首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Aim Based on extensive range‐wide sampling, we address the phylogeographical history of one of the most widespread and taxonomically complex sedges in Europe, Carex nigra s. lat. We compare the genetic structure of the recently colonized northern areas (front edge) and the long‐standing southern areas (rear edge), and assess the potential genetic basis of suggested taxonomic divisions at the rank of species and below. Location Amphi‐Atlantic, central and northern Europe, circum‐Mediterranean mountain ranges, central Siberia, Himalayas. Methods A total of 469 individuals sampled from 83 populations, covering most of the species’ range, were analysed with amplified fragment length polymorphism (AFLP) and chloroplast DNA (cpDNA) markers. Bayesian clustering, principal coordinates analysis, and estimates of diversity and differentiation were used for the analysis of AFLP data. CpDNA data were analysed with statistical parsimony networks and maximum parsimony and Bayesian inference of phylogenetic trees. Results Overall genetic diversity was high, but differentiation among populations was limited. Major glacial refugia were inferred in the Mediterranean Basin and in western Russia; in addition, there may have been minor refugia in the North Atlantic region. In the southern part of the range, we found high levels, but geographically quite poorly structured genetic diversity, whereas the levels of genetic diversity varied among different areas in the north. North American populations were genetically very similar to the European populations. Main conclusions The data are consistent with extensive gene flow, which has obscured the recent history of the taxon. The limited differentiation in the south probably results from the mixing of lineages expanding from several local refugia. Northward post‐glacial colonization resulted in a leading‐edge pattern of low diversity in the Netherlands, Belgium, Scotland and Iceland, whereas the observed high diversity levels in Fennoscandia suggest broad‐fronted colonization from the south as well as from the east. The patterns found in the American populations are consistent with post‐glacial colonization, possibly even with anthropogenic introduction from Europe. Our data also suggest that the tussock‐forming populations of C. nigra, often referred to as a distinct species (Carex juncella), represent an ecotype that has originated repeatedly from different populations with creeping rhizomes.  相似文献   

2.
Euphorbia barnardii White, Dyer & Sloane is a relatively small, succulent shrub found in the Northern Province of South Africa. In 1994 it was listed as endangered by the Transvaal Threatened Plants Programme, because only three populations, totalling 1150 plants, were found. However, our study found five populations totalling 10 783 plants (9503 were reproductive). One population, found 50 km from the others, in the Bewaarkloof district, differs in terms of habitat type and morphology and may therefore be a different taxon. The other populations occur in Sekhukhuneland. Soil analyses showed that E. barnardii is restricted to ultramafic (serpentine) substrates. A sample of 2015 plants was examined in 1995 for size, stage, new growth, dead branches, reproduction (indices of vigour), damage and disease. Analysis of the results of 10 years’ demographic monitoring (1985–1995) on two of the Sekhukhuneland populations showed that one population, which was vigorous in 1995, showed little change in population size and structure, while the other, which had low vigour in 1995, showed a precipitous decline to local extinction in the monitoring plot. Aerial photographs taken in 1957 (1963 for Bewaarkloof) and 1986 showed large increases in human population density within 1.5 km of the E. barnardii populations except at Bewaarkloof, where it decreased. An increase in human habitation is associated with an increase in livestock (mostly cattle and goats) which trample plants. Trampling damages the terminal segments, which may lead to lowered reproductive output and increase susceptibility to opportunistic bacterial wilt pathogens. Bacterial wilts were prevalent on all populations but were particularly high at Bewaarkloof and on the population that showed a steep decline in numbers. Disease incidence was associated with the level of plant damage. The impact on plants further up the slopes and on the crest of hills (quite far from human settlements) was to a far lesser degree but further increases in human population density could change this situation. While this study has shown that the population size of E. barnardii is much greater than previously thought, the species is still threatened by several different processes and should be listed as ‘Vulnerable (A1a + c, B1, B2b + e, C1, D2)’ according to World Conservation Union categories.  相似文献   

3.
Broad‐scale plastid (chloroplast) DNA studies of beech (Fagus sylvatica) populations suggest the existence of glacial refugia and introgression zones in south‐eastern Europe. We choose a possible refugium of beech in northern Greece, Mt. Paggeo, which hosts a private plastid haplotype for beech, to conduct a fine‐scale genetic study. We attempt to confirm or reject the hypothesis of the existence of a small‐scale refugium and to gain an understanding of the ecological and topographical factors affecting the spatial distribution of plastid haplotypes in the area. Our results reveal a high haplotype diversity on Mt. Paggeo, but the overall distribution of haplotypes shows no significant correlation with the ecological characteristics of the beech forests. However, the private haplotype is found at high frequencies in beech forests located in or near ravines, having a high spatial overlap with a relict vegetation type occurring in ecological conditions found mainly in ravines. This result emphasizes the importance of topography in the existence of glacial refugia in the wider area. Furthermore, haplotypes originating from two more widespread beech lineages in Greece are found on Mt. Paggeo, indicating a possible mixing of populations originating from a local refugium with populations from remote refugia that possibly migrated into the area after the last glaciation. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 174 , 516–528.  相似文献   

4.
Oriental beech (Fagus orientalis Lipsky) is a widespread monoecious and wind-pollinated tree species. It is one of the major components of the Hyrcanian forests of Iran and it is of both ecological and economical importance. Twelve beech stands were surveyed at 9 chloroplast (cp) and 6 nuclear (n) polymorphic microsatellite loci (simple sequence repeats, SSR) to provide information on distribution of genetic diversity within and among populations and on gene conservation and silvicultural management of this species. High levels of genetic differentiation were detected for the chloroplast genome (F ST = 0.80 and R ST = 0.95), in sharp contrast to the nuclear genome (F ST = 0.06, R ST = 0.05). The analysis of molecular variance (AMOVA) showed that 48% of the total cpSSR variation was attributable to differences among regions and 30% to differences among populations within regions, suggesting multiple origins of beech populations in Hyrcanian forests. Nuclear SSRs confirmed the presence of significant differentiation among populations and among geographic regions, even if, as expected, this was less pronounced than that found with cpSSRs (based on AMOVA, differences among regions and among populations within regions each contribute 5% to total nSSR variance). A highly significant correlation between genetic (nSSRs) and geographic distances (R 2 = 0.522) was estimated, thus showing an isolation by distance effect. The application of spatial analysis of molecular variance (SAMOVA) using both marker data allowed identification of genetically homogeneous groups of populations. Possible applications of these results for the certification of provenances and/or seed lots and for designing conservation programs are presented and discussed.  相似文献   

5.
Fagus grandifolia var. mexicana(Fagaceae) is a Mexican endemic tree, currently threatened with extinction. In order to assess the level and structure of genetic variation in four remaining populations, leaf samples were analysed using random amplified polymorphic DNA (RAPD) and cpDNA PCR-RFLP markers. A sample of the more widespread congener, F. grandifoliavar. grandifolia from the USA was also analysed for comparison. Thirty-three polymorphic RAPD bands were produced using 18 10-mer primers. AMOVA of RAPD data indicated significant (P < 0.002) population differentiation, with 15.6% of variation recorded between Mexican populations. PCR-RFLP analysis enabled three cpDNA haplotypes to be identified, denoted types A, B, and C. Types A and B were each restricted to an individual Mexican population, whereas Type C was fixed for two Mexican populations, and the population from the USA. Within-population genetic variation, quantified as percentage polymorphic bands, Shannon's Diversity Index and Nei's gene diversity measure, was found to be lower in Mexican populations than in that from the USA, and was positively related to population size. These results suggest that an unexpectedly high degree of genetic variation exists within Mexican beech, and this variation should be considered in developing the conservation strategy that is urgently required if extinction of this taxon is to be prevented.  相似文献   

6.
A closed‐dynamic‐chamber system (CDCS) was used to measure the spatial and seasonal variability of the soil CO2 efflux (Fs) in beech and in Douglas fir patches of the Vielsalm forest (Belgium). First the difference between natural and measured soil CO2 efflux induced by the presence of the CDCS was studied. The impact on the measurements of the pressure difference between the outside (natural condition) and the inside of the chamber was found to be small (0.4%). The influence of wind disturbance in the closed chamber was tested by comparison with an open‐chamber system characterized by a different wind distribution. A very good correlation between the two systems was found (r2 = 0.99) but the open system yielded slightly lower fluxes than the closed one (slope = 0.88 ± 0.05). A measurement procedure has been developed to minimize the effect of the other sources of perturbation. The spatial and seasonal evolution of the soil CO2 efflux was obtained by performing regular measurements on 29 spots in the beech patch over a period of 12 months and on 24 spots in the Douglas fir patch over 8 months. For each spot, the experimental relationship between Fs and soil temperature was compared with the fitted line for an Arrhenius relationship with a soil temperature‐dependent activation energy. Soil temperature explains 73% of the seasonal variation for all the data. The spatial average of the soil CO2 efflux at 10 °C (Fs10) in the beech patch is 2.57 ± 0.41 μmol m?2 s?1, approximately twice the average in the Douglas fir patch recorded at 1.42 ± 0.22 μmol m?2 s?1. The litter fall analysis seems to indicate that soil organic matter quality and quantity may be one the reasons for this difference. Finally the annual soil CO2 efflux was calculated for the beech and Douglas fir patches (870 ± 140 and 438 ± 68 gC m?2 y?1, respectively). The beech value would represent 92 ± 15% of the annual ecosystem respiration estimated from the eddy covariance measurements.  相似文献   

7.
The data on mitochondrial DNA (mtDNA) variation in two populations of Volga Tatars, representing the population of Buinsk and Aznakaevo districts of the Republic of Tatarstan are presented. Comparative analysis of the data on mtDNA variation in the populations of Eastern Europe showed that Volga Tatars were characterized by low interpopulation differentiation (F ST = 0.33%), while the level of interethnic differentiation in Eastern Europe is 1.8%. Genetic similarity of Tatars from the eastern regions of Tatarstan to Bashkirs, as well as of Tatars from western regions to Chuvashes, with whom they share territorial borders, was revealed. Positive correlation between population genetic structure in Eastern Europe and linguistic affiliation of the ethnic groups studied was observed.  相似文献   

8.
The spruce budworm, Choristoneura fumiferana, is presumed to be panmictic across vast regions of North America. We examined the extent of panmixia by genotyping 3,650 single nucleotide polymorphism (SNP) loci in 1975 individuals from 128 collections across the continent. We found three spatially structured subpopulations: Western (Alaska, Yukon), Central (southeastern Yukon to the Manitoba–Ontario border), and Eastern (Manitoba–Ontario border to the Atlantic). Additionally, the most diagnostic genetic differentiation between the Central and Eastern subpopulations was chromosomally restricted to a single block of SNPs that may constitute an island of differentiation within the species. Geographic differentiation in the spruce budworm parallels that of its principal larval host, white spruce (Picea glauca), providing evidence that spruce budworm and spruce trees survived in the Beringian refugium through the Last Glacial Maximum and that at least two isolated spruce budworm populations diverged with spruce/fir south of the ice sheets. Gene flow in the spruce budworm may also be affected by mountains in western North America, habitat isolation in West Virginia, regional adaptations, factors related to dispersal, and proximity of other species in the spruce budworm species complex. The central and eastern geographic regions contain individuals that assign to Eastern and Central subpopulations, respectively, indicating that these barriers are not complete. Our discovery of previously undetected geographic and genomic structure in the spruce budworm suggests that further population modelling of this ecologically important insect should consider regional differentiation, potentially co‐adapted blocks of genes, and gene flow between subpopulations.  相似文献   

9.
The beech species Fagus hayatae is an important relict tree species in subtropical China, whose biogeographical patterns may reflect floral responses to climate change in this region during the Quaternary. Previous studies have revealed phylogeography for three of the four Fagus species in China, but study on F. hayatae, the most sparsely distributed of these species, is still lacking. Here, molecular methods based on eight simple sequence repeat (SSR) loci of nuclear DNA (nDNA) and three chloroplast DNA (cpDNA) sequences were applied for analyses of genetic diversity and structure in 375 samples from 14 F. hayatae populations across its whole range. Both nDNA and cpDNA indicated a high level of genetic diversity in this species. Significant fixation indexes and departures from the Hardy–Weinberg equilibrium, with a genetic differentiation parameter of Rst of 0.233, were detected in nDNA SSR loci among populations, especially those on Taiwan Island, indicating strong geographic partitioning. The populations were classified into two clusters, without a prominent signal of isolation‐by‐distance. For the 15 haplotypes detected in the cpDNA sequence fragments, there was a high genetic differentiation parameter (Gst = 0.712) among populations. A high Gst of 0.829 was also detected outside but not within the Sichuan Basin. Consistent with other Fagus species in China, no recent population expansion was detected from tests of neutrality and mismatch distribution analysis. Overall, genetic isolation with limited gene flow was prominent for this species and significant phylogeographic structures existed across its range except for those inside the Sichuan Basin. Our study suggested long‐term geographic isolation in F. hayatae with limited population admixture and the existence of multiple refugia in the mountainous regions of the Sichuan Basin and southeast China during the Quaternary. These results may provide useful information critical for the conservation of F. hayatae and other Chinese beech species.  相似文献   

10.
Tree populations usually show adaptations to their local environments as a result of natural selection. As climates change, populations can become locally maladapted and decline in fitness. Evaluating the expected degree of genetic maladaptation due to climate change will allow forest managers to assess forest vulnerability, and develop strategies to preserve forest health and productivity. We studied potential genetic maladaptation to future climates in three major European tree species, Norway spruce (Picea abies), silver fir (Abies alba), and European beech (Fagus sylvatica). A common garden experiment was conducted to evaluate the quantitative genetic variation in growth and phenology of seedlings from 77 to 92 native populations of each species from across Switzerland. We used multivariate genecological models to associate population variation with past seed source climates, and to estimate relative risk of maladaptation to current and future climates based on key phenotypic traits and three regional climate projections within the A1B scenario. Current risks from climate change were similar to average risks from current seed transfer practices. For all three climate models, future risks increased in spruce and beech until the end of the century, but remained low in fir. Largest average risks associated with climate projections for the period 2061–2090 were found for spruce seedling height (0.64), and for beech bud break and leaf senescence (0.52 and 0.46). Future risks for spruce were high across Switzerland. However, areas of high risk were also found in drought‐prone regions for beech and in the southern Alps for fir. Genetic maladaptation to future climates is likely to become a problem for spruce and beech by the end of this century, but probably not for fir. Consequently, forest management strategies should be adjusted in the study area for spruce and beech to maintain productive and healthy forests in the future.  相似文献   

11.
The distribution of chloroplast DNA (cpDNA) variation in Italian beech (Fagus sylvatica L.) populations was studied using PCR-RFLP and microsatellite markers. In total, 67 populations were analysed, and 14 haplotypes were identified by combining the two marker types. A remarkable subdivision of cpDNA diversity in Italian beech was found, as indicated by a high level of genetic differentiation (Gst=0.855). The highest level of total haplotype diversity (ht=0.822) was estimated for southern Italian populations. The highest number of haplotypes was found in the central-southern region of the peninsula. The nested clade analysis provided evidence for past fragmentation events that may have been occurred during the Quaternary glaciations and had a major role in defining the genetic structure of the central-southern Italian beech populations. Only one haplotype apparently spread towards the north of Italy along the Apennine chain and reached the Italian slope of the western part of the Alps (Maritime Alps, Liguria). All haplotypes found along the Apennines remained trapped in the Italian peninsula. Southern and central Italy represent hotspots of haplotype diversity for Italian beech.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by O. Savolainen  相似文献   

12.
  • Environmental gradients, and particularly climatic variables, exert a strong influence on plant distribution and, potentially, population genetic diversity and differentiation. Differences in water availability can cause among‐population variation in ecological processes and can thus interrupt populations’ connectivity and isolate them environmentally. The present study examines the effect of environmental heterogeneity on plant populations due to environmental isolation unrelated to geographic distance.
  • Using AFLP markers, we analyzed genetic diversity and differentiation among 12 Salvia spinosa populations and 13 Salvia syriaca populations from three phytogeographical regions (Mediterranean, Irano‐Turanian and Saharo‐Arabian) representing the extent of the species’ geographic range in Jordan. Differences in geographic location and climate were considered in the analyses.
  • For both species, flowering phenology varied among populations and regions. Irano‐Turanian and Saharo‐Arabian populations had higher genetic diversity than Mediterranean populations, and genetic diversity increased significantly with increasing temperature. Genetic diversity in Salvia syriaca was affected by population size, while genetic diversity responded to drought in S. spinosa. For both species, high levels of genetic differentiation were found as well as two well‐supported phytogeographical groups of populations, with Mediterranean populations clustering in one group and the Irano‐Turanian and Saharo‐Arabian populations in another. Genetic distance was significantly correlated to environmental distance, but not to geographic distance.
  • Our data indicate that populations from moist vs. arid environments are environmentally isolated, where environmental gradients affect their flowering phenology, limit gene flow and shape their genetic structure. We conclude that environmental heterogeneity may act as driver for the observed variation in genetic diversity.
  相似文献   

13.
《Journal of bryology》2013,35(4):265-274
Abstract

The distribution of Bazzania trilobata in Poland coincides with two parts of the natural distribution range of Norway spruce: the mountains of southern Poland and the northeastern lowlands. The occurrence of this species is connected with primeval forest communities and it was recognized as a relict of them. Genetic variation of 10 populations of B. trilobata from two different regions of Poland (lowlands and mountains) was studied in order to establish the genetic structure of this species and to compare the level of genetic variation within and among populations originating from primeval and managed forests. An analysis based on polymorphic inter-simple sequence repeat (ISSR) loci revealed a high level of total gene diversity in B. trilobata (H T=0.308). A higher amount of polymorphism was found among than within populations. Genetic variation of populations from the primary forest (Tatras and Bia?owieza National Park) was higher than for those originating from disturbed habitats. The Bayesian method showed consistent grouping of samples corresponding with populations, with the best grouping in 12 different clusters reflecting a geographic pattern. The geographic pattern of genetic differentiation was supported by a neighbour-joining (NJ) dendrogram based on genetic distances. All mountain populations were grouped together in one subcluster, but lowland populations were more differentiated and did not form one clear group.  相似文献   

14.
Allothrombium pulvinum Ewing is a common natural enemy of aphids and some other arthropods. So far, there are no studies that have addressed genetic variation of this predatory mite. We investigated genetic variation of A. pulvinum across its whole known range in Iran. A 410 bp portion of the mitochondrial cytochrome c oxidase subunit I gene (coxI) and 797–802 bp portion of the internal transcribed spacer 2 of rDNA (ITS2) were sequenced for 55 individuals from 11 populations, resulting in 12 and 26 haplotypes, respectively. In the coxI region, haplotype and nucleotide diversities varied among populations from 0.00 to 0.90 and from 0.0000 to 0.0110, respectively. In the ITS2 region they varied from 0.20 to 0.91 and from 0.0006 to 0.0023, respectively. For both gene regions the highest haplotype and nucleotide diversities were detected in population Mahmoud Abad from northern Iran. Statistically significant population differentiation (F ST) was detected in most pair-wise population comparisons. The results of population differentiation for both gene regions were generally congruent indicating that A. pulvinum from Iran consists of genetically different populations. This suggests that A. pulvinum comprises at least two geographically distinct populations or even more than one species. This study is an initial step towards understanding genetic variation of A. pulvinum, a taxon for which little molecular information is available. More intensive sampling and analysis of additional DNA regions are necessary for more detailed classification of this taxon.  相似文献   

15.
Studies of related populations varying in their degrees of reproductive isolation can provide insights into speciation. Here, the transition from partially isolated host races to more fully separated sibling species is investigated by comparing patterns of genetic differentiation between recently evolved (~150 generations) apple and ancestral hawthorn‐infesting populations of Rhagoletis pomonella to their sister taxon, the undescribed flowering dogwood fly attacking Cornus florida. No fixed or diagnostic private alleles differentiating the three populations were found at any of 23 microsatellites and 10 allozymes scored. Nevertheless, allele frequency differences were sufficient across loci for flowering dogwood fly populations from multiple localities to form a diagnosable genotypic cluster distinct from apple and hawthorn flies, indicative of species status. Genome‐wide patterns of differentiation were correlated between the host races and species pair comparisons along the majority of chromosomes, suggesting that similar disruptive selection pressures affect most loci. However, differentiation was more pronounced, with some additional regions showing elevated divergence, for the species pair comparison. Our results imply that Rhagoletis sibling species such as the flowering dogwood fly represent host races writ large, with the transition to species status primarily resulting from increased divergence of the same regions separating apple and hawthorn flies.  相似文献   

16.
The eastern‐Mediterranean Abies taxa, which include both widely distributed species and taxa with minuscule ranges, represent a good model to study the impacts of range size and fragmentation on the levels of genetic diversity and differentiation. To assess the patterns of genetic diversity and phylogenetic relationships among eastern‐Mediterranean Abies taxa, genetic variation was assessed by eight nuclear microsatellite loci in 52 populations of Abies taxa with a focus on those distributed in Turkey and the Caucasus. Both at the population and the taxon level, the subspecies or regional populations of Abies nordmanniana s.l. exhibited generally higher allelic richness, private allelic richness, and expected heterozygosity compared with Abies cilicica s.l. Results of both the Structure analysis and distance‐based approaches showed a strong differentiation of the two A. cilicica subspecies from the rest as well as from each other, whereas the subspecies of A. nordmanniana were distinct but less differentiated. ABC simulations were run for a set of scenarios of phylogeny and past demographic changes. For A. ×olcayana, the simulation gave a poor support for the hypothesis of being a taxon resulting from a past hybridization, the same is true for Abies equi‐trojani: both they represent evolutionary branches of Abies bornmuelleriana.  相似文献   

17.
The traditional southern Pleistocene refugia hypothesis in Europe has lately been challenged for several animal and plant species. The Carpathian Basin, especially at the marginal regions, is one of the recently recognized biodiversity hotspots in Europe. Marginal populations are prone to have lower genetic diversity and higher genetic differentiation than central populations. Here, we examined one mitochondrial DNA fragment (D‐loop) and nine nuclear (microsatellite) loci to describe the genetic diversity and phylogeographical pattern of fire salamander (Salamandra salamandra) populations in the Carpathian Basin with focusing on the southern margins of the Western Carpathians, where isolated populations of this species are present. Analyses of microsatellites indicated reduced genetic diversity for most of the isolated populations. Based on the mitochondrial DNA, only two haplotypes were found, whereas the analyses with the nuclear markers revealed a more recent genetic split between Western (Alpine) and Eastern (Carpathian) populations, and separated the Apuseni Mountains population (part of the Western Carpathians). Using approximate Bayesian computation analyses, we identified the most probable colonization scenario for the isolated North Hungarian Carpathian Basin populations. The split between isolated salamander populations from the central populations in the Carpathian Mountains dates back to the beginning of the Late Pleistocene, while the split between most of the Hungarian populations can be associated with the Last Glacial Maximum. We found evidence for long‐time isolation between the marginal Carpathian Basin and central populations. Our results also show that S. salamandra survived glacial periods in the temperate forests of north‐east Pannonia (North Hungarian Mountains), confirming that the Carpathian Basin served as important northerly refugia during the Pleistocene climatic oscillations.  相似文献   

18.
Summary Twenty-four populations ofJuniperus ashei were sampled throughout the range of this taxon and the terpenoids of the foliage were analyzed by gas/liquid chromatography. Population differentiation was investigated by analysis of variance and numerical taxonomy. Three south Texas and one Mexican population clustered together with the rest of the taxon appearing fairly uniform. No evidence was found of hybridization or introgression with other taxa. Disjunct populations in Oklahoma and the Ozarks, which have been genetically isolated from the central population for thousands of years, showed no signs of differentiation nor genetic drift. The present pattern of distribution probably dates from the Pleistocene. The south Texas and Mexican populations appear to be the primitive elements of the species. Populational differences have apparently been maintained in adjacent populations in spite of seemingly large gene flow and conversely, chemical uniformity is being maintained in many disjunct populations where there is little or no gene flow.  相似文献   

19.
Current natural populations of Drosophila melanogaster from Eurasia, Africa and Oceania were investigated with regard to the P–M system of hybrid dysgenesis, for both genetic properties (gonadal dysgenesis sterility analyses) and molecular characteristics (number of full-size elements and particular P element deletion-derivatives, the KP elements). Full-size and KP elements are, respectively, at the origin of two distinct regulation systems, the maternally transmitted P cytotype and the KP-mediated repression whose transmission is biparental. The results show both qualitative and quantitative differences in the geographical distribution of P elements. Comparison with distributions observed in 1980–1983 reveals a great stability of natural populations with regard to this system. In particular, the eastward gradient of P susceptibility previously described in Europe is still observed. This stability could result from the existence of a ’buffer zone’ made up of the French and bordering Q populations (with no P activity and completely regulating the transposition of active P elements). Indeed, in such populations repression mechanisms are redundant, as revealed by the study of repression inheritance. These populations are thus potentially able to limit the progression of P elements that occurs by step by step migrations. This distribution also allows us to enrich the P element invasion model, which can be divided into three steps: (1) a decrease in the number of full-size elements which coincides with an increase in the number of KP elements due to a regulatory role or a high transposition capacity; (2) an equilibrium, when the number of KP elements reaches a maximum and in which populations still have some full-size elements; (3) KP elements reduce in number in the absence of full-size elements allowing transposition, the populations losing their repression potential.  相似文献   

20.
 To gain information on the extent and nature of genetic variation in Elymus alaskanus, levels and distribution of genetic variation were assessed within and among 13 populations originating from Iceland, Norway, Sweden and Russia using allozymes. The results showed that four (30.7%) of the 13 loci were polymorphic within the species, while the mean percentage of polymorphic loci within the populations was 1.9%. The mean number of alleles per locus for the species was 1.8 and 1.02 across the populations. Genetic diversity at the species level was low (H es=0.135), and mean population diversity was notably lower (H ep=0.005). A high degree of genetic differentiation was observed among populations. The salient points emerging from this study are: (1) statistically significant differences were found in allele frequencies among populations for every polymorphic locus (P<0.001), (2) the high mean coefficient of gene differentiation (G ST) showed that 95% of the total allozyme variation was attributable to differences among populations, and (3) relatively high genetic distances between the populations were obtained (mean D=0.16). The Norwegian populations had the highest genetic diversity as compared with the other populations. Geographical comparisons revealed three different groups of populations clearly differentiated, i.e. Scandinavia (Norway and Sweden), Iceland and Russia. Cluster and principal coordinates analyses revealed the same genetic patterns of relationships among populations. Generally, this study indicates that E. alaskanus contains low allozymic variation in its populations. The implications of these results for the conservation of the species are discussed. Received: 23 October 1998 / Accepted: 19 December 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号