首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The CO 2 fertilization hypothesis stipulates that rising atmospheric CO 2 has a positive effect on tree growth due to increasing availability of carbon. The objective of this paper is to compare the recent literature related to both field CO 2 -enriched experiments with trees and empirical dendrochronological studies detecting CO 2 fertilization effects in tree-rings. This will allow evaluation of tree growth responses to atmospheric CO 2 enrichment by combining evidence from both ecophysiology and tree-ring research. Based on considerable experimental evidence of direct CO 2 fertilization effect (increased photosynthesis, water use efficiency, and above- and belowground biomass), and predications from the interactions of enriched CO 2 with temperature, nitrogen and drought, we propose that warm, moderately drought-stressed ecosystems with an ample nitrogen supply might be the most CO 2 responsive ecosystems. Empirical tree-ring studies took the following three viewpoints on detecting CO 2 fertilization effect in tree-rings: 1) finding evidence of CO 2 fertilization effect in tree-rings, 2) attributing growth enhancement to favorable climate rather than atmospheric CO 2 enrichment, and 3) considering that tree growth enhancement might be caused by synergistic effects of several factors such as favorable climate change, CO 2 fertilization, and anthropogenic atmospheric deposition (e.g., nitrogen). At temperature-limiting sites such as high elevations, nonfindings of CO 2 fertilization evidence could be ascribed to the following possibilities: 1) cold temperatures, a short season of cambial division, and nitrogen deficiency that preclude a direct CO 2 response, 2) old trees past half of their maximum life expectancy and consequently only a small increase in biomass increment due to CO 2 fertilization effect might be diminished, 3) the elimination of age/size-related trends by statistical detrending of tree-ring series that might remove some long-term CO 2 -related trends in tree-rings, and 4) carbon partitioning and growth within a plant that is species-specific. Our review supports the atmospheric CO 2 fertilization effect hypothesis, at least in trees growing in semi-arid or arid conditions because the drought-stressed trees could benefit from increased water use efficiency to enhance growth.  相似文献   

2.
It is still unclear whether the exponential rise of atmospheric CO2 concentration has produced a fertilization effect on tropical forests, thus incrementing their growth rate, in the last two centuries. As many factors affect tree growth patterns, short -term studies might be influenced by the confounding effect of several interacting environmental variables on plant growth. Long-term analyses of tree growth can elucidate long-term trends of plant growth response to dominant drivers. The study of annual rings, applied to long tree-ring chronologies in tropical forest trees enables such analysis. Long-term tree-ring chronologies of three widespread African species were measured in Central Africa to analyze the growth of trees over the last two centuries. Growth trends were correlated to changes in global atmospheric CO2 concentration and local variations in the main climatic drivers, temperature and rainfall. Our results provided no evidence for a fertilization effect of CO2 on tree growth. On the contrary, an overall growth decline was observed for all three species in the last century, which appears to be significantly correlated to the increase in local temperature. These findings provide additional support to the global observations of a slowing down of C sequestration in the trunks of forest trees in recent decades. Data indicate that the CO2 increase alone has not been sufficient to obtain a tree growth increase in tropical trees. The effect of other changing environmental factors, like temperature, may have overridden the fertilization effect of CO2.  相似文献   

3.
Recent studies indicate that lianas are increasing in size and abundance relative to trees in neotropical forests. As a result, forest dynamics and carbon balance may be altered through liana‐induced suppression of tree growth and increases in tree mortality. Increasing atmospheric CO2 is hypothesized to be responsible for the increase in neotropical lianas, yet no study has directly compared the relative response of tropical lianas and trees to elevated CO2. We explicitly tested whether tropical lianas had a larger response to elevated CO2 than co‐occurring tropical trees and whether seasonal drought alters the response of either growth form. In two experiments conducted in central Panama, one spanning both wet and dry seasons and one restricted to the dry season, we grew liana (n = 12) and tree (n = 10) species in open‐top growth chambers maintained at ambient or twice‐ambient CO2 levels. Seedlings of eight individuals (four lianas, four trees) were grown in the ground in each chamber for at least 3 months during each season. We found that both liana and tree seedlings had a significant and positive response to elevated CO2 (in biomass, leaf area, leaf mass per area, and photosynthesis), but that the relative response to elevated CO2 for all variables was not significantly greater for lianas than trees regardless of the season. The lack of differences in the relative response between growth forms does not support the hypothesis that elevated CO2 is responsible for increasing liana size and abundance across the neotropics.  相似文献   

4.
The distribution and abundance of trees can be strongly affected by disturbance such as fire. In mixed tree/grass ecosystems, recurrent grass‐fuelled fires can strongly suppress tree saplings and therefore control tree dominance. We propose that changes in atmospheric [CO2] could influence tree cover in such metastable ecosystems by altering their postburn recovery rates relative to flammable herbaceous growth forms such as grasses. Slow sapling recovery rates at low [CO2] would favour the spread of grasses and a reduction of tree cover. To test the possible importance of [CO2]/fire interactions, we first used a Dynamic Global Vegetation Model (DGVM) to simulate biomass in grassy ecosystems in South Africa with and without fire. The results indicate that fire has a major effect under higher rainfall conditions suggesting an important role for fire/[CO2] interactions. We then used a demographic model of the effects of fire on mesic savanna trees to test the importance of grass/tree differences in postburn recovery rates. We adjusted grass and tree growth in the model according to the DGVM output of net primary production at different [CO2] relative to current conditions. The simulations predicted elimination of trees at [CO2] typical of the last glacial period (180 ppm) because tree growth rate is too slow (15 years) to grow to a fire‐proof size of ca. 3 m. Simulated grass growth would produce an adequate fuel load for a burn in only 2 years. Simulations of preindustrial [CO2] (270 ppm) predict occurrence of trees but at low densities. The greatest increase in trees occurs from preindustrial to current [CO2] (360 ppm). The simulations are consistent with palaeo‐records which indicate that trees disappeared from sites that are currently savannas in South Africa in the last glacial. Savanna trees reappeared in the Holocene. There has also been a large increase in trees over the last 50–100 years. We suggest that slow tree recovery after fire, rather than differential photosynthetic efficiencies in C3 and C4 plants, might have been the significant factor in the Late Tertiary spread of flammable grasslands under low [CO2] because open, high light environments would have been a prerequisite for the spread of C4 grasses. Our simulations suggest further that low [CO2] could have been a significant factor in the reduction of trees during glacial times, because of their slower regrowth after disturbance, with fire favouring the spread of grasses.  相似文献   

5.
B. Schaffer  L. J. Mason 《Oecologia》1990,84(4):468-473
Summary The scale insect, Toumeyella sp., feeds exclusively on the subtropical hammock tree lignum vitae (Guaiacum sanctum L.). The combined effects of scale herbivory and shading on leaf gas exchange characteristics and growth of lignum vitae trees were studied using a factorial design. Trees grown in full sun or in 75% shade were manually infested with scale or left noninfested. Beginning 4 weeks after infestation, net CO2 assimilation, stomatal conductance, transpiration, internal partial pressure of CO2, and water-use efficiency were determined on single-leaves at 4-week intervals for trees in each treatment. At the end of the experiment, net CO2 assimilation was determined for whole plants. Total leaf area, leaf, stem, and root dry weights, and leaf chlorophyll and nitrogen concentrations were also determined. Scale infested trees generally had lower net CO2 assimilation, stomatal conductance, and transpiration rates as well as less leaf area, and root, stem, and leaf dry weights than noninfested trees. Twenty four weeks after the shade treatment was imposed, sun-grown trees had approximately twice the leaf area of shade-grown trees. Shade-grown trees compensated for the reduced leaf area by increasing their photosynthetic efficiency. This resulted in no difference in light saturated net CO2 assimilation on a whole plant basis between sun-grown and shade-grown trees. Chlorophyll and nitrogen concentrations per unit leaf area were greater in leaves of shade-grown trees than in leaves of sun-grown trees. Shading and herbivory by Toumeyella sp. each resulted in decreased growth of Guaiacum sanctum. Scale insect herbivory did not result in greater detrimental effects on leaf gas exchange characteristics for shade-grown than for sun-grown trees. Herbivory by Toumeyella resulted in a greater decrease in tree growth for sun-grown than for shade-grown trees.  相似文献   

6.
The carbon isotope ratio (δ13C) in tree rings is commonly used to derive estimates of the assimilation‐to‐stomatal conductance rate of trees, that is, intrinsic water‐use efficiency (iWUE). Recent studies have observed increased iWUE in response to rising atmospheric CO2 concentrations (Ca), in many different species, genera and biomes. However, increasing rates of iWUE vary widely from one study to another, likely because numerous covarying factors are involved. Here, we quantified changes in iWUE of two widely distributed boreal conifers using tree samples from a forest inventory network that were collected across a wide range of growing conditions (assessed using the site index, SI), developmental stages and stand histories. Using tree‐ring isotopes analysis, we assessed the magnitude of increase in iWUE after accounting for the effects of tree size, stand age, nitrogen deposition, climate and SI. We also estimated how growth conditions have modulated tree physiological responses to rising Ca. We found that increases in tree size and stand age greatly influenced iWUE. The effect of Ca on iWUE was strongly reduced after accounting for these two variables. iWUE increased in response to Ca, mostly in trees growing on fertile stands, whereas iWUE remained almost unchanged on poor sites. Our results suggest that past studies could have overestimated the CO2 effect on iWUE, potentially leading to biased inferences about the future net carbon balance of the boreal forest. We also observed that this CO2 effect is weakening, which could affect the future capacity of trees to resist and recover from drought episodes.  相似文献   

7.
We examined how independent and interactive effects of CO2 concentrations, water supply and wind speed affect growth rates, biomass partitioning, water use efficiency, diffusive conductance and stomatal density of plants. To test the prediction that wind stress will be ameliorated by increased CO2 and/or by unrestricted water supply we grew Sinapis alba L. plants in controlled chambers under combinations of two levels of CO2 (350 ppmv, 700 ppmv), two water regimes and two wind speeds (0.3 ms–1, 3.7 ms–1). We harvested at ten different dates over a period of 60 days. A growth analysis was carried out to evaluate treatment effects on plant responses. Plants grown both in increased CO2 and in low wind conditions had significantly greater stem length, leaf area and dry weights of plant parts. Water supply significantly affected stem diameter, root weight and leaf area. CO2 enrichment significantly increased the rate of biomass accumulation and the relative ratio of biomass increase to leaf area expansion. High wind speed significantly reduced plant growth rates and the rate of leaf area expansion was reduced more than the rate of biomass accumulation. Regression analysis showed significant CO2 effects on the proportion of leaf and stem dry weight to total dry weight. A marked plant-age effect was dependent on water supply, wind speed and CO2 concentration. A reduced water supply significantly decreased the stomatal conductance, and water use efficiency significantly increased with a limited water supply, low wind and increased CO2. We found significant CO2 x wind effects for water diffusion resistance, adaxial number of stomata and water use efficiencies and significant wind x water effect for water use efficiency. In conclusion, wind stress was ameliorated by growing in unrestricted water but not by growing in increased CO2.  相似文献   

8.
The use of fossil fuel is predicted to cause an increase of the atmospheric CO2 concentration, which will affect the global pattern of temperature and precipitation. It is therefore essential to incorporate effects of temperature and water supply on carbon partitioning of plants to predict effects of elevated [CO2] on growth and yield of Triticum aestivum. Although earlier papers have emphasized that elevated [CO2] favours investment of biomass in roots relative to that in leaves, it has now become clear that these are indirect effects, due to the more rapid depletion of nutrients in the root environment as a consequence of enhanced growth. Broadly generalized, the effect of temperature on biomass allocation in the vegetative stage is that the relative investment of biomass in roots is lowest at a certain optimum temperature and increases at both higher and lower temperatures. This is found not only when the temperature of the entire plant is varied, but also when only root temperature is changed whilst shoot temperature is kept constant. Effects of temperature on the allocation pattern can be explained largely by the effect of root temperature on the roots' capacity to transport water. Effects of a shortage in water supply on carbon partitioning are unambiguous: roots receive relatively more carbon. The pattern of biomass allocation in the vegetative stage and variation in water-use efficiency are prime factors determining a plant's potential for early growth and yield in different environments. In a comparison of a range of T. aestivum cultivars, a high water-use efficiency at the plant level correlates positively with a large investment in both leaf and root biomass, a low stomatal conductance and a large investment in photosynthetic capacity. We also present evidence that a lower investment of biomass in roots is not only associated with lower respiratory costs for root growth, but also with lower specific costs for ion uptake. We suggest the combination of a number of traits in future wheat cultivars, i.e. a high investment of biomass in leaves, which have a low stomatal conductance and a high photosynthetic capacity, and a low investment of biomass in roots, which have low respiratory costs. Such cultivars are considered highly appropriate in a future world, especially in the dryer regions. Although variation for the desired traits already exists among wheat cultivars, it is much larger among wild Aegilops species, which can readily be crossed with T. aestivum. Such wild relatives may be exploited to develop new wheat cultivars well-adapted to changed climatic conditions.  相似文献   

9.
Forest trees are major components of the terrestrial biome and their response to rising atmospheric CO2 plays a prominent role in the global carbon cycle. In this study, loblolly pine seedlings were planted in the field in recently disturbed soil of high fertility, and CO2 partial pressures were maintained at ambient CO2 (Amb) and elevated CO2 (Amb + 30 Pa) for 4 years. The objective of the study was to measure seasonal and long-term responses in growth and photosynthesis of loblolly pine exposed to elevated CO2 under ambient field conditions of precipitation, light, temperature and nutrient availability. Loblolly pine trees grown in elevated CO2 produced 90% more biomass after four growing seasons than did trees grown in ambient CO2. This large increase in final biomass was primarily due to a 217% increase in leaf area in the first growing season which resulted in much higher relative growth rates for trees grown in elevated CO2. Although there was not a sustained effect of elevated CO2 on relative growth rate after the first growing season, absolute production of biomass continued to increase each year in trees grown in elevated CO2 as a consequence of the compound interest effect of increased leaf area on the production of more new leaf area and more biomass. Allometric analyses of biomass allocation patterns demonstrated size-dependent shifts in allocation, but no direct effects of elevated CO2 on partitioning of biomass. Leaf photosynthetic rates were always higher in trees grown in elevated CO2, but these differences were greater in the summer (60–130% increase) than in the winter (14–44% increase), reflecting strong seasonal effects of temperature on photosynthesis. Our results suggest that seasonal variation in the relative photosynthetic response to elevated CO2 will occur in natural ecosystems, but total non-structural carbohydrate (TNC) levels in leaves indicate that this variation may not always be related to sink activity. Despite indications of canopy-level adjustments in carbon assimilation, enhanced levels of leaf photosynthesis coupled with increased total leaf area indicate that net carbon assimilation for the whole tree was greater for trees grown under elevated CO2 compared with ambient CO2. If the large growth enhancement observed in loblolly pine were maintained after canopy closure, then these trees could be a large sink for fossil carbon emitted to the atmosphere and produce a negative feedback on atmospheric CO2.  相似文献   

10.
During the last two decades, inventory data show that droughts have reduced biomass carbon sink of the Amazon forest by causing mortality to exceed growth. However, process-based models have struggled to include drought-induced responses of growth and mortality and have not been evaluated against plot data. A process-based model, ORCHIDEE-CAN-NHA, including forest demography with tree cohorts, plant hydraulic architecture and drought-induced tree mortality, was applied over Amazonia rainforests forced by gridded climate fields and rising CO2 from 1901 to 2019. The model reproduced the decelerating signal of net carbon sink and drought sensitivity of aboveground biomass (AGB) growth and mortality observed at forest plots across selected Amazon intact forests for 2005 and 2010. We predicted a larger mortality rate and a more negative sensitivity of the net carbon sink during the 2015/16 El Niño compared with the former droughts. 2015/16 was indeed the most severe drought since 1901 regarding both AGB loss and area experiencing a severe carbon loss. We found that even if climate change did increase mortality, elevated CO2 contributed to balance the biomass mortality, since CO2-induced stomatal closure reduces transpiration, thus, offsets increased transpiration from CO2-induced higher foliage area.  相似文献   

11.
The response of forest ecosystems to increased atmospheric CO2 is constrained by nutrient availability. It is thus crucial to account for nutrient limitation when studying the forest response to climate change. The objectives of this study were to describe the nutritional status of the main European tree species, to identify growth‐limiting nutrients and to assess changes in tree nutrition during the past two decades. We analysed the foliar nutrition data collected during 1992–2009 on the intensive forest monitoring plots of the ICP Forests programme. Of the 22 significant temporal trends that were observed in foliar nutrient concentrations, 20 were decreasing and two were increasing. Some of these trends were alarming, among which the foliar P concentration in F. sylvatica, Q. Petraea and P. sylvestris that significantly deteriorated during 1992–2009. In Q. Petraea and P. sylvestris, the decrease in foliar P concentration was more pronounced on plots with low foliar P status, meaning that trees with latent P deficiency could become deficient in the near future. Increased tree productivity, possibly resulting from high N deposition and from the global increase in atmospheric CO2, has led to higher nutrient demand by trees. As the soil nutrient supply was not always sufficient to meet the demands of faster growing trees, this could partly explain the deterioration of tree mineral nutrition. The results suggest that when evaluating forest carbon storage capacity and when planning to reduce CO2 emissions by increasing use of wood biomass for bioenergy, it is crucial that nutrient limitations for forest growth are considered.  相似文献   

12.
Aim The goals of this study are: (1) to determine whether increasing atmospheric CO2 concentrations and changing climate increased intrinsic water use efficiency (iWUE, as detected by changes in Δ13C) over the last four decades; and if it did increase iWUE, whether it led to increased tree growth (as measured by tree‐ring growth); (2) to assess whether CO2 responses are biome dependent due to different environmental conditions, including availability of nutrients and water; and (3) to discuss how the findings of this study can better inform assumptions of CO2 fertilization and climate change effects in biospheric and climate models. Location A global range of sites covering all major forest biome types. Methods The analysis encompassed 47 study sites including boreal, wet temperate, mediterranean, semi‐arid and tropical biomes for which measurements of tree ring Δ13C and growth are available over multiple decades. Results The iWUE inferred from the Δ13C analyses of comparable mature trees increased 20.5% over the last 40 years with no significant differences between biomes. This increase in iWUE did not translate into a significant overall increase in tree growth. Half of the sites showed a positive trend in growth while the other half had a negative or no trend. There were no significant trends within biomes or among biomes. Main conclusions These results show that despite an increase in atmospheric CO2 concentrations of over 50 p.p.m. and a 20.5% increase in iWUE during the last 40 years, tree growth has not increased as expected, suggesting that other factors have overridden the potential growth benefits of a CO2‐rich world in many sites. Such factors could include climate change (particularly drought), nutrient limitation and/or physiological long‐term acclimation to elevated CO2. Hence, the rate of biomass carbon sequestration in tropical, arid, mediterranean, wet temperate and boreal ecosystems may not increase with increasing atmospheric CO2 concentrations as is often implied by biospheric models and short‐term elevated CO2 experiments.  相似文献   

13.
Elevated tropospheric CO2 concentrations may increase plant carbon fixation. In ectomycorrhizal trees, a considerable portion of the synthesized carbohydrates can be used to support the mutualistic fungal root partner which in turn can benefit the tree by increased nutrient supply. In this study, Norway spruce seedlings were inoculated with either Piloderma croceum (medium distance “fringe” exploration type) or Tomentellopsis submollis (medium distance “smooth” exploration type). We studied the impact of either species regarding fungal biomass production, seedling biomass, nutrient status and nutrient use efficiency in rhizotrons under ambient and twice-ambient CO2 concentrations. A subset was amended with ammonium nitrate to prevent nitrogen imbalances expected under growth promotion by elevated CO2. The two fungal species exhibited considerably different influences on growth, biomass allocation as well as nutrient uptake of spruce seedlings. P. croceum increased nutrient supply and promoted plant growth more strongly than T. submollis despite considerably higher carbon costs. In contrast, seedlings with T. submollis showed higher nutrient use efficiency, i.e. produced plant biomass per received unit of nutrient, particularly for P, K and Mg, thereby promoting shoot growth and reducing the root/shoot ratio. Under the given low soil nutrient availability, P. croceum proved to be a more favourable fungal partner for seedling development than T. submollis. Additionally, plant internal allocation of nutrients was differently influenced by the two ECM fungal species, particularly evident for P in shoots and for Ca in roots. Despite slightly increased ECM length and biomass production, neither of the two species had increased its capacity of nutrient uptake in proportion to the rise of CO2. This lead to imbalances in nutritional status with reduced nutrient concentrations, particularly in seedlings with P. croceum. The beneficial effect of P. croceum thus diminished, although the nutrient status of its host plants was still above that of plants with T. submollis. We conclude that the imbalances of nutrient status in response to elevated CO2 at early stages of plant development are likely to prove particularly severe at nutrient-poor soils as the increased growth of ECM cannot cover the enhanced nutrient demand. Hyphal length and biomass per unit of ectomycorrhizal length as determined for the first time for P. croceum amounted to 6.9 m cm−1 and 6.0 μg cm−1, respectively, across all treatments.  相似文献   

14.
Hemicelluloses account for one‐quarter of the global dry plant biomass and therefore are the second most abundant biomass fraction after cellulose. Despite their quantitative significance, the responsiveness of hemicelluloses to atmospheric carbon oversupply is still largely unknown, although hemicelluloses could serve as carbon sinks with increasing CO2 concentrations. This study aimed at clarifying the role hemicelluloses play as carbon sinks, analogous to non‐structural carbohydrates (NSC), by experimentally manipulating the plants' carbon supply. Sixteen plant species from four different plant functional types (grasses, herbs, seedlings of broad‐leaved trees and conifers) were grown for 2 months in greenhouses at either extremely low (140 ppm), medium (280 ppm) or high (560 ppm) atmospheric CO2 concentrations, thus inducing situations of massive C‐limitation or ‐oversupply. Above and belowground biomass as well as NSC significantly increased in all species and tissues with increasing CO2 concentrations. Increasing CO2 concentrations had no significant effect on total hemicellulose concentrations in leaves and woody tissues in all species, except for two out of four grass species, where hemicellulose concentrations increased with atmospheric CO2 supply. Despite the overall stable total hemicellulose concentrations, the monosaccharide spectra of hemicelluloses showed a significant increase in glucose monomers in leaves of woody species as C‐supply increased. In summary, total hemicellulose concentrations in de novo built biomass seem to be largely unaffected by changed atmospheric CO2 concentrations, while significant increases of hemicellulose‐derived glucose with increasing CO2 concentrations in leaves of broad‐leaved and conifer tree seedlings showed differential responses among the different hemicellulose classes in response to varying CO2 concentrations.  相似文献   

15.
Across their natural distributions, tropical tree species are regularly exposed to seasonal droughts of varying intensities. Their ability to tolerate drought stress plays a vital role in determining growth and mortality rates, as well as shaping the functional composition of tropical forests. In order to assess the ability of species to acclimate to contrasting levels of drought stress, physiological and structural traits involved in drought adaptation—wood C isotope discrimination (δ13C), wood specific gravity, and wood C content—of 2-year-old saplings of nine tropical tree species were evaluated in common garden experiments at two study sites in Panama with contrasting seasonality. We assessed co-variation in wood traits with relative growth rates (RGRBD), aboveground biomass, and basal diameter and the plasticity of wood traits across study sites. Overall, species responded to lower water availability by increasing intrinsic water-use efficiency, i.e., less negative wood δ13C, but did not exhibit a uniform, directional response for wood specific gravity or wood C content. Trait plasticity for all wood traits was independent of RGRBD and tree size. We found that the adaptive value of intrinsic water-use efficiency varied with water availability. Intrinsic water-use efficiency increased with decreasing RGRBD at the more seasonal site, facilitating higher survival of slower growing species. Conversely, intrinsic water-use efficiency increased with tree size at the less seasonal site, which conferred a competitive advantage to larger individuals at the cost of greater susceptibility to drought-induced mortality. Our results illustrate that acclimation to water availability has negligible impacts on tree growth over short periods, but eventually could favor slow-growing species with conservative water-use strategies in tropical regions experiencing increasingly frequent and severe droughts.  相似文献   

16.
Responses of alpine tree line ecosystems to increasing atmospheric CO2 concentrations and global warming are poorly understood. We used an experiment at the Swiss tree line to investigate changes in vegetation biomass after 9 years of free air CO2 enrichment (+200 ppm; 2001–2009) and 6 years of soil warming (+4 °C; 2007–2012). The study contained two key tree line species, Larix decidua and Pinus uncinata, both approximately 40 years old, growing in heath vegetation dominated by dwarf shrubs. In 2012, we harvested and measured biomass of all trees (including root systems), above‐ground understorey vegetation and fine roots. Overall, soil warming had clearer effects on plant biomass than CO2 enrichment, and there were no interactive effects between treatments. Total plant biomass increased in warmed plots containing Pinus but not in those with Larix. This response was driven by changes in tree mass (+50%), which contributed an average of 84% (5.7 kg m?2) of total plant mass. Pinus coarse root mass was especially enhanced by warming (+100%), yielding an increased root mass fraction. Elevated CO2 led to an increased relative growth rate of Larix stem basal area but no change in the final biomass of either tree species. Total understorey above‐ground mass was not altered by soil warming or elevated CO2. However, Vaccinium myrtillus mass increased with both treatments, graminoid mass declined with warming, and forb and nonvascular plant (moss and lichen) mass decreased with both treatments. Fine roots showed a substantial reduction under soil warming (?40% for all roots <2 mm in diameter at 0–20 cm soil depth) but no change with CO2 enrichment. Our findings suggest that enhanced overall productivity and shifts in biomass allocation will occur at the tree line, particularly with global warming. However, individual species and functional groups will respond differently to these environmental changes, with consequences for ecosystem structure and functioning.  相似文献   

17.
Abstract Possible effects of increased atmospheric concentrations of CO2 on forest ecosystems are discussed and as an example a simulation case study using a set of mixed-age and mixed-species forest stand models is presented. The responses of the models to a simple scenario (uniform growth increase of all trees as a response to CO2 enrichment) include increases in biomass that are considerably less than the increases in growth rate of the trees. These simulations and more general discussion of the possible effects of increased photosynthetic production identify the problem of scaling-up small time-scale and space-scale measurements of plant responses to CO2 enrichment to the ecosystem level.  相似文献   

18.
One-year-old dormant white oak (Quercus alba L.) seedlings were planted in a nutrient-deficient forest soil and grown for 40 weeks in growth chambers at ambient (362 microliters per liter) or elevated (690 microliters per liter) levels of CO2. Although all of the seedlings became severely N deficient, CO2 enrichment enhanced growth by 85%, with the greatest enhancement in root systems. The growth enhancement did not increase the total water use per plant, so water-use efficiency was significantly greater in elevated CO2. Total uptake of N, S, and B was not affected by CO2, therefore, tissue concentrations of these nutrients were significantly lower in elevated CO2. An increase in nutrient-use efficiency with respect to N was apparent in that a greater proportion of the limited N pool in the CO2-enriched plants was in fine roots and leaves. The uptake of other nutrients increased with CO2 concentration, and P and K uptake increased in proportion to growth. Increased uptake of P by plants in elevated CO2 may have been a result of greater proliferation of fine roots and associated mycorrhizae and rhizosphere bacteria stimulating P mineralization. The results demonstrate that a growth response to CO2 enrichment is possible in nutrient-limited systems, and that the mechanisms of response may include either increased nutrient supply or decreased physiological demand.  相似文献   

19.
Long‐term population effects of changes in atmospheric CO2 will be largely determined by reproductive effort. Our research objectives were to quantify variability in seed production and rate of maturation among individual Pinus taeda L. (Pinaceae) trees growing in elevated CO2 (ambient plus 200 μL L?1) since 1996. Estimating tree fecundity in nature is frustrated by the difficulty of counting seeds from individual trees and the need for long‐term data. We have used a hierarchical Bayes approach to model individual tree fecundity, accounting for the complexity of experimentation in a natural setting over multiple years. The study presented here demonstrates large variability in natural fecundity rates and contributes to our understanding of how both interannual variation and population heterogeneity influence elevated CO2 effects. We found that trees growing under elevated CO2 matured earlier and produced more seeds and cones per unit basal area than ambient grown trees. By 2004, trees grown in high CO2 had produced an average 300 more seeds per tree than ambient grown trees. Although there was a trend toward decreasing mean CO2 effect (difference in fecundity between elevated and ambient treatments) over time, the hierarchical analysis indicates that this decrease comes from the emergence of a few highly fecund ambient grown trees by 2002, rather than acclimation or downregulation among the fumigated trees. The most important effect of increased CO2 in forest ecosystems may be the increase in fecundity reported here. Although biomass responses can sometimes be large, the increase in fecundity can have long‐term impacts on forest dynamics that transcend the current generation.  相似文献   

20.
J. Wolf 《Plant and Soil》1996,185(1):113-123
The effects of increased atmospheric CO2 on crop growth and dry matter allocation may change if nutrient supply becomes insufficient for maximal growth. Increased atmospheric CO2 may also cause changes in minimum nutrient concentration in plant tissue and hence in the nutrient use efficiency or yield-nutrient uptake ratios of crops. To study these effects for spring wheat, pot experiments have been carried out in two glass houses at ambient and doubled CO2 concentration. Wheat plants were grown at different supplies of N, P or K. Doubling of ambient CO2 resulted in a large increase in total biomass (+70%) and grain yield when the nutrient supply was optimum. With strong N and K limitation this CO2 effect was about halved and with strong P limitation it became almost nil. Doubling of ambient CO2 resulted in a 10% lower minimum N concentration in plant tissue and in no change in the minimum P concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号