病毒VP3G–H环中氨基酸突变对其生物学特性的影响。【方法】借助口蹄疫病毒反向遗传操作技术平台拯救出2株定点突变体rHN~(V3174Y)和rHN~(D3173N+V3174E+N3179C)。进行蚀斑形成试验、一步生长曲线的绘制、TCID_(50)和LD_(50)的测定、间接免疫荧光与激光共聚焦显微镜检测。【结果】结果显示,与骨架病毒rHN相比,虽然rHN~(V3174Y)和rHN~(D3173N+V3174E+N3179C)对BHK-21细胞的感染性及其蚀斑表型和复制动力学无显著性差异;但rHN~(V3174Y)和rHN~(D3173N+V3174E+N3179C)对乳鼠的致病力明显减弱,且均获得了小窝蛋白介导侵染CHO-K1细胞的能力。【结论】VP3上第3174位特征性氨基酸突变影响O型口蹄疫病毒感染宿主细胞的毒力及其内吞作用路径,这有助于我们认知VP3 G–H环在口蹄疫病毒粒子立体空间构象中潜在的作用。  相似文献   

9.
【目的】研究狂犬病病毒Flury鸡胚低代毒株(Flury LEP)在基因组P-M位增加糖蛋白基因(G基因)的重组表达对病毒致病力的影响。【方法】利用反向遗传操作技术,构建了P、M基因之间额外插入G基因的重组狂犬病病毒Flury LEP株(rLEP-PGM),并对重组病毒的生物学特性及对小鼠的致病性进行了初步研究。【结果】亲本株和重组病毒具有相似的生长特性,LEP和rLEP-PGM在BHK-21细胞的生长滴度分别为4×106 FFU/mL和2.5×106 FFU/mL,在小鼠神经母细胞(NA)的生长滴度分别为4×107 FFU/mL和2.5×107 FFU/mL;嗜神经指数均为1;Western blot显示,rLEP-PGM在感染细胞的G蛋白表达量比LEP显著提高;小鼠感染试验显示,rLEP-PGM与LEP脑内注射小鼠的LD50分别为3 FFU和1 FFU,肌肉注射途径的LD50分别为4×104 FFU和3.2×105 FFU。【结论】P、M基因之间插入一个额外的G基因能够提高G蛋白的表达水平,同时增强重组病毒外周侵入中枢神经系统的能力。  相似文献   

10.
【目的】禽痘病毒(FPV)是痘病毒科禽痘病毒属的成员。FPV因其基因组庞大,含有大量复制非必需区,目前作为活病毒载体在禽类和哺乳动物中广泛使用。重组位点的选择是禽痘病毒载体构建的先决条件,外源基因的插入不影响病毒复制是筛选插入位点的前提。因此,鉴定可供外源基因插入的复制非必需位点将为重组病毒的构建提供更多选择。本研究拟鉴定FPV NX10株胸苷激酶(TK)基因在病毒复制中的必要性。【方法】以TK基因作为靶基因,增强型绿色荧光蛋白(EGFP)为筛选标记构建转移载体,FPV NX10株为亲本病毒,通过同源重组筛选重组病毒r FPV-ΔTK-EGFP。通过在CEF细胞培养物中添加5-溴脱氧尿苷(BUd R)验证TK基因在FPV复制中的作用。【结果】构建了转移载体p UC19-TK AB-EGFP。在转染后重组病毒克隆纯化过程中,蚀斑克隆中绿色荧光病变所占的比例逐渐增加,但在荧光蚀斑的边缘能观察到不带荧光病变的存在。对第9-15轮随机选取的蚀斑克隆的Western blot分析表明,重组病毒中插入的EGFP基因均能够正确表达,但PCR结果显示在重组病毒中始终存在野生型病毒。在细胞培养液中添加BUd R后,重组病毒不能继续生长。【结论】FPV NX10毒株TK基因在该病毒的复制中不是完全非必需的。  相似文献   

11.
In mid September 2008, clinical signs of bluetongue (particularly coronitis) were observed in cows on three different farms in eastern Netherlands (Luttenberg, Heeten, and Barchem), two of which had been vaccinated with an inactivated BTV-8 vaccine (during May-June 2008). Bluetongue virus (BTV) infection was also detected on a fourth farm (Oldenzaal) in the same area while testing for export. BTV RNA was subsequently identified by real time RT-PCR targeting genome-segment (Seg-) 10, in blood samples from each farm. The virus was isolated from the Heeten sample (IAH “dsRNA virus reference collection” [dsRNA-VRC] isolate number NET2008/05) and typed as BTV-6 by RT-PCR targeting Seg-2. Sequencing confirmed the virus type, showing an identical Seg-2 sequence to that of the South African BTV-6 live-vaccine-strain. Although most of the other genome segments also showed very high levels of identity to the BTV-6 vaccine (99.7 to 100%), Seg-10 showed greatest identity (98.4%) to the BTV-2 vaccine (RSAvvv2/02), indicating that NET2008/05 had acquired a different Seg-10 by reassortment. Although Seg-7 from NET2008/05 was also most closely related to the BTV-6 vaccine (99.7/100% nt/aa identity), the Seg-7 sequence derived from the blood sample of the same animal (NET2008/06) was identical to that of the Netherlands BTV-8 (NET2006/04 and NET2007/01). This indicates that the blood contained two different Seg-7 sequences, one of which (from the BTV-6 vaccine) was selected during virus isolation in cell-culture. The predominance of the BTV-8 Seg-7 in the blood sample suggests that the virus was in the process of reassorting with the northern field strain of BTV-8. Two genome segments of the virus showed significant differences from the BTV-6 vaccine, indicating that they had been acquired by reassortment event with BTV-8, and another unknown parental-strain. However, the route by which BTV-6 and BTV-8 entered northern Europe was not established.  相似文献   

12.
We report the full-genome sequence of an Indian isolate of bluetongue virus serotype 1 (BTV-1), strain IND1992/01. This is the first report of the entire genome sequence (Seg-1 to Seg-10) of an Eastern (e) strain of BTV-1. These sequence data provide a reference for BTV-1e that will help to define the phylogenetic relationships and geographic origins of distinct Indian lineages of BTV-1 as well as their relationships with other BTV strains from around the world. The availability of data for all 10 genome segments of this strain will also help to identify reassortment events involving this and other virus lineages.  相似文献   

13.
The entire genome of the reference strain of bluetongue virus (BTV) serotype 16 (strain RSArrrr/16) was sequenced (a total of 23,518 base pairs). The virus was obtained from the Orbivirus Reference Collection (ORC) at IAH, Pirbright, United Kingdom. The virus strain, which was previously provided by the Onderstepoort Veterinary Research Institute in South Africa, was originally isolated from the Indian subcontinent (Hazara, West Pakistan) in 1960. Previous phylogenetic comparisons show that BTV RNA sequences cluster according to the geographic origins of the virus isolate/lineage, identifying distinct BTV topotypes. Sequence comparisons of segments Seg-1 to Seg-10 show that RSArrrr/16 belongs to the major eastern topotype of BTV (BTV-16e) and can be regarded as a reference strain of BTV-16e for phylogenetic and molecular epidemiology studies. All 10 genome segments of RSArrrr/16 group closely with the vaccine strain of BTV-16 (RSAvvvv/16) that was derived from it, as well as those recently published for a Chinese isolate of BTV-16 (>99% nucleotide identity), suggesting a very recent common ancestry for all three viruses.  相似文献   

14.
All 10 genome segments (Seg-1 to 10-a total of 19,188 bp) were sequenced from a strain of bluetongue virus serotype 3 (BTV-3) from India (strain IND2003/08). Sequence comparisons showed that nine of the genome segments from this virus group with other eastern topotype strains. Genome Seg-2 and Seg-6 group with eastern BTV-3 strains from Japan. However, Seg-5 (the NS1 gene) from IND2003/08 belongs to a western lineage, demonstrating that IND2003/08 is a reassortant between eastern and western topotype bluetongue viruses. This confirms that western BTV strains have been imported and are circulating within the subcontinent.  相似文献   

15.
Bluetongue virus is the "type" species of the genus Orbivirus, family Reoviridae. Twenty four distinct bluetongue virus (BTV) serotypes have been recognized for decades, any of which is thought to be capable of causing "bluetongue" (BT), an insect-borne disease of ruminants. However, two further BTV serotypes, BTV-25 (Toggenburg orbivirus, from Switzerland) and BTV-26 (from Kuwait) have recently been identified in goats and sheep, respectively. The BTV genome is composed of ten segments of linear dsRNA, encoding 7 virus-structural proteins (VP1 to VP7) and four distinct non-structural (NS) proteins (NS1 to NS4). We report the entire BTV-26 genome sequence (isolate KUW2010/02) and comparisons to other orbiviruses. Highest identity levels were consistently detected with other BTV strains, identifying KUW2010/02 as BTV. The outer-core protein and major BTV serogroup-specific antigen "VP7" showed 98% aa sequence identity with BTV-25, indicating a common ancestry. However, higher level of variation in the nucleotide sequence of Seg-7 (81.2% identity) suggests strong conservation pressures on the protein of these two strains, and that they diverged a long time ago. Comparisons of Seg-2, encoding major outer-capsid component and cell-attachment protein "VP2" identified KUW2010/02 as 26th BTV, within a 12th Seg-2 nucleotype [nucleotype L]. Comparisons of Seg-6, encoding the smaller outer capsid protein VP5, also showed levels of nt/aa variation consistent with identification of KUW2010/02 as BTV-26 (within a 9th Seg-6 nucleotype - nucleotype I). Sequence data for Seg-2 of KUW2010/02 were used to design four sets of oligonucleotide primers for use in BTV-26, type-specific RT-PCR assays. Analyses of other more conserved genome segments placed KUW2010/02 and BTV-25/SWI2008/01 closer to each other than to other "eastern" or "western" BTV strains, but as representatives of two novel and distinct geographic groups (topotypes). Our analyses indicate that all of the BTV genome segments have evolved under strong purifying selection.  相似文献   

16.
Bluetongue virus (BTV) can infect most ruminant species and is usually transmitted by adult, vector-competent biting midges (Culicoides spp.). Infection with BTV can cause severe clinical signs and can be fatal, particularly in naïve sheep and some deer species. Although 24 distinct BTV serotypes were recognized for several decades, additional ‘types’ have recently been identified, including BTV-25 (from Switzerland), BTV-26 (from Kuwait) and BTV-27 from France (Corsica). Although BTV-25 has failed to grow in either insect or mammalian cell cultures, BTV-26 (isolate KUW2010/02), which can be transmitted horizontally between goats in the absence of vector insects, does not replicate in a Culicoides sonorensis cell line (KC cells) but can be propagated in mammalian cells (BSR cells). The BTV genome consists of ten segments of linear dsRNA. Mono-reassortant viruses were generated by reverse-genetics, each one containing a single BTV-26 genome segment in a BTV-1 genetic-background. However, attempts to recover a mono-reassortant containing genome-segment 2 (Seg-2) of BTV-26 (encoding VP2), were unsuccessful but a triple-reassortant was successfully generated containing Seg-2, Seg-6 and Seg-7 (encoding VP5 and VP7 respectively) of BTV-26. Reassortants were recovered and most replicated well in mammalian cells (BSR cells). However, mono-reassortants containing Seg-1 or Seg-3 of BTV-26 (encoding VP1, or VP3 respectively) and the triple reassortant failed to replicate, while a mono-reassortant containing Seg-7 of BTV-26 only replicated slowly in KC cells.  相似文献   

17.
An immunoaffinity chromatography (IAC) method was optimized for the selective capture of bluetongue virus (BTV) from blood samples and isolation of the virus in cell culture. The antibody against BTV core particles (lacking the outer capsid proteins VP2 and VP5) was used for the optimization of IAC technique. The antibody against BTV core particle was conjugated with Protein A-virus complex and the complex was dissociated using elution buffer (4 M MgCl2 with 75 mM HEPES, pH 6.5). The optimized IAC method specifically purified the BTV without capturing other commonly infecting small ruminant’s viruses like gaotpox virus (GTPV), sheeppox virus (SPPV), Peste des petits ruminants virus (PPRV) and Foot and mouth disease virus (FMDV). The blood samples (n?=?22), positive for BTV antigen in sandwich-ELISA were attempted for virus isolation in the BHK-21 cell using the optimized IAC method. A total of seven BTV were isolated by selective capturing of the virion particles. The isolated viruses were characterized by RNA-PAGE, sequence analysis and serum neutralization test (SNT). Electropherotypic analysis of viral dsRNA in the RNA-PAGE revealed the presence of ten dsRNA segments characteristic of BTV. Out of seven isolates, four isolates were identified as BTV-1 and three isolates were identified as BTV-16 based on nucleotide sequences of segment-2. Phylogenetic analysis of segment-2 nucleotide sequence segregated BTV-1 and BTV-16 isolates to monophyletic cluster at close proximity to other eastern topotype. In SNT, hyperimmune serum (HIS) against BTV-1 neutralized the four BTV-1 isolates up to a titer?>?256 and HIS against BTV-16 neutralized the three BTV-16 isolates up to a titer?>?128. The IAC technique will be useful for the selective capture of BTV from mixed infection (BTV with other small ruminant’s viruses) and isolation from blood sample having low viral load by enrichment.  相似文献   

18.
Coinfection of a cell by two different strains of a segmented virus can give rise to a “reassortant” with phenotypic characteristics that might differ from those of the parental strains. Bluetongue virus (BTV) is a double-stranded RNA (dsRNA) segmented virus and the cause of bluetongue, a major infectious disease of livestock. BTV exists as at least 26 different serotypes (BTV-1 to BTV-26). Prompted by the isolation of a field reassortant between BTV-1 and BTV-8, we systematically characterized the process of BTV reassortment. Using a reverse genetics approach, our study clearly indicates that any BTV-1 or BTV-8 genome segment can be rescued in the heterologous “backbone.” To assess phenotypic variation as a result of reassortment, we examined viral growth kinetics and plaque sizes in in vitro experiments and virulence in an experimental mouse model of bluetongue disease. The monoreassortants generated had phenotypes that were very similar to those of the parental wild-type strains both in vitro and in vivo. Using a forward genetics approach in cells coinfected with BTV-1 and BTV-8, we have shown that reassortants between BTV-1 and BTV-8 are generated very readily. After only four passages in cell culture, we could not detect wild-type BTV-1 or BTV-8 in any of 140 isolated viral plaques. In addition, most of the isolated reassortants contained heterologous VP2 and VP5 structural proteins, while only 17% had homologous VP2 and VP5 proteins. Our study has shown that reassortment in BTV is very flexible, and there is no fundamental barrier to the reassortment of any genome segment. Given the propensity of BTV to reassort, it is increasingly important to have an alternative classification system for orbiviruses.  相似文献   

19.
Bluetongue virus (BTV) is the ‘type’ species of the genus Orbivirus within the family Reoviridae. The BTV genome is composed of ten linear segments of double-stranded RNA (dsRNA), each of which codes for one of ten distinct viral proteins. Previous phylogenetic comparisons have evaluated variations in genome segment 3 (Seg-3) nucleotide sequence as way to identify the geographical origin (different topotypes) of BTV isolates. The full-length nucleotide sequence of genome Seg-3 was determined for thirty BTV isolates recovered in the eastern Mediterranean region, the Balkans and other geographic areas (Spain, India, Malaysia and Africa). These data were compared, based on molecular variability, positive-selection-analysis and maximum-likelihood phylogenetic reconstructions (using appropriate substitution models) to 24 previously published sequences, revealing their evolutionary relationships. These analyses indicate that negative selection is a major force in the evolution of BTV, restricting nucleotide variability, reducing the evolutionary rate of Seg-3 and potentially of other regions of the BTV genome. Phylogenetic analysis of the BTV-4 strains isolated over a relatively long time interval (1979–2000), in a single geographic area (Greece), showed a low level of nucleotide diversity, indicating that the virus can circulate almost unchanged for many years. These analyses also show that the recent incursions into south-eastern Europe were caused by BTV strains belonging to two different major-lineages: representing an ‘eastern’ (BTV-9, -16 and -1) and a ‘western’ (BTV-4) group/topotype. Epidemiological and phylogenetic analyses indicate that these viruses originated from a geographic area to the east and southeast of Greece (including Cyprus and the Middle East), which appears to represent an important ecological niche for the virus that is likely to represent a continuing source of future BTV incursions into Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号