首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insect herbivores were sampled from the foliage of 15 species of Ficus (Moraceae) in rainforest and coastal habitats in the Madang area, Papua New Guinea. The collection included 13 193 individuals representing 349 species of leaf-chewing insects and 44 900 individuals representing 430 species of sap-sucking insects. Despite a high sampling intensity, the species accumulation curve did not reach an asymptote. This pattern was attributed to the highly aggregated distribution of insects on individual host trees. The number of insect species collected on a particular Ficus species ranged from 34 to 129 for leaf-chewing and from 51 to 219 for sap-sucking insects. Two Ficus species growing on the seashore sustained less speciose insect communities than their counterparts growing in forest. For the forest figs, significant predictors of insect species richness included leaf palatability and leaf production for leaf-chewing insects (40% of the variance explained), and tree density and leaf expansion for sap-sucking insects (75%). The high faunal overlap among Ficus communities and the importance of local resources for insect herbivores suggest that highly specialized interactions between insect herbivores and Ficus in Papua New Guinea have not been conserved in evolutionary time. This is at variance with the dogma of old, extremely specialized and conservative interactions between insect herbivores and their hosts, providing numerous ecological niches in the floristically rich tropics.  相似文献   

2.
About 9,000 individuals of sap-sucking and leaf-chewing insects, representing 345 species, were collected from 10,000 seedlings belonging to 5 rainforest tree species in an unlogged forest in Guyana. For the 40 most common species, it was possible to estimate their host specificity, diurnal activity, seasonal distribution, spatial aggregation, abundance and body weight. Most species were generalists but more specialised species tended to show a higher spatial aggregation, a more restricted diurnal activity and a higher seasonality. Although insect abundance was highest at the onset of the long wet season in May, seasonal amplitude was not pronounced. The combined effects of host and rainfall explained 14.5% of the total variance in insect seasonality, which was poorly explained by the leaf production of seedlings. The spatial distribution of insects was often aggregated and, overall, explained by host effect, production of young foliage, number of conspecific trees within a radius of 50m, and number of dead seedlings at each collecting station. However, these variables explained only 7% of the variance in spatial distribution. The lack of notable influence of leaf production and other important variables recorded at the collecting stations suggests that the seedlings represent a marginal food resource for most of the insect species collected.  相似文献   

3.
John A. Barone 《Biotropica》2000,32(2):307-317
The Janzen–Connell model of tropical forest tree diversity predicts that seedlings and young trees growing close to conspecific adults should experience higher levels of damage and mortality from herbivorous insects, with the adult trees acting as either an attractant or source of the herbivores. Previous research in a seasonal forest showed that this pattern of distance‐dependent herbivory occurred in the early wet season during the peak of new leaf production. I hypothesized that distance‐dependent herbivory may occur at this time because the new foliage in the canopy attracts high numbers of herbivores that are limited to feeding on young leaves. As a consequence, seedlings and saplings growing close to these adults are more likely to be discovered and damaged by these herbivores. In the late wet season, when there is little leaf production in the canopy, leaf damage is spread more evenly throughout the forest and distance dependence disappears. I tested three predictions based on this hypothesis: (1) the same species of insect herbivores attack young and adult trees of a given plant species; (2) herbivore densities increase on adult trees during leaf production; and (3) herbivore densities in the understory rise during the course of the wet season. Censuses were conducted on adults and saplings of two tree species, raribea asterolepis and Alseis blackiana. Adults and saplings of both species had largely the same suite of chewing herbivore species. On adults of Q. asterolepis, the density of chewing herbivores increased 6–10 times during leaf production, but there was no increase in herbivore density on adults of A. blackiana. Herbivore densities increased 4.5 times on A. blackiana saplings and 8.9 times on Q. asterolepis saplings during the wet season, but there were no clear trends on the adults of either species. These results suggest that the potential of adult trees as a source of herbivores on saplings depends on the value of new leaves to a tree species' herbivores, which may differ across tree species.  相似文献   

4.
This study evaluated whether herbivorous insects can be expected to have particular adaptations to withstand the harsh dry season in tropical dry forests (TDFs). We specifically investigated a possible escape in space, with herbivorous insects moving to the few evergreen trees that occur in this ecosystem; and escape in time, with herbivores presenting an increased nocturnal rather than diurnal activity during the dry season. We determined the variation in the free-feeding herbivorous insects (sap-sucking and leaf chewing) between seasons (beginning and middle of both rainy and dry seasons), plant phenological groups (deciduous and evergreen trees) and diel period (diurnal and nocturnal) in a Brazilian TDF. We sampled a total of 5827 insect herbivores in 72 flight-interception traps. Contrary to our expectations, we found a greater herbivore diversity during the dry season, with low species overlap among seasons. In the dry season, evergreen trees supported greater richness and abundance of herbivores as compared to deciduous trees. Insects were also more active at night during the dry season, but no diel differences in insect abundance were detected during the rainy season. These results indicate that the strategies used by insect herbivores to withstand the severe climatic conditions of TDFs during the dry season include both small-scale escape in space and time, with evergreen trees playing a key role in maintaining resident insect herbivore populations in TDFs. Relatively more nocturnal activity during the dry season may be related to the avoidance of harsh climatic conditions during the day. We suggest that the few evergreen tree species occurring in the TDF landscape should be especially targeted for protection in this threatened ecosystem, given their importance for insect conservation.  相似文献   

5.
Abstract. 1. Data are presented on the species richness and faunal composition of herbivorous insects on birch seedlings, saplings and trees at one site in Northern England.
2. Species richness of insect herbivores in equal-sized samples from birch seedlings and trees was similar through most of the season.
3. Effects of plant architecture were confined to the first sampling date, when seedling faunas were species poor compared with trees – possibly due to safe overwintering sites on the extensive bark, twigs and buds of trees.
4. The faunal composition of birch seedlings, saplings and trees was also similar. Out of a total of 112 recorded species of herbivores, only one aphid species was confined to seedlings.
5. Similarly, no evidence for clear-cut vertical stratification of insects within trees was found.
6. Species turnover as host plants mature ('horizontal' stratification) and vertical stratification within trees add little to the high overall species richness of birch-feeding insects in Britain, contrary to the predictions of Lawton (1983).  相似文献   

6.
This study aimed to compare canopy herbivore diversity and resultant insect damage to vegetation in two distinct and adjacent ecosystems, specifically a dry forest ecosystem and a cerrado (savanna) ecosystem that occur together in an abrupt transition zone in southeastern Brazil. In the dry forest, the canopy was reached using a single rope climbing technique, whereas the shorter canopy of the cerrado was assessed using a 7 m ladder. Insect specimens were collected by beating the foliage, and 20 representative leaves were collected to calculate the specific leaf mass (SLM) and leaf area loss through herbivory. Also, we collected ten soil samples from each habitat to determine soil nutrient content. We sampled 118 herbivorous insects from ten families, mostly in dry forest trees (96 individuals belonging to 31 species). A higher abundance of chewing and sap-sucking insects were observed in dry forest trees than in cerrado trees. The same pattern was observed for the richness of chewers, with a higher degree of diversity of chewers found in dry forest trees than in cerrado trees. Herbivorous insects were not affected by SLM regardless of guild and habitat. However, we observed a negative correlation between the herbivory rate and the specific leaf mass (SLM). The cerrado trees showed a higher SLM and lower herbivory rates than trees occurring in the dry forest. These results suggest that herbivory rates in the transition dry forest–cerrado may be driven by soil nutrient content, which is thought to influence leaf sclerophylly.
Abstract in Portuguese is available at http://www.blackwell-synergy.com/loi/btp .  相似文献   

7.
1. If fungivorous insect diversity is maintained by host specialisation on particular fungi, it should be higher in the tropics than in temperate or boreal regions owing to high macrofungus species diversity. 2. To reveal the community and food web structure of fungivorous insects on bracket fungi, fungivorous insects were collected from 427 fruiting bodies belonging to 22 genera throughout the development and deterioration process in a 3‐ha plot of lowland dipterocarp tropical rain forest on Borneo Island. 3. Eight hundred and twenty‐nine individuals of 82 coleopteran species in 13 families from 111 fruiting bodies of 15 fungal genera were collected. Tenebrionidae and Staphylinidae were most common. Fifty‐three and 19 insect species were observed on Ganoderma and Phellinus, respectively. The numbers of insect species and individuals on a particular fungal genus were positively correlated with the abundance of that fungal genus. 4. Quantitative food web analysis revealed a high degree of specialisation at the whole‐community level. At least 65% of insect individuals were observed on Ganoderma at every stage of development and deterioration. Diverse insects coexist on one dominant fungal genus, Ganoderma, in contrast to our hypothesis. 5. The high abundance of Ganoderma fruiting bodies, which lack obvious defences against insect feeding, probably influences the bracket fungus–insect food web in this tropical rainforest.  相似文献   

8.
Many native plant communities are replaced by exotic monocultures that may be successional stages or persistent community types. We surveyed a stand of Sapium sebiferum (Chinese Tallow Tree) that replaced tallgrass prairie in Texas and performed experiments with seeds and seedlings to determine the contributions of recruitment limitation and natural enemy release to allowing such a forest type to persist or to allowing native species to reduce Sapium dominance. The stand was dominated by Sapium, especially for mature trees (>99) and annual seed input (97) but less so for saplings (80). Field sown Sapium seeds had lower germination and survival rates than Celtis seeds. Together with the extreme dominance of Sapium in seed rain this suggests that native species are currently recruitment limited in this stand by seed supply but not by germination, early growth or survival. To investigate whether Sapium may benefit from low herbivory or diseases, we transplanted Sapium and Celtis seedlings into the forest and manipulated foliar fungal diseases and insect herbivores with sprays. As predicted, insect herbivores caused greater damage to Celtis seedlings than to Sapiumseedlings. However, suppression of insect herbivores caused significantly greater increases in survivorship of Sapium seedlings compared to Celtis seedlings. This suggests that herbivores in the understory of this Sapiumforest may significantly reduce Sapiumseedling success. Such a pattern of strong herbivore impact on seedlings growing near adult conspecifics was unexpected for this invasive species. However, even with insects and fungi suppressed, Sapium seedling performance was poor in this forest. Our results point towards Sapium as a successional species in a forest that will eventually be dominated by native trees that are currently recruitment limited but outperform Sapium in the understory.  相似文献   

9.
Insect seed predators are important agents of mortality for tropical trees, but little is known about the impact of these herbivores in rainforests. During 3 years at Khao Chong (KHC) in southern Thailand we reared 17,555 insects from 343.2 kg or 39,252 seeds/fruits representing 357 liana and tree species. A commented list of the 243 insect species identified is provided, with details about their host plants. We observed the following. (i) Approximately 43% of identified species can be considered pests. Most were seed eaters, particularly on dry fruits. (ii) Approximately 19% of parasitoid species (all Opiinae) for which we could determine whether their primary insect host was a pest or not (all Bactrocera spp. breeding in fruits) can be considered beneficials. (iii) The seeds/fruits of approximately 28% of the plant species in this forest were free of attack. Phyllanthaceae, Rubiaceae and Meliaceae were attacked relatively infrequently; in contrast, Annonaceae, Fabaceae, Sapindaceae and Myristicaceae were more heavily attacked. There was no apparent effect of plant phylogeny on rates of attack but heavily attacked tree species had larger basal area in the KHC plot than rarely attacked tree species. (iv) Insects reared from fleshy fruits were more likely to show relatively stable populations compared to insects reared from dry fruits, but this was not true of insects reared from dipterocarps, which appeared to have relatively stable populations throughout the study period. We tentatively conclude that insects feeding on seeds and fruits have little effect on observed levels of host abundance in this forest.  相似文献   

10.
The capacity of seedlings to survive for extended periods beneath intact forest increases the likelihood of regeneration of many species of canopy trees in rainforests. I studied the demographics of Argyrodendron actinophyllum (F.M.Bail.) H.L.Edlin seedlings in a subtropical rainforest in northern New South Wales. A mast seeding of A. actinophyllum was observed and subsequent survival of seedlings monitored over a four year period. Densities of seedlings that emerged correlated with seedfall, while seedfall depended on the size and distance to the surrounding trees. Mortality of seedlings showed density-dependence at higher seedling densities (above about 100 seedlings m?2), apparently in response to browsing pressure that varied with the density of seedlings. Seedlings that were protected from vertebrates by exclosure cages had lower mortality rates than unprotected seedlings and showed no density response. Glasshouse experiments showed seedling growth was reduced by defoliation, light intensity and initial seed weight, and that seedlings could not persist at light intensities below about 1% ambient, which occur in darker patches on the forest floor. Possible mechanisms whereby the observed spatial and temporal patterns of seedling recruitment could reduce the likelihood of the species becoming more common relative to other tree species in the forest are discussed.  相似文献   

11.
Vines thrive in lowland tropical forests, yet the biotic factors underlying their colonization of host tree seedlings and saplings remain surprisingly understudied. Insect herbivores presumably could influence this process, especially where disturbance has opened the canopy (i.e., gaps)—temporary areas of higher primary productivity favoring the recruitment of vines and trees and invertebrates in forests—but their impact on vine colonization has never been experimentally tested. Using data from an insect herbivore exclusion (mesh-netting cages) experiment conducted in an African rain forest (Korup, Cameroon), I logistically modeled the probability of vines colonizing seedlings of three co-dominant species (Microberlinia bisulcata vs. Tetraberlinia bifoliolata and T. korupensis) in paired shaded understory and sunny gap locations (41 blocks across 80 ha, starting n = 664 seedlings) in a 1–2-yr period (2008–2009). Vine colonization occurred almost exclusively in gaps, occurring on 16% of seedlings there. Excluding herbivores in gaps doubled colonization of the light-demanding and faster growing M. bisulcata but had negligible effects on the two shade-tolerant, slower growing and less palatable Tetraberlinia species, which together were twice as susceptible to vines under natural forest gap conditions (controls). When protected from herbivores in gaps, more light to individual seedlings strongly increased vine colonization of M. bisulcata whereas its well-lit control individuals supported significantly fewer vines. These results suggest vines preferably colonize taller seedlings, and because light-demanding tree species grow faster in height with more light, they are more prone to being colonized in gaps; however, insect herbivores can mediate this process by stunting fast growing individuals so that colonization rates becomes more similar between co-occurring slow and fast growing tree species. Further influencing this process might be associational resistance or susceptibility to herbivores linked to host species’ leaf traits conferring shade-tolerant ability as seedlings or saplings. A richer understanding of how vines differentially influence forest regeneration and species composition may come from investigating vine–tree–herbivore interactions across light gradients, ideally via long-term studies and intercontinental comparisons. Abstract in French is available with online material.  相似文献   

12.
贵南沙蜥分布在青海省贵南县的一片长×宽约为30 km×20 km的连续沙丘,该沙丘被周缘草地隔离,贵南沙蜥主要在沙地与草地接触带的沙地一侧活动。采用3条样线共150个陷阱研究贵南沙蜥在草地与沙地交界线两侧的活动洞穴空间分布特征与潜在的可利用性昆虫食物资源多样性,并分析洞穴空间分布特征与昆虫种类以及数量分布的关系。研究共捕获1236个昆虫个体,隶属于2纲10目26科42种,其中昆虫纲有7目21科37种978个,蛛形纲有3目5科5种258个;草地采集的昆虫有2纲9目22科37种570个,沙地有2纲9目21科33种666个。草地昆虫的Shannon-Wiener,Simpson多样性指数与均匀度指数均大于沙地,表明草地的昆虫食物资源较丰富且分布均匀。研究表明贵南沙蜥在沙地环境活动洞穴数量较多,且离交界线越近洞穴分布数量越多;草地生境活动洞穴空间分布与离交界线距离无相关性,相对沙地数量较少且空间上分布较均匀。草地样方捕获的昆虫种类和数量以及沙地样方捕获的昆虫数量都与离分界线的距离无关,但沙地上昆虫种类与离分界线的距离呈高度负相关。研究表明贵南沙蜥沙地活动洞穴空间分布与昆虫种类分布特征显著相关。  相似文献   

13.
Brazilian peppertree, Schinus terebinthifolia Raddi (Anacardiaceae), is a South American plant that is highly invasive in Florida. The impact of insect herbivores on the performance of Brazilian peppertree was evaluated at two locations in Florida using an insecticide exclusion method. Although 38 species of insect herbivores were collected on the invasive tree, there were no differences in growth or reproductive output of insecticide protected and unprotected trees, providing evidence that insect feeding had no measurable impact on tree performance. The majority of insects collected on Brazilian peppertree were generalists, and several were serious agricultural pests.  相似文献   

14.
Meiners  S.J.  Handel  S.N.  Pickett  S.T.A. 《Plant Ecology》2000,151(2):161-170
As the density and species composition of insects may change in relation to distance from the forest edge, the role of herbivory in tree establishment may also change across edges. To determine the importance of insect herbivory in tree establishment, insect densities were experimentally altered at different distances from the forest edge. Plots were established at three distances from the edge, with plots located in forest, edge, and field habitats. In half of each plot, insect densities were reduced by insecticide application. Seeds of two tree species, Acer rubrum and Fraxinus americana, were planted into each plot in 1995. The experiment was repeated in 1996 with the addition of Quercus palustris and Quercus rubra.Distance from the forest edge was the most important factor in determining seedling emergence and mortality. Overall seedling performance increased from field to edge to woods, although responses varied among species. In 1995, a drought year, insect removal increased emergence and decreased mortality of tree seedlings. In 1996, a year with normal precipitation, insect removal had much less effect on A. rubrum and F. americana. For the two Quercus species, mortality was reduced by insect removal. The tree species differed in their susceptibility to insect herbivory, with Acer rubrum the most susceptible and Fraxinus americana the least. Herbivory by insects was shown to have the potential to affect both the composition and spatial pattern of tree invasions. Herbivore importance differed greatly between the two years of the study, making the interaction between insects and tree seedlings variable both in space and time.  相似文献   

15.
Forest fragmentation alters plant-animal interactions, including herbivory. Relying manipulative experiments, we test if the reduction in insect herbivory associated with forest fragmentation translates into increased seedling growth and survival of three tree common species (Aristotelia chilensis, Cryptocarya alba and Persea lingue) in forest fragments and continuous forests in coastal Maulino forest, central Chile. Furthermore, we test if after protecting seedlings from herbivorous insects, plant performance is increased regardless of forest fragmentation. Nursery grown seedlings were transplanted into four forest fragments and a continuous forest during 2002. Insects, important herbivores in this forest, were excluded from half the seedlings by repeated applications of insecticides. Compared to continuous forests, in forest fragments, herbivory was reduced in all three species, seedling growth was greater in A. chilensis and C. alba but not in P. lingue, and survivorship was unaffected by herbivory or fragmentation in all three species. Protecting seedlings from insects reduced herbivory in the continuous forest to similar levels attained in the forest fragments. No change in herbivory results from by protecting seedlings in forest fragments. These results confirm that insects are important herbivores in the Maulino forest and also support the hypothesis that fragmentation can have strong indirect effects on plant communities as mediated through trophic interactions.  相似文献   

16.
Summary We manipulated soil fertility and insect attack for two species of Eucalyptus in natural stands of subalpine woodland on shallow, infertile granitic soils. E. pauciflora and E. stellulata responded in similar ways to simultaneous insecticide and fertilizer treatments. Eliminating herbivorous insects produced the largest changes — improved plant growth, increased leaf N and P, and reduced leaf specific density. Fertilizer regime modified some leaf properties, but had little effect on tree growth. E. stellulata trees were initially shorter than E. pauciflora, but grew faster without herbivores; by the end of the experiment both species were the same size when herbivores were removed. Foliage N and P levels increased most in trees with the most balanced fertilizer addition (NPK), and increased in all trees protected from insects, regardless of fertilizer regime. In this system, herbivorous insects exacerbated the effects of nutrientpoor soils, and may affect dominance of Eucalyptus species in mature forests.  相似文献   

17.
昆虫与栎树的相互关系及其对栎林更新的影响   总被引:4,自引:0,他引:4  
本文概述了昆虫和栎树的相互关系以及栎林种群更新研究的进展,从叶片和栎实两个方面分别分析昆虫对栎树的危害、栎树对昆虫的防御以及栎林种群更新中的问题等。(1)危害栎树的昆虫种类丰富,它们以取食叶片和栎实为主,昆虫的寄生几乎使栎实完全失去活力。(2)栎树的防御效应能影响昆虫啃食叶片的程度,被昆早寄生的栎实提前下落以及栎实产量周期性的大小年变化,能降低昆虫寄生和取食栎实所带来的损失。(3)昆虫啃食叶片降低栎树的能量利用和营养物质贮存,昆虫对栎实的寄生和取食给栎树的种子库及苗库带来压力,直接影响到栎林的种群更新,此外,昆虫对栎实的寄生也会影响脊椎动物搬运栎实时的选择取向,间接控制栎实扩散,进而影响栎树的种群更新。  相似文献   

18.
The spatial heterogeneity hypothesis has been invoked to explain the increase in species diversity from the poles to the tropics: the tropics may be more diverse because they contain more habitats and micro-habitats. In this paper, the spatial heterogeneity hypothesis prediction was tested by evaluating the variation in richness of two guilds of insect herbivores (gall-formers and free-feeders) associated with Baccharis dracunculifolia (Asteraceae) along a latitudinal variation in Brazil. The seventeen populations of B. dracunculifolia selected for insect herbivores sampling were within structurally similar habitats, along the N-S distributional limit of the host plant, near the Brazilian sea coast. Thirty shrubs were surveyed in each host plant population. A total of 8 201 galls and 864 free-feeding insect herbivores belonging to 28 families and 88 species were sampled. The majority of the insects found on B. dracunculifolia were restricted to a specific site rather than having a geographic distribution mirroring that of the host plant. Species richness of free-feeding insects was not affected by latitudinal variation corroborating the spatial heterogeneity hypothesis. Species richness of gall-forming insects was positively correlated with latitude, probably because galling insect associated with Baccharris genus radiated in Southern Brazil. Other diversity indices and evenness estimated for both gall-forming and free feeding insect herbivores, did not change with latitude, suggesting a general structure for different assemblages of herbivores associated with the host plant B. dracunculifolia. Thus it is probable that, insect fauna sample in each site resulted of large scale events, as speciation, migration and coevolution, while at local level, the population of these insects is regulated by ecological forces which operate in the system.  相似文献   

19.
长白山阔叶红松林昆虫多样性研究   总被引:4,自引:5,他引:4  
通过季节性观察,系统地研究了长白山阔叶红松林昆虫类群及其多样性.结果表明,长白山阔叶红松林已知的森林昆虫26目131科1162属1960种,其中森林害虫11目105科881种、重要森林害虫638种;森林昆虫群落中植食性昆虫类群总数所占比重最大,天敌昆虫群落中以捕食性类群总数所占比重最大.植食类群、寄生性类群和捕食类群全年的均匀度指数分别为0.884、0.830和0.806.各类群问季节变动系数的大小顺序为捕食类群>寄生性类群>植食类群.  相似文献   

20.
1. A tritrophic perspective is fundamental for understanding the drivers of insect–plant interactions. While host plant traits can directly affect insect herbivore performance by either inhibiting or altering the nutritional benefits of consumption, they can also have an indirect effect on herbivores by influencing rates of predation or parasitism. 2. Enhancing soil nutrients available to trees of the genus Eucalyptus consistently modifies plant traits, typically improving the nutritional quality of the foliage for insect herbivores. We hypothesised that resulting increases in volatile essential oils could have an indirect negative effect on eucalypt‐feeding herbivores by providing their natural enemies with stronger host/prey location cues. 3. Eucalyptus tereticornis Smith seedlings were grown under low‐ and high‐nutrient conditions and the consequences for the release of volatile cues from damaged plants were examined. The influence of 1,8‐cineole (the major volatile terpene in many Eucalyptus species) on rates of predation on model caterpillars in the field was then examined. 4. It was found that the emission of cineole increased significantly after damage (artificial or herbivore), but continued only when damage was sustained by herbivore feeding. Importantly, more cineole was emitted from high‐ than low‐nutrient seedlings given an equivalent amount of damage. In the field, predation was significantly greater on model caterpillars baited with cineole than on unbaited models. 5. These findings are consistent with the hypothesis that any performance benefits insect herbivores derive from feeding on high‐nutrient eucalypt foliage could be at least partially offset by an increased risk of predation or parasitism via increased emission of attractive volatiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号