首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary This article introduces an easy to handle immobilization apparatus for the entrapment of microbial cells, organelles and enzymes in spherical gel beads.Ca-alginate beads with entrapped cells of Aspergillus niger showed typical shrinking behaviour (from 3.00 mm to 2.25 mm particle diameter). A loss of stability down to 20% of the initial strength during precultivation of the fungus and within the following citric acid production occurred. The observed particle shrinkage was due to the increasing acidification of the medium, whereas the decreased mechanical strength was caused by the entrapped growing microorganism. This was confirmed by electron scanning micrographs, indicating a sponge-like gel structure within the region of enhanced mycelium growth which reduced diffusional resistance of the matrix. Therefore no differences were found between citric acid production of Ca-alginate entrapped Aspergillus niger at 3 mm and 1.5 mm initial particle size.  相似文献   

2.
It was found that plasmid DNA (pUB 110) can be introduced into not only protoplasts but also intact cells of Bacillus subtilis by electric field pulses. The transformation of, B. subtilis using protoplasts results in an efficiency of 2.5 × 104 transformants per μg of DNA, with a single pulse of 50 jisec with an initial electric field strength of 7kV/cm. Even transformation of intact B. subtilis cells results in a maximum efficiency of 1.5 × 103 transformants per μg DNA, with a single pulse of 400 μsec with an initial electric field strength of 16kV/cm. The cell survival of protoplasts and intact cells was approximately 100% and 30%, respectively, under the conditions found to be optimal for the transformation process. Plasmid DNA isolated from pUB 110 containing transformants was indistinguishable from authentic preparations of pBU 110 on gel electrophoretic analysis.  相似文献   

3.
Aspergillus nigerconidia are characterized by exogenous dormancy: the first stage of their germination is accomplished in twice-distilled water. However, germ tube formation requires the availability of carbon and nitrogen sources. Exogenous dormancy in A. nigerconidia exhibits the following peculiar features: (i) nitrogen-containing substances are active stimulators of germination; (ii) temperature-dependent changes in the lipid bilayer and in the neutral lipid composition of conidia are virtually identical to those occurring in growing mycelium under temperature stress; and (iii) the spore viability threshold does not exceed 45°C; i.e., the spores are more heat-resistant than the mycelium, but they are less heat-resistant than the spores that are in the state of endogenous dormancy. According to the current classification of the types of cell metabolism arrest, the exogenous dormancy of A. nigerconidia resembles the pattern of metabolism characteristic of vegetative cells during the idiophase.  相似文献   

4.
The continuous production of citric acid from dairy wastewater was investigated using calcium-alginate immobilizedAspergillus niger ATCC 9142. The citric acid productivity and yield were strongly affected by the culture conditions. The optimal pH, temperature, and dilution rate were 3.0, 30°C, and 0.025 h−1, respectively. Under optimal culture conditions, the maximum productivity, concentration, and yield of citric acid produced by the calcium-alginate immobilizedAspergillus niger were 160 mg L−1 h−1, 4.5 g/L, and 70.3% respectively. The culture was continuously perfored for 20 days without any apparent loss in citric acid productivity. Conversely, under the same conditions with a batch shake-flask culture, the maximum productivity, citric acid concentration, and yield were only 63.3 mg L−1 h−1, 4.7 g/L and 51.4%, respectively. Therefore, the results suggest that the bioreactor used in this study could be potentially used for continuous citric acid production from dairy wastewater by applying calcium-alginate immobilizedAspergillus niger.  相似文献   

5.
The biological activity of the antifungal agents pentachlorophenol (as sodium pentachlorophenolate) and formaldehyde was evaluated by changes in the development of fungal structures following a placement of test strips inoculated withAspergillus niger conidia on a nutrient agar with the toxicant. The method allows a quantitative assessment of biological activity measured as the development of vegetative structures (growth of the mycelium) by metric, and the development of reproductive structures (conidia) ofA. niger by densitometric methods. The use of test strips with dry conidiospores and the evaluation of the results in physical units represent a simple, rapid, exact and inexpensive test of fungitoxic agents.  相似文献   

6.
Summary The effect of changing the composition of a chemically defined medium on citric acid production by Aspergillus niger was investigated. High and reproducible amounts of citric acid were obtained with deionized commercial sugar solutions, proper phosphate concentrations, low initial pH values and suitable amounts of copper as growth inhibiting agent.Comparison of high and low yielding process parameters showed that under high yielding conditions, (deionized sugar, Cu++ addition) besides more citric acid, less mycelium and less mycelial lipids were formed; the consumption of sugar, nitrogen and phosphorus was related to the amount of biomass.Partly presented at the XII. International Congress of Microbiology; München, September 3–8, 1978  相似文献   

7.
The possible use of cotton waste as a carbohydrate source of citric acid production by Aspergillus niger was examined. No citric acid was produced when A. niger was grown on cotton waste as a sole carbon source. In two-stage fermentations, however, mycelium obtained from surface cultures in cotton waste medium yielded more citric acid when transferred to sucrose-containing media than when directly inoculated to sucrose-containing media. It is concluded that cotton waste can be used for saving sucrose and for increasing yields of citric acid fermentation by A. niger.  相似文献   

8.
In the tricarboxylic acid (TCA) cycle, NADP+-specific isocitrate dehydrogenase (NADP+-ICDH) catalyzes oxidative decarboxylation of isocitric acid to form α-ketoglutaric acid with NADP+ as a cofactor. We constructed an NADP+-ICDH gene (icdA)-overexpressing strain (OPI-1) using Aspergillus niger WU-2223L as a host and examined the effects of increase in NADP+-ICDH activity on citric acid production. Under citric acid-producing conditions with glucose as the carbon source, the amounts of citric acid produced and glucose consumed by OPI-1 for the 12-d cultivation period decreased by 18.7 and 10.5%, respectively, compared with those by WU-2223L. These results indicate that the amount of citric acid produced by A. niger can be altered with the NADP+-ICDH activity. Therefore, NADP+-ICDH is an important regulator of citric acid production in the TCA cycle of A. niger. Thus, we propose that the icdA gene is a potentially valuable tool for modulating citric acid production by metabolic engineering.  相似文献   

9.
The biochemical rationale for the inhibition of citric acid fermentation by Aspergillus niger in the presence of Mn2+ ions has been investigated using high citric acid-yielding, Mn2+ ion-sensitive as well as Mn2+ ion-tolerant mutant strains of A. niger. In the presence of Mn2+ (1.5 mg/l), citric acid production by the Mn2+ ion-sensitive strain (KCU 520) was reduced by about 75% with no apparent effect on citric acid yield by the Mn2+ ion-tolerant mutant strain (GS-III) of A. niger. The significantly increased level of the Mn2+ ion-requiring NADP+-isocitrate dehydrogenase activity in KCU 520 cells and the lack of effect on the activity level of the enzyme in GS-III mutant cells by Mn2+ ions during fermentation seem to be responsible for the Mn2+ ion inhibition of citric acid production by the KCU 520 strain and the high citric acid yield by the mutant strain GS-III of A. niger even in the presence of Mn2+.  相似文献   

10.
Summary This study investigates the possibility of reusing metal-contaminated equilibrium fluid catalytic cracking (FCC) catalyst after bioleaching. Leaching with Aspergillus niger culture was found to be more effective in the mobilization of nickel from the catalyst particles compared to chemical leaching with citric acid. Bioleaching achieved 32% nickel removal whereas chemical leaching achieved only 21% nickel removal from catalyst particles. The enhanced nickel removal from the catalysts in the presence of A. niger culture was attributed to the biosorption ability of the fungal mycelium and to the higher local concentration of citric acid on the catalyst surface. It was found that 9% of solubilized nickel in the liquid medium was biosorbed to fungal biomass. After nickel leaching with A. niger culture, the hydrogen-to-methane molar ratio and coke yield, which are the measures of dehydrogenation reactions catalysed by nickel during cracking reactions, decreased significantly.  相似文献   

11.
Summary A new mutant strain,Aspergillus niger GS-III, showing resistance to manganese ions inhibition of citric acid fermentation on a sugarcane molasses containing medium was induced fromAspergillus niger KCU 520, a high citric acid-yielding strain. In submerged, surface or continuous cultures in the presence of manganese ions concentration upto 1.5 ppm the mutant strain yielded citric acid about 90 KgM–3 . The citric acid yield was comparable to that obtained with the parental strain KCU 520 in the absence of manganese ions, but it was atleast 3-fold higher than that obtained by the latter in the presence of manganese ions. The mutant strain immobilized in calcium alginate beads was used in combination with surface-stabilized cultures for about 36-days in a continuous flow horizontal fermenter without any apparent loss in citric acid productivity. These results indicate that the manganese-resistant mutant is stable and may be used in the presence of sufficient manganese ions concentration (1.5 ppm) in the fermentation medium. This capability of the mutant strainA. niger GS-III has been correlated with greatly reduced levels (about one-thirds) of the NADP+ -isocitric dehydrogenase, one of the control points for citric acid accumulation.  相似文献   

12.
The filamentous fungusAspergillus niger accumulates large levels of citric acid in the medium when grown under conditions favouring a high rate of sugar catabolism. With the aim of understanding the mechanisms involved in this process we investigated glucose transport in this fungus. To this end a medium was designed that enables growth of the fungus into a fine, hairy filamentous mycelium, suitable for transport studies. It was found thatA. niger contains a single, high-affinity glucose transporter when grown on a low (1% w/v) glucose concentration, but forms an additional low-affinity transporter when grown on a high (15% w/v) glucose concentration. Both glucose transporters exhibit decreased activities at low pH and are inhibited by citric acid. However, the activity of the low-affinity transporter is much less affected by these conditions. Two 2-deoxyglucose-resistant (dgr) mutants ofA. niger, which produce citric acid at a much lower rate than the parent strain, are impaired in the formation of the low-affinity transporter, but form the high-affinity transporter with higher activities. We conclude that the low-affinity glucose transporter takes part in the mechanism by whichA. niger responds to high extracellular glucose concentrations leading to citric acid accumulation.  相似文献   

13.
Summary Protoplasts were prepared from mycelium of Aspergillus niger N-402. Sucrose was used to induce the synthesis and secretion of invertase. Protoplasts secreted 2 forms of invertase, different to those secreted by the mycelium. 14C mannose was shown to be taken up by protoplasts and incorporated into secreted proteins.  相似文献   

14.
The present investigation deals with role of Ca++ ions in increasing the yield of citric acid in a repeated-batch cultivation system (working volume 9-1) and its kinetic basis. Five different hyper-producing strains of Aspergillus niger were evaluated for citric acid production using clarified cane-molasses as basal substrate. Among the cultures, NGGCB101 (developed by u.v./chemical mutation in our labs) gave maximum production of citric acid i.e., 87.98 g/1, 6 days after mycelial inoculation. The addition of CaCl2 to the culture medium promoted the formation of small rounded fluffy pellets (1.55 mm, diameter), which were desirable for citric acid productivity. CaCl2 at a level of 2.0 M, added during inoculation time, was optimized for commercial exploitation of molasses. During repeated-batch culturing, a yield of citric acid monohydrate of 128.68 g/1 was obtained when the sampling vs. substrate feeding was maintained at 4-1 (44.50% working volume). The incubation period was reduced from 6 to only 2 days. The values of kinetic parameters such as substrate consumption and product formation rates revealed the hyperproducibility of citric acid by the selected Aspergillus niger NGGCB101 (LSD = 0.456a, HS). Case studies are highly economical because of higher yield of product, lower energy consumption and the use of raw substrate without any additional supplementation.  相似文献   

15.
Mycelium ofBeauveria bassiana can be grown in liquid culture, filtered, and the mycelium dried. After rehydration the mycelium sporulates. Two carbohydrate sources (sucrose and maltose), and one nitrogen/vitamin source (yeast extract) were tested for mycelium growth and subsequent conidial production. Maximum mycelium growth (12.31 mg/ml), in liquid culture, was in the sucrose (3.5%)/yeast extract (3.5%) medium, but mycelium from a maltose (2%)/yeast extract (0.75%) medium produced the maximum of 4.62×106 conidia/mg dry mycelium after incubation in moist Petri dishes. Using the data on mycelium yield (in liquid culture) and conidial production (by dry mycelium) it is calculated that the sucrose (3.5%)/yeast extract (3.5%) and the maltose (2%)/yeast extract (0.75%) media produce most conidia per media volume (an equivalent of 3.52–3.72×107 conidia/ml).   相似文献   

16.
Summary Immobilized cells of Aspergillus niger needed a lower initial sucrose concentration than free cells in order to obtain maximal yields of citric acid production. High sucrose concentrations led to reduced yields and increased polyol formation (glycerol, erythritol, arabitol). Continuous fermentation with media containing low sugar concentrations prevented the formation of polyols. The change from nitrogen-limited to phosphate-limited precultivation of immobilized spores significantly increased the productivity of the mycelium. The ratio of citric acid to residual sugar in the effluent distinctly lay in the direction of citric acid. Inside the alginate beads mainly large bulbous cells were observed.  相似文献   

17.
Summary The influence of various carbon sources and their concentration on the production of citrate by Aspergillus niger has been investigated. The sugars maltose, sucrose, glucose, mannose and fructose (in the given order) were carbon sources giving high yields of citric acid. Optimal yields were observed at sugar concentrations of 10% (w/v), with the exception of glucose (7.5%). No citric acid was produced on media containing less than 2.5% sugar. Precultivation of A. niger on 1% sucrose and transference to a 14% concentration of various other sugars induced citrate accumulation. This could be blocked by the addition of cycloheximide, an inhibitor of de novo protein synthesis. This induction was achieved using maltose, sucrose, glucose, mannose and fructose, and also by some other carbon sources (e.g. glycerol) that gave no citric acid accumulation in direct fermentation. Precultivation of A. niger at high (14%) sucrose concentrations and subsequent transfer to the same concentrations of various other carbohydrates, normally not leading to citric acid production, led to formation of citrate. Endogenous carbon sources were also converted to citrate under these conditions. A 14%-sucrose precultivated mycelium continued producing some citrate upon transfer to 1% sugar. These results indicate that high concentrations of certain carbon sources are required for high citrate yields, because they induce the appropriate metabolic imbalance required for acidogenesis.  相似文献   

18.
Summary A mycelium of Aspergillus niger was prepared by selective inactivation of glucose oxidase by formaldehyde. Oxygen supplying by hydrogen peroxide decomposed by Aspergillus niger catalase was used for cultivation of Micrococcus luteus, Bacillus amyloliquefaciens, Candida utilis and Kluyveromyces marxianus.  相似文献   

19.
The antifungal activity of substances interfering with the function and biogenesis of mitochondria was studied. Strict anaerobiosis, cyanide, azide, oligomycin, bongkrekic acid and ethidium bromide were found to prevent spore germination ofAspergillus niger andPenicillium italicum in liquid germination medium. The effect of azide, oligomycin and ethidium bromide was fungicidal. Cyanide and azide completely inhibited the incorporation of14C-leucine and14C-uracil into germinating conidia ofA. niger. Oligomycin and ethidium bromide reduced the extent of incorporation of both precursors in the first few hours of conidial germination and at later stages stopped it completely. The inhibition of both spore germination and macromolecules synthesis during the germination ofA. niger conidia were in relation to the specific inhibitory effect of the agents on respiratory activity of dormant conidia and mycelial cells. The results indicate that both the function of mitochondrial genetic and protein synthesizing systems and the function of oxidative phosphorylation are essential for normal spore germination and fungal growth.  相似文献   

20.
Summary Citric acid production by immobilized of Aspergillus niger in a fluidized bed reactor was performed, evaluating the productivity and the stability of the process when pulsing device was used. The application of a pulsing flow to fluidized bed reactor and the feed nitrogen limited allow to control of bioparticles morphology avoiding bed compactation. When operated at optimum pulsation frequency (0.3 s–1) the stability of the bioreactor was maintained for more than 30 days, increasing the citric acid production in more than 52.2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号