首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We have isolated a cytokinin up-regulated cDNA clone, H13, froman early stage of cultured tobacco mesophyll protoplasts bya differential display method. The expression of this gene wasspecifically induced by natural and synthetic cytokinins includingN-(2-chloro-4-pyridyl)-N'-phenylurea (4PU30), a diphenylurea-typecytokinin, although the simultaneous presence of auxin was alsorequired. It seems that the preceding treatment of the tobaccomesophyll protoplasts by auxin is necessary for the gene torespond to cytokinin. The addition of a cytokinin antagonist,compound 182, which suppressed the induction of cell divisionin tobacco mesophyll protoplasts, completely abolished the expressionof this gene. Though the predicted gene product of H13 did notsuggest us any sequences of defined functions, two domains ofthe predicted sequence had significant homology to several reportedsequences in the data base. The gene product of H13 is proposedto have a role in regenerating cell wall in cultured protoplasts,since a cDNA clone E6, from cotton fiber cells, which has themost closely related structure to H13, has been isolated fromcells which showed active cellulose synthesis. This suppositionis supported by the evidence that in the absence of cytokinin,cell wall regeneration was significantly suppressed, resultingin failure of the induction of cell division. Thus, the geneproduct of H13 is supposed to have a role in regenerating cellwalls and facilitating the progression of the cell cycle, resultingin the sustained cell division of tobacco mesophyll protoplasts. 1These authors are equally contributed to this work.  相似文献   

4.
5.
Each of the nontraditional plant hormones reviewed in this article, oligosaccharins, brassinolides, and JA, can exert major effects on plant growth and development. However, in many cases, the mechanisms by which these compounds are involved in the endogenous regulation of morphogenesis remain to be established. Nevertheless, the use of mutant or transgenic plants with altered levels or perception of these hormones is leading to phenomenal increases in our understanding of the roles they play in the life cycle of plants. It is likely that in the future, novel modulators of plant growth and development will be identified; some will perhaps be related to the peptide encoded by ENOD40 (Van de Sande et al., 1996), which modifies the action of auxin.  相似文献   

6.
《Plant science》1998,132(1):55-62
In several plant systems increase in glyoxalase I activity has been correlated with cell proliferation. Cell cycle studies of tobacco protoplasts indicate a rise in glyoxalase I activity prior to G2/M phase. Further, synthetic auxin, NAA, induced glyoxalase I activity and cell division significantly. This induction was specific in response to auxin only. Cytokinins alone do not induce cell division or increase enzyme activity. Analysis of glyoxalase I cDNA sequence from soybean shows significant homology with auxin inducible genes particularly Nt107 and limited but strong similarity with identified plant mitotic cyclins, implicating glyoxalase I in possible relationship with certain cell division regulating factors.  相似文献   

7.
The relationship among transfer and expression of auxin binding protein gene (abp), auxin (NAA)-induced plasmalemma hyperpolarity and sensibility to auxin during protoplast culture was studied by measuring transmembrane potential difference (Em) and culturing the protoplasts of sense and antisenseabp transgenic tobacco. The concentration of NAA inducing the highest degree of hyperpolarity of senseabp transgenic tobacco protoplasts was lower than the control, and in protoplast culture, their sensibility to auxin increased. The concentration of antisenseabp transgenic tobacco protoplasts was higher than the control, and in protoplast culture, their sensibility to auxin decreased. These results demonstrated that ABP synthesized in endoplasmic reticulum needed to transport to cell membrane and functioned there.  相似文献   

8.
When auxin was omitted during either the preparation or the culture of tobacco mesophyll protoplasts, as well as during both periods, synthesis of β-glucanase was spontaneously induced. In contrast, when protoplasts were prepared and cultured in the presence of 16 micromolar 1-naphthaleneacetic acid (optimal concentration for protoplast division), the expression of β-glucanase was maintained close to the minimal level observed in tobacco leaves. This inhibitory effect was only promoted by active auxins (1-naphthaleneacetic acid, 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid, and 3-indoleacetic acid) but not by inactive auxin analogs. Tobacco protoplasts responded to exogenous elicitors from the cell wall of Phytophthora megasperma glycinea (Pmg) by accumulating β-glucanase in the presence of 16 micromolar 1-naphthaleneacetic acid. At higher auxin concentrations, the elicitor-induced β-glucanase synthesis was inhibited. Naphthaleneacetic acid concentration (3 × 10−5 molar) required to inhibit by 50% the expression of this defense reaction triggered by a near-optimal elicitor concentration was about 100 times higher than that sufficient to inhibit by 50% the spontaneous expression in nonelicited protoplasts. This is the first demonstration of an auxin-fungal elicitor interaction in the control of a defined defense reaction. The above observations were extended to soybean cell protoplasts. The Pmg elicitor-induced stimulation of the synthesis of pathogenesis related P17 polypeptides and of a 39-kilodalton peptide immunologically related to tobacco β-glucanase was only observed when the spontaneous accumulation of these proteins was inhibited in auxin-treated protoplasts.  相似文献   

9.
The relationship among transfer and expression of auxin binding protein gene (abp), auxin (NAA)-induced plasmalemma hyperpolarity and sensibility to auxin during protoplast culture was studied by measuring transmembrane potential difference (Em) and culturing the protoplasts of sense and antisenseabp transgenic tobacco. The concentration of NAA inducing the highest degree of hyperpolarity of senseabp transgenic tobacco protoplasts was lower than the control, and in protoplast culture, their sensibility to auxin increased. The concentration of antisenseabp transgenic tobacco protoplasts was higher than the control, and in protoplast culture, their sensibility to auxin decreased. These results demonstrated that ABP synthesized in endoplasmic reticulum needed to transport to cell membrane and functioned there. Project supported by the State Key Laboratory of Plant Molecular Genetics and National Natural Science Foundation of China (Grant No. 39670078).  相似文献   

10.
Brassinosteroids are known to promote cell elongation in a wide range of plant species but their effect on cell division has not been as extensively studied. We examined the effect of brassinolide on the kinetics and final division frequencies of regenerating leaf mesophyll protoplasts of Petunia hybrida Vilm v. Comanche. Under optimal auxin and cytokinin conditions, 10–100 nM brassinolide accelerated the time of first cell division by 12 h but had little effect on the final division frequencies after 72–120 h of culture. One micromolar brassinolide showed the same acceleration of first cell division but inhibited the final division frequency by approximately 20%. Under sub-optimal auxin conditions, 10–100 nM brassinolide both accelerated the time of first cell division and dramatically increased the 72- to 120-h final division frequencies. Isolated protoplasts may provide a useful model system to investigate the molecular mechanisms of brassinosteroid action on cell proliferation. Received: 1 December 1997 / Revision received: 13 February 1998 / Accepted: 24 April 1998  相似文献   

11.
Auxinisatypeofplanthormoneexistingextensively[1].Itregulatesmanyprocessesinplantdevelopment[2,3].Accordingtothe“acidgrowththeory”,auxinstimulatesaseriesofreactionandthenpromotescellgrowthbybindingtheABPlocatedincellmembrane[4,5].Thestudiesontobaccomutantexhi…  相似文献   

12.
Auxin-induced variations of transmembrane potential difference have been shown to be a useful tool for analyzing hormone sensitivity in tobacco protoplasts. Using this technique, we demonstrated that protoplasts derived from wild-type, an auxin-resistant mutant and Agrobacterium-rhizogenes transformed plants differed widely in the sensitivity of their electrical response to naphthalene acetic acid. We have used different antibodies, raised to auxin binding proteins (ABP) from maize coleoptiles, or to the axr1 gene product (ABP1), to test whether changes in auxin sensitivity can be correlated with the presence of tobacco proteins immunologically related to this ABP. Titrations indicated that 0.4 nM anti-ABP IgG inhibited 50% of the auxin-specific response of wild-type protoplasts, whereas 0.04 nM or 4 nM anti-ABP IgG were necessary to inhibit the response of mutant and transformed protoplasts, respectively, to the same extent. On wild-type protoplasts, blocking part of the immunoreactive sites with anti-ABP antibodies resulted in a decrease in auxin sensitivity of the electrical response (0.4 nM anti-ABP IgG inducing a 10–fold decrease), whereas addition of maize ABP increased this auxin sensitivity (1 pM ABP1 raised the sensitivity more than 1000–fold). The results obtained suggest that the auxin sensitivity detected by our assay system correlates with the amount of tobacco proteins immunologically related to the axr1 gene product from maize. A hypothesis accounting for the presence of these proteins at the external surface of tobacco protoplasts and for the effects of hetero-logous maize ABP on auxin sensitivity is proposed.  相似文献   

13.
Expression of CDC2Zm and KNOTTED1 (KN1) in maize (Zea mays L.) and their cross-reacting proteins in barley (Hordeum vulgare L.) was studied using immunolocalization during in-vitro axillary shoot meristem proliferation and adventitious shoot meristem formation. Expression of CDC2Zm, a protein involved in cell division, roughly correlated with in-vitro cell proliferation and in the meristematic domes CDC2Zm expression was triggered during in-vitro proliferation. Analysis of the expression of KN1, a protein necessary for maintenance of the shoot meristem, showed that KN1 or KN1-homologue(s) expression was retained in meristematic cells during in-vitro proliferation of axillary shoot meristems. Multiple adventitious shoot meristems appeared to form directly from the KN1- or KN1 homologue(s)-expressing meristematic cells in the in-vitro proliferating meristematic domes. However, unlike Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum) leaves ectopically expressing KN1 (G. Chuck et al., 1996 Plant Cell 8: 1277–1289; N. Sinha et al., 1993 Genes Dev. 7: 787–797), transgenic maize leaves over-expressing KN1 were unable to initiate adventitious shoot meristems on their surfaces either in planta or in vitro. Therefore, expression of KN1 is not the sole triggering factor responsible for inducing adventitious shoot meristem formation from in-vitro proliferating axillary shoot meristems in maize. Our results show that genes critical to cell division and plant development have utility in defining in-vitro plant morphogenesis at the molecular level and, in combination with transformation technologies, will be powerful tools in identifying the fundamental molecular and-or genetic triggering factor(s) responsible for reprogramming of plant cells during plant morphogenesis in-vitro. Received: 2 June 1997 / Accepted: 21 July 1997  相似文献   

14.
The importance of haemocytes in mollusc defence mechanisms can be inferred from their functions. They participate in pathogen elimination by phagocytosis (Cheng, 1981; Fisher, 1986). Hydrolytic enzymes and cytotoxic molecules produced by haemocytes contribute to the destruction of pathogenic organisms (Cheng, 1983; Leippe & Renwrantz, 1988; Charlet et al., 1996; Hubert et al., 1996; Roch et al., 1996). Haemocytes may also be involved in immunity modulation by the production of cytokines and neuropeptides (Hughes et al., 1990; Stefano et al., 1991; Ottaviani et al., 1996). As a result, the literature dealing with bivalve haemocyte studies has increased during the last two decades. Most of these publications use microscopy for morphological analysis (Seiler & Morse, 1988; Auffret, 1989; Hine & Wesney, 1994; Giamberini et al., 1996; Carballal et al., 1997; Lopez et al., 1997; Nakayama et al., 1997), and functional analysis (e.g. phagocytosis) (Hinsch & Hunte, 1990; Tripp, 1992; Mourton et al., 1992; Fryer & Bayne, 1996; Mortensen & Glette, 1996). Flow cytometry represents a rapid technique applicable to both morphological and functional studies of cells in suspension. While the measurements based on autofluorescence provide information on cell morphology, the analyses with fluorescent markers including labelled antibodies, offer data on phenotyping and cell functions. As a result, its application has greatly contributed to the investigation of immunocyte functions and differentiation in vertebrates (Stewart et al., 1986; Rothe & Valet, 1988; Ashmore et al., 1989; Koumans-van Diepen et al., 1994; Rombout et al., 1996; Caruso et al., 1997). Some authors studied oyster haemocyte populations by flow cytometry based on cellular autofluorescence (Friedl et al., 1988; Fisher & Ford, 1988; Ford et al., 1994). However, no analysis using specific monoclonal antibodies has been reported to date. In this study, a protocol for studying European flat oyster, Ostrea edulis, haemocytes by flow cytometry using a monoclonal antibody specific for granulocytes and an indirect immunofluorescence technique have been developed. European flat oysters, Ostrea edulis, 7-9 cm in shell length were obtained from shellfish farms in Marenne Oléron bay (Charente Maritime, France) on the French Atlantic coast. All individuals were purchased just before each experiment and processed without any previous treatment.  相似文献   

15.
Molecular aspects of murine evolution were studied by sequencing, and subsequently comparing, introns of the Y-chromosomal tspy genes from Apodemus agrarius, A. sylvaticus, A. flavicollis, Mus platythrix (subgenus Pyromys), M. booduga (subgenus Leggada), and from species of the subgenus Mus, including M. cervicolor, M. macedonicus and M. spretus. Estimates of nucleotide substitution rates in these lineages were in perfect agreement with phylogenetic data previously published by She et al. (1990), Catzeflis et al. (1992; 1993), and Lyon et al. (1996). The only exception was provided by a comparatively late divergence of M. spretus and M. macedonicus. Our data also suggest that M. booduga diverged from the subgenus Mus about 3 Myr ago.  相似文献   

16.
17.
Studies of membrane electrical responses of isolated protoplasts to auxin have demonstrated the existence of elementary response chains to auxin at the plasma membrane, presently defined only by their uttermost ends. At one side, as demonstrated by several lines of evidence, the auxin perception unit involves proteins homologous to ZmER-abp1 (abp1), the most abundant auxin-binding protein from maize coleoptiles. At the other side, multiple ion transport proteins appear as targets of the auxin signal; the proton pump ATPase, an anion channel and potassium channels. We investigated early electrical responses to auxin at the plasma membrane of tobacco protoplasts. The work presented here will initially focus on abp1 and its functional role at the membrane. The C-terminus abp1 peptide (Pz151–163) was recently reported to modulate K+ currents at the plasma membrane of intact guard cells from broad bean [23] and induce plasma membrane hyperpolarisation of tobacco mesophyll protoplasts. These results further demonstrate that proteins involved in plasma membrane responses to auxin are related to maize abp1, and provide clues as to the region of the protein possibly involved in the interaction of abp1 with the plasma membrane. Secondly, this report concentrates on one of the targets of auxin, a voltage-dependent and ATP-regulated anion channel that we characterised on protoplasts from tobacco cell suspensions. This anion channel was specifically modulated by auxin, as already observed for the anion channel of guard cells [14]. Further work will be needed to assess if this auxin modulation involves a direct interaction between the hormone and the anion channel protein(s), or follows from the activation of a perception chain including abp1 homologues.  相似文献   

18.
Two kinds of cellular responses to auxin, the hyperpolarization of protoplasts and the division of protoplast-derived cells, were compared in Nicotiana tabacum plants transformed by different T-DNA fragments of Agrobacterium rhizogenes strain A4. Using transmembrane potential difference measurements to characterize hormonal sensitivity of mesophyll protoplasts, we found a 30-fold increase in sensitivity to auxin in protoplasts transformed by the whole Ri A4 T-DNA. Furthermore, the rol genes of the Ri A4 TL-DNA, together or as single genes, were able to increase the sensitivity to auxin by factors up to 104. The different effects of the single rol genes on the sensitivity of mesophyll protoplasts to auxin, rolB being the most powerful, were consistent with their respective rhizogenic effects on leaf fragments (A Spena, T Schmülling, C Koncz, J Schell [1987] EMBO J 6: 3891-3899). No difference was seen concerning the effects of auxin on division of cells derived from normal or transformed protoplasts. These results suggest that only some cellular responses to auxin could be selectively altered by rol genes. They also show that rol-transformed tobaccos can be a model system to study auxin action in plants.  相似文献   

19.
Phenotypical alterations observed in rolB-transformed plants have been proposed to result from a rise in intracellular free auxin due to a RolB-catalyzed hydrolysis of auxin conjugates(J.J. Estruch, J. Schell, A. Spena [1991] EMBO J 10: 3125-3128).We have investigated this hypothesis in detail using tobacco (Nicotiana tabacum) mesophyll protoplasts isolated from plants transformed with the rolB gene under the control of its own promoter (BBGUS 6 clone) or the cauliflower mosaic virus 35S promoter (CaMVBT 3 clone). Protoplasts expressing rolB showed an increased sensitivity to the auxin-induced hyperpolarization of the plasma membrane when triggered with exogenous auxin. Because this phenotypical trait was homogeneously displayed over the entire population, protoplasts were judged to be a more reliable test system than the tissue fragments used in previous studies to monitor rolB gene effects on cellular auxin levels. Accumulation of free 1-[3H]-naphthaleneacetic acid (NAA) was equivalent in CaMVBT 3, BBGUS 6, and wild-type protoplasts, Naphthyl-[beta]-glucose ester, the major NAA metabolite in protoplasts, reached similar levels in CaMVBT 3 protoplasts, reached similar levels in CaMVBT 3 and normal protoplasts and was hydrolyzed at the same rate in BBGUS 6 and normal protoplasts. Furthermore, NAA accumulation and metabolism in BBGUS 6 protoplasts were independent of the rolB gene expression level. Essentially similar results were obtained with indoleacetic acid. Thus, it was concluded that the rolB-dependent behavior of transgenic tobacco protoplasts is not a consequence of modifying the intracellular auxin concentration but likely results from changes in the auxin perception pathway.  相似文献   

20.
Vestibular input to brain monoamine neurons--a review   总被引:1,自引:0,他引:1  
Yates et al. reported that serotonergic RN neurons are associated with vestibulo-sympathetic responses and may control BP changes during body repositioning (Yates et al., 1992; 1993). Pompeiano et al. demonstrated that LC-NA neurons participate in the postural control and modify the vestibulo-spinal reflex (Pompeiano et al., 1990; 1991a; 2001). Nishiike et al. (1996a) examined the effects of caloric vestibular stimulation on the neuronal activity of LC-NA neurons in rats. The predominant effect of CA with both hot- and cold-water on the electrical activity of LC neurons is inhibitory and persists for several minutes. GABAA receptors located on the postsynaptic membrane of LC neurons are responsible for these inhibitory responses. The VLM may inhibit LC neuronal activity in response to the CA via GABAA receptors (Nishiike et al., 1997). It is suggested that LC-NA inhibition is involved in the development of motion sickness (Nishiike et al., 2001).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号