首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Foundation species are species that play important roles in structuring ecological communities. Therefore, conservation managers often aim to promote foundation species. However, it can be unclear which features of foundation species ought to be the focus of management. We studied hummock‐forming grasses in the genus Triodia. Triodia grasses are considered foundation species because they create complex structures used by many fauna species. Although conservation managers often aim to promote extent cover of Triodia, this is only likely to be optimal for species most strongly associated with extent cover or other structural features strongly correlated with extent cover. We tested (i) whether ‘extent cover’ is the most appropriate way to characterise Triodia as habitat and (ii) whether fauna are associated with any non‐Triodia structures. We studied the Triodia structure associations of one mammal, two birds and five reptiles associated with Triodia scariosa at 524 sites in the Murray‐Mallee, Australia (Ningaui yvonneae, Amytornis striatus, Stipiturus mallee, Ctenophorus fordi, Ctenotus atlas, Ctenotus inornatus, Delma australis and Delma butleri). We used site‐level presence–absence data and vegetation structure data to compare parsimony of models built using four Triodia structural features: extent cover, mean height, mean width and mean volume. We also included non‐Triodia vegetation structures in the model selection: extent cover of leaf litter, shrubs and trees. We divided structural features related to extent cover into categories according to their heights. One species was most closely associated with mean Triodia height; one species with mean Triodia width and six species with extent cover of Triodia, although here, Triodia height categories differed between species. Five species were also associated with shrubs or trees. Extent cover of Triodia was generally an appropriate measure of Triodia structure. Nevertheless, we found variation between species. When characterising the structure of foundation species, we recommend testing faunal associations with multiple structural features.  相似文献   

2.
Abstract. The effect of fire intensity - both temperature and duration - on the resprouting pattern of the evergreen Mediterranean shrub Erica multiflora in relation to plant size, was experimentally investigated by subjecting plants to the flame of a propane torch, and observing mortality and resprouting after 5 and 20 months. Pre-treatment plant size was not important in determining post-fire plant survival, but it did influence the resprouting vigour, increasingly so with time. High temperatures induced higher mortality rates within populations, but duration of fire did not effect mortality. Biomass of resprouts was lower following more intense fire treatments, but this effect progressively disappeared over time, except in plants subjected to the most intense fire treatment. This is probably because of the increasing importance of the below-ground organs for the regeneration of the above-ground biomass. Some of the plants which were clipped but not exposed to fire also died 20 months after treatment. The effect of clipping onmortality andresprout-ing response, estimated as biomass of resprouts, was not significantly different from the effect induced by either low or medium temperature treatments, but was significantly different when compared with the effect of high-temperature treatments. Field observations show that the establishment of seedlings of E. multiflora is rare both after fire and between fires. Thus, our data support the idea that both a single fire or clipping can diminish the population size of a resprouting species. We conclude that fire may have a stochastic effect on E. multiflora populations, due to the variation in fire intensity existing within a single burning stand.  相似文献   

3.
Disruption of seed dispersal processes may affect plant population spatial structure. We used a spatial simulation model and an empirical case study to assess the conditions under which the loss of seed dispersers has a detectable effect on a species' spatial pattern. Our simulation experiments suggested that detecting spatial change following disperser loss will be difficult, except when rates of fruit removal are initially high and then completely disappear. To contextualize the simulation modeling, we used spatial point pattern analyses to characterize the spatial pattern of two large-seeded species (Leucopogon nutans, a fire-killed seeder shrub and Macrozamia riedlei, a long-lived, resprouting cycad) in the jarrah (Eucalyptus marginata) forests of southwestern Australia. The plant species' primary disperser, the emu (Dromaius novaehollandiae), was absent from one of the sites we considered, but present at the other two. There was no detectable difference for either plant species in the strength of aggregation between sites with and without emu. However, even if disperser loss may not greatly affect local spatial structure for most plant species, it is likely to be important for long distance dispersal and genetic structuring of populations, so accurate characterization of the dispersal kernel is critical, especially in terms of plant emigration.  相似文献   

4.
Abstract Soil temperatures were measured during 11 experimental fires in semi-arid mallee shrublands in central NSW. Sensors were placed at depths from 1–10 cm beneath the soil surface in three fuel types; litter beneath Eucalyptus shrubs, live hummocks of the grass Triodia irritans and litter beneath shrubs of Acacia species. Weights of these fuels per unit area were determined. Maximum soil temperature and its duration were related to fuel type and depth. Mean weights of Eucalyptus and Triodia fuels were similar (0.35 kg m?2), while there was less Acacia fuel (0.1 kg m?2). Highest maximum temperatures were registered under Eucalyptus litter (e.g. 140°C at 2 cm). Maximum temperatures under Triodia and Acacia litter were similar (e.g. 60–70°C at 2 cm). Durations were examined in two temperature classes (60–120 and > 120°C) chosen to represent threshold for stimulation of germination and mortality, respectively, of soil-stored seeds. Temperatures between 60 and 120°C were recorded only between 0–2 cm soil depth for Acacia and Triodia (one exception at 4 cm). No temperatures >120°C were recorded for these fuel types. Temperatures between 60 and 120°C were recorded to 5 cm depth under Eucalyptus fuels while putative lethal temperatures for seeds occurred occasionally at 0–2 cm depth. The results indicated greatest potential for stimulation of germination and death of buried seeds under Eucalyptus fuels, although the level of variability of temperature was highest under Eucalyptus fuels. Despite similar fuel loads, differences between temperatures under Eucalyptus and Triodia fuels reflected the influence of the depth of the fuel bed, with Triodia hummocks constituting a deep fuel bed and Eucalyptus litter a shallow fuel bed.  相似文献   

5.
The effects of habitat and timing of growing season fires on resprouting of shrubs were studied in second-growth longleaf pine savannas of the west Gulf coastal plain in the southeastern United States. Within the headwaters of three different drainages of the Calcasieu River in the Kisatchie National Forest in western Louisiana, replicated permanent transects were established that extended from xeric upland longleaf pine savannas into downslope hydric seepage savannas. All shrubs were mapped and tagged, and numbers of stems were counted prior to any fires. Replicated prescribed fires were set early (June) and late (August) during the 1990 growing season; maximum fire temperatures were measured within both upland and seepage habitats within each transect. Shrubs were relocated; stems were recensused two and twelve months after the fires. At least some shrubs of all species resprouted from underground organs; none regenerated solely from seed banks in the soil. There was no reduction in total numbers of stems one year after fires compared to before fires, either in the upland or in seepage savannas. In addition, there was no reduction in total numbers of stems one year after early or late growing season fires. Fire-related mortality was restricted to small shrubs (< 18 stems) and was not associated with high fire temperatures. The rate of resprouting varied among species and between habitats. Resprouting occurred more rapidly in seepage than upland savannas, but more resprouts were produced in upland than seepage savannas one year after fires. In contrast to other upland species, Vaccinium arboreum and V. elliottii delayed resprouting more than two months following fire. Stems of Rhus copallina and Pyrus arbutifolia, species with long rhizomes, increased more after fires in June than fires in August. We suggest that growing season fires may block further recruitment of shrubs into longleaf pine savannas, but reduction in numbers of large shrubs may require additional management.  相似文献   

6.
Abstract. The contribution of resprouts and seedling recruitment to post-fire regeneration of the South African fynbos conifer Widdringtonia nodiflora was compared eight months after wildfires in 1990. Stems on all trees were killed by fire but resprouting success was > 90 % at all but one site. A demographic study of burned skeletons revealed that prior to these fires, nearly all plants were multi-stemmed (4–9 stems/plant) and multi-aged, indicating continuous sprout production between fires. All stems were killed by these 1990 fires and at most sites > 90 % of the stems were burned to ground level. All diameter stems were susceptible to such incineration as, at most sites, there was no difference in average diameter of stems burned to ground level and those left standing. Individual genets usually had all ramets incinerated to ground level or all ramets charred, but intact, suggesting certain micro-sites burned hotter, whereas other sites were somewhat protected. Although not true of the 1990 fires, there was evidence that occasionally Widdring-tonia stems may survive fire. At one site, four of the 16 plants sampled had a burned stem twice as old as the oldest burned stem on the other 12 plants at the site, suggesting some stems had survived the previous fire (ca. 1970) and this conclusion was supported by fire-scars on these four stems that dated to ca. 1970. Based on the highly significant correlation between stem diameter and cone density left standing after the 1990 fires, we calculated that for most sites > 80 % of the initial cone crop was incinerated by fire. This is important because we observed a strong relationship between size of the canopy cone crop surviving fire and post-fire seedling recruitment. Under these conditions we hypothesize that sprouting confers a selective advantage to genets when fires cause heavy losses of seed. The infrequent occurrence of sprouting in the Cupressaceae suggests the hypothesis that resprouting is an apomorphic or derived trait in Widdringtonia. Data from this study suggests resprouting provides a selective advantage under severe fynbos fires, which are not only 'stand-replacing fires,’but also are intense enough to incinerate cone-bearing stems.  相似文献   

7.
Question: What are the effects of fire season and intensity on resprouting of different root‐crown bearing shrub species in second‐growth Pinus palustris (longleaf pine) savannas? Location: northern Florida and eastern Louisiana, USA. Methods: In Florida, quadrats were burned biennially either during the dormant season or the growing season. In Louisiana, we applied intensity treatments to quadrats by manipulating ground‐cover fuels, just prior to biennial growing season fires. Maximum fire temperatures were measured, and stem densities were censused before and after fires in both regions. Results: After dormant season fires in Florida, stem densities were seven times greater than initial levels for Hypericum spp. In contrast, growing season fires reduced densities of H. brachyphyllum by 65%, but did not change densities of H. microsepalum. Only resprouting of H. microsepalum decreased with increased fire intensity. In Louisiana, fire intensity influenced Ilex vomitoria, but not Quercus spp. Following fires, stem densities oil. vomitoria were five times greater in fuel removal than fuel addition areas. Conclusions: Past use of dormant season fires likely contributed to increased abundances of some species of root‐crown bearing shrubs observed today in old‐growth savannas. Reintroduction of growing season fires will be effective in maintaining or decreasing stem densities, depending on species and fuel type. Genet mortality and stem density reductions appear most likely in areas at localized scales where tree falls and needle coverage create hotspots in Pinus palustris savannas.  相似文献   

8.
Abstract Fire is often used as a management tool in fire‐prone communities to reduce fuel loads with the intention of reducing the severity and extent of unplanned fires, often resulting in the increased occurrence of fire in the dry sclerophyll vegetation of Australia. This study examined the effects of fire frequency (length of the inter‐fire interval) on the reproductive output of seven plant species in the Proteaceae, including obligate seeding shrubs (Hakea teretifolia, Petrophile pulchella), resprouting shrubs (Banksia spinulosa, Isopogon anemonifolius, Lambertia formosa) and resprouting trees (Banksia serrata, Xylomelum pyriforme). Reproductive output (measured as either number of confructescences or follicles) and relative size were estimated for 100 individuals at each of five sample sites, covering a range of past fire frequencies over 26 years including repeated short inter‐fire intervals. Patterns in reproductive output (after standardizing for size) were related to the life‐history attributes of the species. In areas that had experienced short inter‐fire intervals, obligate seeders had greater reproductive output compared with longer intervals, and the reproductive output of resprouting shrubs was less. Fire frequency did not affect reproductive output of the resprouting trees. The decreased reproductive output of the resprouting shrubs could be due to the allocation of resources to regrowth following fire rather than to reproduction. It is less clear what process resulted in the increased reproductive output of obligate seeders in high fire frequency areas, but it could be due to the most recent fires being more patchy in the areas experiencing shorter inter‐fire intervals, or it may have resulted from the selection for early reproduction in the high fire frequency areas. These results highlight the need to take into account past fire frequency at a site, in addition to time since the last fire, when planning prescribed fires.  相似文献   

9.
There are many ways that plants may recover vegetatively from dieback caused by fires. Compared with fire-killed species, the presence of woody resprouters in fire-prone floras increases with fire frequency, though this is affected by site productivity that may have opposing correlates along different gradients. Population recovery is enhanced by resprouting when fecundity is low and/or seedling recruitment is not guaranteed. There is resource cycling between vegetative growth and storage but no clear trade-off between fecundity and storage, and more attention needs to be given to the role of somatic mutations in reducing fecundity. Seven fitness benefits of post-fire resprouting are noted that centre around the rapid return to adult growth rates and early flowering and seed set without the risks of recruitment failure. The extent of resprouting at the individual, population, and species levels varies greatly but it is under genetic control. Recent studies on the evolution of resprouting in fire-prone systems have shown that types of resprouting (clonality, rootstocks, epicormic bud strands) are derived from surrounding parent lineages lacking these traits and confined to non-fire-prone environments. The oldest lineages with fire-related resprouting date to at least 61 million years ago, indicating that seed plants have had a long evolutionary relationship with fire. Various genetic mechanisms, including beneficial somatic mutations, have been invoked to explain how speciation of resprouters may keep pace with non-sprouters.  相似文献   

10.
The processes which determine the structure of plant communities vary across spatial and temporal scales. Climatic factors are more likely to influence community structure at a regional scale with more transient environmental effects such as disturbance or demographic interactions having a greater influence at local scales. Understanding these differences is important for managing communities at a landscape scale. Triodia spp. grasslands are the most extensive plant community in Australia, covering 1.4 million km2, and yet little is known about the processes which structure these communities. We collected data on six sympatric Triodia spp. at the regional, landscape and local scale across the 325 000 ha property, Mornington Wildlife Sanctuary, in the Kimberley region of northern Western Australia to investigate the processes which structure this community. Regionally we looked for correlations between species distributions and substrate or rainfall. At the landscape scale we collected data on substrate, drainage and vegetation type and at the local scale we determined the extent to which individuals form mono‐specific stands both along and across the contour gradient. Only one species, T. aeria, was found to be substrate specific and only T. epactia was restricted to the drier southern end of the property. The other species were not restricted by substrate or rainfall at the regional scale and were found to be habitat generalists at the landscape scale. All species grew in mono‐specific stands with little to no mixing at shared boundaries. However, this pattern broke down when crossing the contour gradient on hillsides. The results suggest rainfall may influence the distribution of some Triodia spp. at a regional scale with interspecific competition, due to differences in post‐fire regeneration niches, structuring the community at the local scale. At the landscape scale community structure appears to be influenced by feedback mechanisms involving differences in the post‐fire regeneration strategies of sympatric species and subsequent competition for establishment microsites.  相似文献   

11.
Summary Using data from three fires in northeastern Spain, we tested a condition necessary to support the idea that fire has been a factor in the evolution of the resprouting habit: populations of all resprouting species within a community should show high levels of genet survival after fires and show a low coefficient of variation. Species with high mean survival values were:Quercus ilex L.,Phillyrea latifolia L., andViburnum tinus L., with 88, 86 and 83% survival respectively; these groups had resprouts emerging from rootcrowns. Then followedArbutus unedo L. (75%),Pistacia lentiscus L. (73%),Erica arborea L. (77%),Erica multiflora L. (57%) andJuniperus oxycedrus L. (55%). This last group had resprouts from lignotubers or burls. These two groups also differed in the variability around the mean: the first showed a lower coefficient of variation, 6–12, and the second ranged from 19 to 26. Slope exposure had no significant influence on the process of resprouting, but soil depth did, with precipitation as a covariate. In the shallow soil category, the difference in genet survival between southern and northern exposures was 14% (71% vs. 57%); while the difference in the deep soil category was low, 5% (87% vs. 82%). There was no significant interaction. The component of variance for soils was larger than that for species-specific effects; substantial overlap of the within-species variance indicated that species responded as if they were a single hypothetical population, in which most of the variation in chances of survival was due to the soil conditions. The possession of the resprouting habit did not ensure a high performance. Hence, we find weak support for fire as a factor in the evolution of the resprouting habit.  相似文献   

12.
Fire is central to the ecology of Mediterranean‐type climate ecosystems, but little is known about the fire ecology of succulent plants therein. This study investigated the fire ecology of an arborescent succulent monocot, Kumara plicatilis (L.) G. D. Rowley (Asphodelaceae), a Cape fynbos endemic. Habitat suitability was assessed to determine whether the species tolerates or ‘avoids’ fire, and fire survival traits (bark thickness and tissue water content) were measured. The population size structure and density of three K. plicatilis populations were assessed after natural fires, and resprouting potential was investigated. Kumara plicatilis adopts a dual fire survival strategy, occupying rocky sites to ‘avoid’ fire and possessing morphological features that afford fire tolerance, e.g. well‐protected apical meristems and thick corky bark. Bark thickness of burned individuals in situ was similar to unburned plants, suggesting that K. plicatilis bark provides effective insulation against fire. Mortality rates were 64%, 40% and 11%, and decreased as rock cover at the population level increased. All three populations showed reduced plant density post‐fire, with greater density reductions associated with lower rock cover. Small plants appear most vulnerable to fire damage due to lower absolute bark thickness and plant heights within the flame zone. Kumara plicatilis is an apical sprouter, recovering after fire or mechanical stem damage by onward growth from surviving stem apices, rather than resprouting. Post‐fire population recovery therefore likely depends on inter‐fire recruitment.  相似文献   

13.
In the spring and summer of 2019–2020, the ‘Black Summer’ bushfires burned more than 97 000 km2 of predominantly Eucalyptus dominated forest habitat in eastern Australia. The Black Summer bushfires prompted great concern that many species had been imperilled by the fires. Here, we investigate the effects that fire severity had on the habitat and abundance of a cool climate lizard Eulamprus tympanum that was identified as a species of concern because 37% of its habitat was burnt in the Black Summer bushfires. We quantified habitat structure and the abundance of E. tympanum at sites which were unburnt, burnt at low severity and at high severity 10, 15 and 23 months after the fires. Our classification of fire severity based on scorch height and canopy status corresponded well with the Australian Government Google Earth Engine Burnt Area Map (AUS GEEBAM) fire severity layer. Ten months after the fires, sites burnt at high severity had less canopy cover, more bare ground and less fine fuel than sites burnt at low severity or unburnt sites. The abundance of E. tympanum varied with survey occasion and was greatest during the warmest sampling period and lowest during the coolest sampling period. The abundance of E. tympanum was consistently lower on sites burnt at high severity than sites burnt at low severity or unburnt sites. Our findings show that higher severity fires had a greater effect on E. tympanum than low severity fires. Our results suggest that E. tympanum were likely to have persisted in burnt sites, with populations in low severity and unburnt sites facilitating population recovery in areas burnt at high severity. Our results also suggest that wildfire impacts on E. tympanum populations will increase because the frequency and extent of severe fires are expected to increase due to climate change.  相似文献   

14.
Kennedy  A.D.  Potgieter  A.L.F. 《Plant Ecology》2003,167(2):179-192
Wildfires may be started naturally by lightning or artificially by humans. In the savanna regions of southern Africa, lightning fires tend to occur at the start of the wet season, during October and November, while anthropogenic fires are usually started during the dry season, between July and August. A long-term field manipulation experiment initiated in the Kruger National Park in 1952 was used to explore whether this seasonal divergence affects tree abundance, spatial pattern, size and architecture. After 44 years of prescribed burning treatments that simulated the seasonal incidence of lightning and anthropogenic fires, mean densities of the locally-dominant shrub, Colophospermum mopane, were 638 and 500 trees ha–1 respectively. Trees in burnt plots had aggregated distributions while trees in unburnt plots had random distributions. Significant differences (p < 0.001) were recorded in a range of morphological parameters including tree height, canopy diameter, mean stem circumference and number of stems. The incidence of resprouting also differed significantly between treatments, with burnt trees containing a high proportion of coppiced stems. The differences in tree size and architecture between the mid-dry season and early-wet season burning plots suggest that anthropogenic fires applied during July and August cannot substitute for a natural lightning fire regime. Anthropogenic fire yields a landscape that is shorter, more scrubby and populated by numerous coppiced shrubs than the landscape generated by natural lightning fire conditions.  相似文献   

15.

Question

Do the effects of fire regimes on plant species richness and composition differ among floristically similar vegetation types?

Location

Booderee National Park, south‐eastern Australia.

Methods

We completed floristic surveys of 87 sites in Sydney Coastal dry sclerophyll vegetation, where fire history records have been maintained for over 55 years. We tested for associations between different aspects of the recent fire history and plant species richness and composition, and whether these relationships were consistent among structurally defined forest, woodland and heath vegetation types.

Results

The relationship between fire regime variables and plant species richness and composition differed among vegetation types, despite the three vegetation types having similar species pools. Fire frequency was positively related to species richness in woodland, negatively related to species richness in heath, and unrelated to species richness in forest. These different relationships were explained by differences in the associations between fire history and species traits among vegetation types. The negative relationship between fire frequency and species richness in heath vegetation was underpinned by reduced occurrence of resprouting species at high fire frequency sites (more than four fires in 55 years). However, in forest and woodland vegetation, resprouting species were not negatively associated with fire frequency.

Conclusions

We hypothesize that differing relationships among vegetation types were underpinned by differences in fire behaviour, and/or biotic and abiotic conditions, leading to differences in plant species mortality and post‐fire recovery among vegetation types. Our findings suggest that even when there is a high proportion of shared species between vegetation types, fires can have very different effects on vegetation communities, depending on the structural vegetation type. Both research and management of fire regimes may therefore benefit from considering vegetation types as separate management units.  相似文献   

16.
Questions

How do fire frequency and fire size affect the long-term population dynamics of Mulinum spinosum? Which demographic parameters contribute most to the overall effect of fire on population growth? What is the relative importance of resprouting in sustaining population increase?

Location

Grass-shrub northwestern Patagonian steppe, Argentina.

Methods

We monitored five permanent plots excluded from grazing for 6 years. We measured shrub abundance, dimensions, reproductive status, seedling emergence, and the size structure of M. spinosum, a resprouting native shrub inhabiting the northwest Patagonian steppe. Data were used to parametrize a stochastic matrix model developed to explore the influence of fire frequency and fire size on long-term population dynamics. We analyzed hypothetical scenarios that included fire frequencies ranging from one per year up to exclusion.

Results

Except for annual fires, projections show growing populations regardless of fire frequency. For fire return intervals greater than 50 years, the population becomes independent of fires, with an annual population growth rate of 5.6%. The results suggest two relevant aspects of the population dynamics of this species: M. spinosum is well adapted to the current fire frequency and its resprouting capability will allow M. spinosum to survive and persist in the community, even under frequent fires.

Conclusions

Climate change models forecast an increase in summer temperature in NW Patagonia and, consequently, an enhanced fire frequency. Fire is a driver of M. spinosum encroachment that gets worse in overgrazed grasslands. Mulinum spinosum encroachment derivate in a relative replacement of palatable grasses by shrubs changes the ecosystem functionality and reduces productivity. Controlling this process is highly difficult and we suggest a change in the land use for the areas already deteriorated.

  相似文献   

17.
In North America, most Artemisia (Asteraceae) shrub species lack the ability to resprout after disturbances that remove aboveground biomass. We studied the response of one of the few resprouting Artemisia shrubs, Artemisia filifolia (sand sagebrush), to the effects of prescribed fires. We collected data on A. filifolia density and structural characteristics (height, canopy area, and canopy volume) in an A. filifolia shrubland in the southern Great Plains of North America. Our study sites included areas that had not been treated with prescribed fire, areas that had been treated with only one prescribed fire within the previous 5 years, and areas that had been treated with two prescribed fires within the previous 10 years. Our data were collected at time periods ranging from ½ to 5 years after the prescribed fires. Density of A. filifolia was not affected by one or two fires. Structural characteristics, although initially altered by prescribed fire, recovered to levels characteristic of unburned areas in 3–4 years after those fires. In contrast to most non-sprouting North American Artemisia shrub species, our research suggested that the resprouting A. filifolia is highly tolerant to the effects of fire.  相似文献   

18.
In moist tropical forests resprouting may be an important component of life history, contributing to asexual reproduction through the clonal spread of individuals derived from shoot fragments. However, in contrast to other ecosystems where resprouting is common, the ecological correlates of resprouting capacity in tropical forests remain largely unexplored. In this study we characterized shade tolerance, resprouting capacity and sexual reproductive success of eight co-occurring Piper species from lowland forests of Panama. In field experiments we found that shade-tolerant Piper species had a higher capacity to regenerate from excised or pinned stem fragments than light-demanding species in both gap and understory light conditions. In contrast, shade-tolerant species had lower recruitment probabilities from seeds, as a consequence of lower initial seed viability, and lower seedling emergence rates. All Piper species needed gap conditions for successful seedling establishment. Of 8,000 seeds sown in the understory only 0.2% emerged. In gaps, seed germination of light-demanding species was between 10 and 50%, whereas for shade-tolerant species it was 0.5–9.8%. We propose that the capacity to reproduce asexually from resprouts could be adaptive for shade-tolerant species that are constantly exposed to damage from falling litter in the understory. Resprouting may allow Piper populations to persist and spread despite the high rate of pre-dispersal seed predation and low seed emergence rates. Across Piper species, we detected a trade-off between resprouting capacity and the annual viable seed production per plant but not with annual seed mass produced per plant. This suggests that species differences in sexual reproductive success may not necessarily result from differential resource allocation. Instead we suggest that low sexual reproductive success in the understory may in part reflect reduced genetic diversity in populations undergoing clonal growth, resulting in self-fertilization and in-breeding depression.  相似文献   

19.
The higher growth rates of resprouting shoots compared with those of mature plants in resprouter woody species are supported by higher rates of photosynthesis and transpiration. In this contribution we hypothesize that species with higher resprouting vigour will show a larger enhancement of photosynthesis in resprouting shoots. We test this hypothesis by comparing gas exchange and leaf parameters between resprouting and mature plants in Erica scoparia and E. australis. These two Erica species co-occur in Mediterranean heathlands of the Strait of Gibraltar. Erica scoparia has a higher rate of post-disturbance starch recovery than E. australis, which makes it more resistant to recurrent disturbance. We tested the hypothesis that enhancement of photosynthesis and water use characteristics of resprouting shoots compared with mature plants should be more pronounced in E. scoparia. In both species, resprouts had higher efficiency in the use of light and higher maximum net photosynthesis than mature shoots. However, contrary to expectations, differences in the photosynthetic performance between resprouts and mature plant shoots were larger in E. australis. Higher root to shoot ratios in resprouting E. australis plants, determined by their slower above-ground recovery, together with stronger demand from carbon sinks might explain this result.  相似文献   

20.
Fire regimes shape plant communities but are shifting with changing climate. More frequent fires of increasing intensity are burning across a broader range of seasons. Despite this, impacts that changes in fire season have on plant populations, or how they interact with other fire regime elements, are still relatively understudied. We asked (a) how does the season of fire affect plant vigor, including vegetative growth and flowering after a fire event, and (b) do different functional resprouting groups respond differently to the effects of season of fire? We sampled a total of 887 plants across 36 sites using a space‐for‐time design to assess resprouting vigor and reproductive output for five plant species. Sites represented either a spring or autumn burn, aged one to three years old. Season of fire had the clearest impacts on flowering in Lambertia formosa with a 152% increase in the number of plants flowering and a 45% increase in number of flowers per plant after autumn compared with spring fires. There were also season × severity interactions for total flowers produced for Leptospermum polygalifolium and L. trinervium with both species producing greater flowering in autumn, but only after lower severity fires. Severity of fire was a more important driver in vegetative growth than fire season. Season of fire impacts have previously been seen as synonymous with the effects of fire severity; however, we found that fire season and severity can have clear and independent, as well as interacting, impacts on post‐fire vegetative growth and reproductive response of resprouting species. Overall, we observed that there were positive effects of autumn fires on reproductive traits, while vegetative growth was positively related to fire severity and pre‐fire plant size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号