首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Relationships among the ecdysozoans, or molting animals, have been difficult to resolve. Here, we use nearly complete 28S+18S ribosomal RNA gene sequences to estimate the relations of 35 ecdysozoan taxa, including newly obtained 28S sequences from 25 of these. The tree-building algorithms were likelihood-based Bayesian inference and minimum-evolution analysis of LogDet-transformed distances, and hypotheses were tested wth parametric bootstrapping. Better taxonomic resolution and recovery of established taxa were obtained here, especially with Bayesian inference, than in previous parsimony-based studies that used 18S rRNA sequences (or 18S plus small parts of 28S). In our gene trees, priapulan worms represent the basal ecdysozoans, followed by nematomorphs, or nematomorphs plus nematodes, followed by Panarthropoda. Panarthropoda was monophyletic with high support, although the relationships among its three phyla (arthropods, onychophorans, tardigrades) remain uncertain. The four groups of arthropods-hexapods (insects and related forms), crustaceans, chelicerates (spiders, scorpions, horseshoe crabs), and myriapods (centipedes, millipedes, and relatives)-formed two well-supported clades: Hexapoda in a paraphyletic crustacea (Pancrustacea), and 'Chelicerata+Myriapoda' (a clade that we name 'Paradoxopoda'). Pycnogonids (sea spiders) were either chelicerates or part of the 'chelicerate+myriapod' clade, but not basal arthropods. Certain clades derived from morphological taxonomy, such as Mandibulata, Atelocerata, Schizoramia, Maxillopoda and Cycloneuralia, are inconsistent with these rRNA data. The 28S gene contained more signal than the 18S gene, and contributed to the improved phylogenetic resolution. Our findings are similar to those obtained from mitochondrial and nuclear (e.g., elongation factor, RNA polymerase, Hox) protein-encoding genes, and should revive interest in using rRNA genes to study arthropod and ecdysozoan relationships.  相似文献   

2.
In this report, we analyze the phylogeny of Pycnogonida using the three nuclear and three mitochondrial markers currently sequenced for studying inter- and intrafamilial relationships within Arthropoda: 18S and 28S rRNA genes, Histone H3, cytochrome c oxidase subunit 1 (CO1), 12S and 16S rRNA genes. We identify several problems in previous studies, due to the use of inappropriate sequences (taxonomic misidentification, DNA contamination, sequencing errors, missing data) or taxa (outgroup choice). Our analyses show that most markers are not powerful to study the phylogeny of sea spiders. The results suggest however a recent diversification of the group (Mesozoic rather than Paleozoic) and the early divergence of Austrodecidae, followed by Colossendeidae, Pycnogonidae and Rhynchothoracidae. Except Ammotheidae and Callipallenidae, all other families were recovered as monophyletic. Analyses of synonymous sites in CO1 sequences reveal an extreme heterogeneity of nucleotide composition within sea spiders, as six unrelated species show a reverse strand-specific bias. We therefore suggest that several independent reversals of asymmetric mutational constraints occurred during the evolution of Pycnogonida, as a consequence of genomic inversions involving either the control region or a fragment containing the CO1 gene. These hypotheses are supported by the comparison of two complete mitochondrial genomes of sea spiders (Achelia bituberculata and Nymphon gracile) with that of Limulus.  相似文献   

3.
North American trapdoor spiders of the subfamily Euctenizinae (Cyrtaucheniidae) are among the most diverse mygalomorph spiders (trapdoor spiders, tarantulas, and their relatives) on the continent in terms of species numbers and ecological habits. We present a generic level phylogenetic study of the subfamily based on a total evidence approach. Our dataset comprises approximately 3.7 kb of molecular characters (18S and 28S rRNA gene sequences) and 71 morphological characters scored for 32 taxa. When analyzed independently, these data sets, particularly the morphology, depict very different views of mygalomorph and euctenizine relationships, albeit with weak support. However, when these data are combined we recover a tree topology that is supported by high posterior probability for most nodes. The combined data recover a phylogenetic pattern for euctenizines different than previously published and indicate the presence of a narrowly endemic new genus from central California. While euctenizine monophyly is unequivocal, the monophyly of a number of other mygalomorph groups is questionable (e.g., Cyrtaucheniidae, Mecicobothriodina, Rastelloidina). This non-monophyly is noteworthy, as our analysis represents the first employing a total evidence approach for mygalomorphs, a group known to be morphologically conservative.  相似文献   

4.
拟壁钱属Oecobius和壁钱属Uroctea蜘蛛之间系统发生关系存在一定的争议.为从分子水平探讨两属间系统发生关系,本研究测定了5科6种蜘蛛的16S rRNA基因部分序列,并联合来自GenBank的8科8种蜘蛛16S rRNA基因序列数据重建分子系统树.结果表明,拟壁钱属和壁钱属间遗传距离(28.1%)明显大于复杂生殖器类(Entelegynae)蜘蛛属间遗传距离的平均值(22.9%);与目前大多数文献把拟壁钱属和壁钱属并在一个科的观点相反,本研究重建的系统发生树显示两属不是姊妹群.作者建议把拟壁钱属和壁钱属分别重新划回拟壁钱科Oecobiidae和壁钱科Urocteidae.系统发生树还验证了简单生殖器类(Haplogynae)蜘蛛、复杂生殖器类蜘蛛各自的单系性以及筛器类(Cribellate)蜘蛛的多系发生,同时本文的结果还对圆网蛛类(Orbiclariae)单系发生及RTA类群单系发生的有效性提出了质疑.  相似文献   

5.
The mygalomorph spider genera Antrodiaetus and Atypoides (Antrodiaetidae) belong to an ancient lineage that has persisted since at least the Cretaceous. These spiders display a classic disjunct Holarctic distribution with species in the eastern Palaearctic plus the western and eastern Nearctic. Prior phylogenetic analyses of this group have been proposed on the basis of morphology, but lack strong support and independent corroboration. Here we present the first phylogenetic analysis of species-level relationships based on molecular data obtained from the mitochondrial (cytochrome c oxidase subunit I) and nuclear (18S and 28S rRNA) genomes. Analyses corroborate earlier findings that Atypoides forms a paraphyletic grade with respect to Antrodiaetus, and consequently, that genus is formally synonymized under Antrodiaetus. In addition, our results support the relatively early divergence of Antrodiaetus roretzi. Antrodiaetus pacificus is "paraphyletic" with respect to the A. lincolnianus group and is likely an assemblage of numerous species. The final topology based on a combined molecular dataset, in conjunction with two different molecular dating techniques (penalized likelihood plus a Bayesian approach) and ancestral distribution reconstructions, was used to infer the historical biogeography of these spiders. Trans-Beringian and trans-Atlantic routes appear to account for the present-day distribution of Antrodiaetus in Japan and North America. Future studies on Antrodiaetus phylogeny will be used to address questions regarding morphological stasis and the evolution of quantitative morphological characters.  相似文献   

6.
Evolutionary convergence of phenotypic traits provides evidence for their functional success. The origin of the orb web was a critical event in the diversification of spiders that facilitated a spectacular radiation of approximately 12 000 species and promoted the evolution of novel web types. How the orb web evolved from ancestral web types, and how many times orb‐like architectures evolved in spiders, has been debated for a long time. The little known spider genus Fecenia (Psechridae) constructs a web that resembles the archetypical orb web, but morphological data suggest that Psechridae (Psechrus + Fecenia) does not belong in Orbiculariae, the ‘true orb weavers’, but to the ‘retrolateral tibial apophysis (RTA) clade’ consisting mostly of wandering spiders, but also including spiders building less regular webs. Yet, the data are sparse and no molecular phylogenetic study has estimated Fecenia's exact position in the tree of life. Adding new data to sequences pulled from GenBank, we reconstruct a phylogeny of Entelegynae and phylogenetically test the monophyly and placement of Psechridae, and in doing so, the alternative hypotheses of monophyletic origin of the orb web and the pseudo‐orb versus their independent origins, a potentially spectacular case of behavioural convergence. We also discuss the implications of our results for Entelegynae systematics. Our results firmly place a monophyletic Psechridae within the RTA clade, phylogenetically distant from true orb weavers. The architectural similarities of the orb and the pseudo‐orb are therefore clearly convergent, as also suggested by detailed comparisons of these two web types, as well as the spiders' web‐building behaviours and ontogenetic development. The convergence of Fecenia webs with true orbs provides a remarkable opportunity to investigate how these complex sets of traits may have interacted during the evolution of the orb.  相似文献   

7.
The spider family Pholcidae comprises a large number of mainly tropical, web-weaving spiders, and is among the most diverse and dominant spider groups in the world. The phylogeny of this family has so far been investigated exclusively using morphological data. Here, we present the first molecular data for the family analyzed in a phylogenetic context. Four different gene regions (12S rRNA, 16S rRNA, cytochrome c oxidase subunit I, 28S rRNA) and 45 morphological characters were scored for 31 pholcid and three outgroup taxa. The data were analyzed both for individual genes, combined molecular data, and molecular plus morphological data, using parsimony, maximum likelihood, and Bayesian methods. Some of the phylogenetic hypotheses obtained previously using morphology alone were also supported by our results, like the monophyly of pholcines and of the New World clade. On the other hand, some of the previous hypotheses could be discarded with some confidence (monophyly of holocnemines, the position of Priscula), and still others need further investigation (the position of holocnemines, ninetines, and Metagonia). The data obtained provide an excellent basis for future investigations of phylogenetic patterns both within the family and among spider families.  相似文献   

8.
Scleractinian corals have long been assumed to be a monophyletic group characterized by the possession of an aragonite skeleton. Analyses of skeletal morphology and molecular data have shown conflicting patterns of suborder and family relationships of scleractinian corals, because molecular data suggest that the scleractinian skeleton could have evolved as many as four times. Here we describe patterns of molecular evolution in a segment of the mitochondrial (mt) 12S ribosomal RNA gene from 28 species of scleractinian corals and use this gene to infer the evolutionary history of scleractinians. We show that the sequences obtained fall into two distinct clades, defined by PCR product length. Base composition among taxa did not differ significantly when the two clades were considered separately or as a single group. Overall, transition substitutions accumulated more quickly relative to transversion substitutions within both clades. Spatial patterns of substitutions along the 12S rRNA gene and likelihood ratio tests of divergence rates both indicate that the 12S rRNA gene of each clade evolved under different constraints. Phylogenetic analyses using mt 12S rRNA gene data do not support the current view of scleractinian phylogeny based upon skeletal morphology and fossil records. Rather, the two-clade hypothesis derived from the mt 16S ribosomal gene is supported.  相似文献   

9.
The present analyses employ the almost complete sequence of the 28S rRNA gene to investigate phylogenetic relationships among Pancrustacea, placing special emphasis on the position of basal hexapod lineages. This study utilizes a greater number of characters and taxa of Protura, Collembola and Diplura than previous analyses to focus on conflicts in the reconstruction of the early steps in hexapod evolution. Phylogenetic trees are mainly based on Bayesian approaches, but likewise include analyses with Maximum Likelihood and Maximum Parsimony. Different analyses, including the application of a mixed DNA/RNA substitution model, were performed to narrow possible misleading effects of non-stationarity of nucleotide frequencies, saturation and character independence down to a minimum. This is the first time that a mixed DNA/RNA model is applied to analyse 28S rRNA sequences of basal hexapods. All methods yielded strong support for the monophyly of Collembola, Diplura, Dicondylia and Insecta s.str. , as well as for a cluster composed of Diplura and Protura ('Nonoculata-hypothesis'). However, the last cluster may be an artifact caused by a shared GC bias of the 28S sequences between these orders, in combination with a long branch effect. The instability of the position of the 'Nonoculata' within Pancrustacea further bears out the misleading effect of non-stationarity of nucleotide frequencies. Protura and Diplura either form the sister-group to Collembola (Entognatha) or cluster with branchiopod crustaceans. Overall, the phylogenetic signal of the complete sequences of the 28S rRNA gene favours monophyly of Hexapoda over paraphyly. However, further corroboration from independent data is needed to rule out the competing hypothesis of mutually paraphyletic Crustacea and Hexapoda.  相似文献   

10.
The identification and phylogeny of muricids have been in a state of confusion for a long time due to the morphological convergence and plasticity. DNA-based identification and phylogeny methods often offer an analytically powerful addition or even an alternative. In this study, we employ a DNA barcoding method to identify 17 known and easily confused muricid species (120 individuals) from the whole China coast based on mitochondrial cytochrome c oxidase subunit I (COI) and 16S rRNA sequences, and nuclear ITS-1 and 28S rRNA sequences. The phylogeny of muricid subfamilies is also analysed based on all mitochondrial and nuclear sequences. The universal COI and 16S rRNA primers did not work broadly across the study group, necessitating the redesign of muricid specific COI and 16S rRNA primers in this paper. Our study demonstrates that COI gene is a suitable marker for barcoding muricids, which can distinguish all muricid species studied. Phylogenetic analysis of 16S rRNA, ITS-1 and 28S rRNA data also provide good support for the species resolution observed in COI data. The relationships of muricid subfamilies are resolved based on the separate and combined gene data that showed the monophyly of each the subfamilies Ergalataxinae, Rapaninae, Ocenebrinae and Muricinae, especially that Ergalataxinae did not fall within Rapaninae.  相似文献   

11.
Spiders represent widely used model organisms for chelicerate and even arthropod development and evolution. Wnt genes are important and evolutionary conserved factors that control and regulate numerous developmental processes. Recent studies comprehensively investigated the complement and expression of spider Wnt genes revealing conserved as well as diverged aspects of their expression and thus (likely) function among different groups of spiders representing Mygalomorphae (tarantulas), and both main groups of Araneae (true spiders) (Haplogynae/Synspermiata and Entelegynae). The allegedly most modern/derived group of entelegyne spiders is represented by the RTA-clade of which no comprehensive data on Wnt expression were available prior to this study. Here, we investigated the embryonic expression of all Wnt genes of the RTA-clade spider Cupiennius salei. We found that most of the Wnt expression patterns are conserved between Cupiennius and other spiders, especially more basally branching species. Surprisingly, most differences in Wnt gene expression are seen in the common model spider Parasteatoda tepidariorum (a non-RTA clade entelegyne species). These results show that data and conclusions drawn from research on one member of a group of animals (or any other organism) cannot necessarily be extrapolated to the group as a whole, and instead highlight the need for comprehensive taxon sampling.  相似文献   

12.
The phylogenetic relationships among major evolutionary lineages of the sea spiders (subphylum Pycnogonida) were investigated using partial sequences of nuclear DNA, 18S, and 28S ribosomal genes. Topological differences were obtained with separate analyses of 18S and 28S, and estimates of phylogeny were found to be significantly different between a combined molecular data set (18S and 28S) and a subset of a morphological data matrix analyzed elsewhere. Colossendeidae played a major role in the conflicts; it was closely related to Callipallenidae or Nymphonidae with 18S or 28S, respectively, but related to Ammotheidae according to morphological characters. Austrodecidae was defined as a basal taxon for Pycnogonida by these molecular data. The 18S sequences were surprisingly conserved among pycnogonid taxa, suggesting either an unusual case of slow evolution of the gene, or an unexpected recent divergence of pycnogonid lineages. Notwithstanding difficulties such as non-optimal taxon sampling, this is the first attempt to reconstruct the pycnogonid phylogeny based on DNA. Continued studies of sequences and other characters should increase the reliability of the analyses and our understanding of the phylogenetics of sea spiders.  相似文献   

13.
We made a cytogenetic analysis of four species of Oxyopidae and compared it with the karyotype data of all species of this family. In Hamataliwa sp, the mitotic cells showed 2n♂ = 26+X(1)X(2) and telocentric chromosomes. The 2n♂ = 28, which has been described for only one oxyopid spider, is the highest diploid number reported for this family. Peucetia species exhibited distinct karyotype characteristics, i.e., 2n♂ = 20+X(1)X(2) in P. flava and 2n♂ = 20+X in P. rubrolineata, revealing interspecific chromosome variability within this genus. However, both Peucetia species exhibited telocentric chromosomes. The most unexpected karyotype was encountered in Oxyopes salticus, which presented 2n♂ = 10+X in most individuals and a predominance of biarmed chromosomes. Additionally, one male of the sample of O. salticus was heterozygous for a centric fusion that originated the first chromosomal pair and exhibited one supernumerary chromosome in some cells. Testicular nuclei of Hamataliwa sp and O. salticus revealed NORs on autosomal pairs, after silver impregnation. The majority of Oxyopidae spiders have their karyotype differentiated by both reduction in diploid number chromosome number and change of the sex chromosome system to X type; however, certain species retain the ancestral chromosome constitution 2n = 26+X1X2. The most remarkable karyotype differentiation occurred in O. salticus studied here, which showed the lowest diploid number ever observed in Oxyopidae and the second lowest registered for Entelegynae spiders.  相似文献   

14.
Current knowledge of the evolutionary relationships amongst the wolf spiders (Araneae: Lycosidae) is based on assessment of morphological similarity or phylogenetic analysis of a small number of taxa. In order to enhance the current understanding of lycosid relationships, phylogenies of 70 lycosid species were reconstructed by parsimony and Bayesian methods using three molecular markers; the mitochondrial genes 12S rRNA, NADH1, and the nuclear gene 28S rRNA. The resultant trees from the mitochondrial markers were used to assess the current taxonomic status of the Lycosidae and to assess the evolutionary history of sheet-web construction in the group. The results suggest that a number of genera are not monophyletic, including Lycosa, Arctosa, Alopecosa, and Artoria. At the subfamilial level, the status of Pardosinae needs to be re-assessed, and the position of a number of genera within their respective subfamilies is in doubt (e.g., Hippasa and Arctosa in Lycosinae and Xerolycosa, Aulonia and Hygrolycosa in Venoniinae). In addition, a major clade of strictly Australasian taxa may require the creation of a new subfamily. The analysis of sheet-web building in Lycosidae revealed that the interpretation of this trait as an ancestral state relies on two factors: (1) an asymmetrical model favoring the loss of sheet-webs and (2) that the suspended silken tube of Pirata is directly descended from sheet-web building. Paralogous copies of the nuclear 28S rRNA gene were sequenced, confounding the interpretation of the phylogenetic analysis and suggesting that a cautionary approach should be taken to the further use of this gene for lycosid phylogenetic analysis.  相似文献   

15.
The set of "expansion segments" of any eukaryotic 26S/28S ribosomal RNA (rRNA) gene is responsible for the bulk of the difference in length between the prokaryotic 23S rRNA gene and the eukaryotic 26S/28S rRNA gene. The expansion segments are also responsible for interspecific fluctuations in length during eukaryotic evolution. They show a consistent bias in base composition in any species; for example, they are AT rich in Drosophila melanogaster and GC rich in vertebrate species. Dot-matrix comparisons of sets of expansion segments reveal high similarities between members of a set within any 28S rRNA gene of a species, in contrast to the little or spurious similarity that exists between sets of expansion segments from distantly related species. Similarities among members of a set of expansion segments within any 28S rRNA gene cannot be accounted for by their base-compositional bias alone. In contrast, no significant similarity exists within a set of "core" segments (regions between expansion segments) of any 28S rRNA gene, although core segments are conserved between species. The set of expansion segments of a 26S/28S gene is coevolving as a unit in each species, at the same time as the family of 28S rRNA genes, as a whole, is undergoing continual homogenization, making all sets of expansion segments from all ribosomal DNA (rDNA) arrays in a species similar in sequence. Analysis of DNA simplicity of 26S/28S rRNA genes shows a direct correlation between significantly high relative simplicity factors (RSFs) and sequence similarity among a set of expansion segments. A similar correlation exists between RSF values, overall rDNA lengths, and the lengths of individual expansion segments. Such correlations suggest that most length fluctuations reflect the gain and loss of simple sequence motifs by slippage-like mechanisms. We discuss the molecular coevolution of expansion segments, which takes place against a background of slippage-like and unequal crossing-over mechanisms of turnover that are responsible for the accumulation of interspecific differences in rDNA sequences.   相似文献   

16.
A survey of 28S and 5S rRNA gene clusters, and telomeric repeats was performed using single and double FISH in the Taterillus genus (Rodentia, Muridae, Gerbillinae). Taterillus was previously demonstrated to have undergone a very recent and extensive chromosomal evolution. Our FISH results demonstrate that rRNA genes can vary in location and number irrespective of the phylogenetic relationships. Telomeric repeats were detected in pericentromeric and interstitial regions of several chromosomes, thus providing nonambiguous evolutionary footprints of Robertsonian and tandem translocation events. These footprints are discussed in reference to the molecular process of these karyotypical changes. Also, examples of colocation of rDNA clusters and telomeric repeats lend support to their possible involvement in nucleolus formation. Finally, the presence of rRNA genes, and the extensive amplification of telomeric repeats at specific loci within a double X-autosome translocated element which were not observed on the homologous Y1 and Y2, served as basis for an epigenomic hypothesis on X-autosome translocation viability in mammals.  相似文献   

17.
本文将12S rRNA基因序列分析应用于研究若干重要蜘蛛类群的系统关系,以对传统的分类研究结论进行验证和补充,并且探讨12S rRNA基因序列分析在蜘蛛系统发生研究中的适用性。根据12S rRNA基因第3结构域构建的分子系统树得出结论:1.圆网类(即妖面蛛总科与园蛛总科)并非单系;2.隙蛛与暗蛛较漏斗蛛具有更近的亲缘关系;3.壁钱和拟壁钱并不近缘;4.有筛器类蜘蛛为复系类群;5.12S rRNA基因第3结构域片段对推断近缘科属间的系统发生关系是有效的遗传标记。  相似文献   

18.
We have investigated the extent of sequence variation in human ribosomal RNA (rRNA) genes and the expression of specific rRNA gene variants in different tissues of an individual. Focusing on the fifth variable region (V5; nt 2065-2244) of the 28S rRNA gene, we find that sequence differences between rRNA genes of a single individual are characterized by differences in number of repeats of simple sequences at four specific sites. These data support and extend previous findings which show similar V5 sequence variation in rRNA genes from a group of individuals. We performed experiments to determine if there is differential gene expression within the rRNA multigene family. From the analysis of data of six variant V5 probes protected from RNase digestion by rRNAs isolated from different tissues of the individual, we conclude that each variant rRNA is present in a similar proportion in these tissues, whereas the actual contributions of variants differ, their relative proportion is maintained from tissue to tissue in an individual. We favor the explanation of a gene dosage effect over that of a regulated gene effect to account for this pattern of rRNA gene expression. In addition, computer generated secondary structure models of each V5 clone structure predict the same three helix structure with the regions of sequence variation contained in one stem-loop structure.  相似文献   

19.
The sequences of gene fragments encoding cytochrome  c oxidase subunit I (COI) and 16S rDNA were obtained and used to construct phylograms of eight taxa of chthamaloid barnacles using the scalpelloid Calantica as an out-group. The phylograms support the basal position of Catomerus within the chthamaloids . Analysis of 16S rDNA shows that Octomeris and the four-plated barnacle Chamaesipho are located on the same clade, while Chthamalus , Euraphia and Tetrachthamalus are located on a second clade, indicating that reduction in the number of shell plates occurred twice in the evolution of the chthamaloids. The topology of phylograms based on COI sequences is poorly resolved: 93% of third position nucleotides in this fragment are polymorphic while the amino acid sequences are strictly conserved. We assume that in the chthamaloids, at least at the generic level, polymorphism in the COI gene is saturated beyond phylogenetic information and cannot resolve the phylogenetic relationships within this superfamily.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 39–45.  相似文献   

20.
Ribosomal loci represent a major tool for investigating environmental diversity and community structure via high-throughput marker gene studies of eukaryotes (e.g. 18S rRNA). Since the estimation of species’ abundance is a major goal of environmental studies (by counting numbers of sequences), understanding the patterns of rRNA copy number across species will be critical for informing such high-throughput approaches. Such knowledge is critical, given that ribosomal RNA genes exist within multi-copy repeated arrays in a genome. Here we measured the repeat copy number for six nematode species by mapping the sequences from whole genome shotgun libraries against reference sequences for their rRNA repeat. This revealed a 6-fold variation in repeat copy number amongst taxa investigated, with levels of intragenomic variation ranging from 56 to 323 copies of the rRNA array. By applying the same approach to four C. elegans mutation accumulation lines propagated by repeated bottlenecking for an average of ~400 generations, we find on average a 2-fold increase in repeat copy number (rate of increase in rRNA estimated at 0.0285-0.3414 copies per generation), suggesting that rRNA repeat copy number is subject to selection. Within each Caenorhabditis species, the majority of intragenomic variation found across the rRNA repeat was observed within gene regions (18S, 28S, 5.8S), suggesting that such intragenomic variation is not a product of selection for rRNA coding function. We find that the dramatic variation in repeat copy number among these six nematode genomes would limit the use of rRNA in estimates of organismal abundance. In addition, the unique pattern of variation within a single genome was uncorrelated with patterns of divergence between species, reflecting a strong signature of natural selection for rRNA function. A better understanding of the factors that control or affect copy number in these arrays, as well as their rates and patterns of evolution, will be critical for informing estimates of global biodiversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号