首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurements of atmospheric O2 and CO2 concentrations serve as a widely used means to partition global land and ocean carbon sinks. Interpretation of these measurements has assumed that the terrestrial biosphere contributes to changing O2 levels by either expanding or contracting in size, and thus serving as either a carbon sink or source (and conversely as either an oxygen source or sink). Here, we show how changes in atmospheric O2 can also occur if carbon within the terrestrial biosphere becomes more reduced or more oxidized, even with a constant carbon pool. At a global scale, we hypothesize that increasing levels of disturbance within many biomes has favored plant functional types with lower oxidative ratios and that this has caused carbon within the terrestrial biosphere to become increasingly more oxidized over a period of decades. Accounting for this mechanism in the global atmospheric O2 budget may require a small increase in the size of the land carbon sink. In a scenario based on the Carnegie–Ames–Stanford Approach model, a cumulative decrease in the oxidative ratio of net primary production (NPP) (moles of O2 produced per mole of CO2 fixed in NPP) by 0.01 over a period of 100 years would create an O2 disequilibrium of 0.0017 and require an increased land carbon sink of 0.1 Pg C yr−1 to balance global atmospheric O2 and CO2 budgets. At present, however, it is challenging to directly measure the oxidative ratio of terrestrial ecosystem exchange and even more difficult to detect a disequilibrium caused by a changing oxidative ratio of NPP. Information on plant and soil chemical composition complement gas exchange approaches for measuring the oxidative ratio, particularly for understanding how this quantity may respond to various global change processes over annual to decadal timescales.  相似文献   

2.
The distribution of assimilated carbon among the plant parts has a profound effect on plant growth, and at a larger scale, on terrestrial biogeochemistry. Although important progress has been made in modelling photosynthesis, less effort has been spent on understanding the carbon allocation, especially at large spatial scales. Whereas several individual-level models of plant growth include an allocation scheme, most global terrestrial models still assume constant allocation of net primary production (NPP) among plant parts, without any environmental coupling. Here, we use the CASA biosphere model as a platform for exploring a new global allocation scheme that estimates allocation of photosynthesis products among leaves, stems, and roots depending on resource availability. The philosophy underlying the model is that allocation patterns result from evolved responses that adjust carbon investments to facilitate capture of the most limiting resources, i.e. light, water, and mineral nitrogen. In addition, we allow allocation of NPP to vary in response to changes in atmospheric CO2. The relative magnitudes of changes in NPP and resource-use efficiency control the response of root:shoot allocation. For ambient CO2, the model produces realistic changes in above-ground allocation along productivity gradients. In comparison to the CASA standard estimate using fixed allocation ratios, the new allocation scheme tends to favour root allocation, leading to a 10% lower global biomass. Elevated CO2, which alters the balance between growth and available resources, generally leads to reduced water stress and consequently, decreased root:shoot ratio. The major exception is forest ecosystems, where increased nitrogen stress induces a larger root allocation.  相似文献   

3.
2000-2015年宁夏草地净初级生产力时空特征及其气候响应   总被引:3,自引:0,他引:3  
草地是宁夏陆地生态系统的重要组成部分,估算其净初级生产力(NPP)对宁夏草地可持续利用与管理至关重要。采用MODIS数据和CASA模型对2000-2015年间宁夏草地生态系统NPP进行了估算,通过一元线性回归趋势分析、Hurst指数等方法研究草地NPP的时空变化规律及未来演变趋势,并分析草地NPP与气象因子的相关性。结果表明:(1)基于CASA模型的宁夏草地NPP模拟精度高,其估算值与实测多年草地NPP均值具有良好的线性关系(R=0.93,P < 0.01),与MOD17产品的草地NPP空间分布基本一致。(2)近16 a宁夏草地年均NPP为148.28 g C m-2 a-1,且存在波动上升的趋势,其线性增长率为3.84 g C m-2 a-1P < 0.01)。(3)宁夏草地NPP整体处于上升趋势,草地NPP增长的草地面积达98%,且其增率自南向北递减;宁夏草地NPP的Hurst指数在0.27-0.81之间,均值为0.53,大部分草地的NPP变化趋势具有较强同向持续性。(4)在年时间尺度上,宁夏草地NPP主要受降水量的影响,与气温的相关性较弱;在月时间尺度上,生长季草地NPP与月总降水量的相关性高,且不存在时间滞后响应现象,而与月均温的响应则存在1个月的时间滞后性,宁夏大面积分布的干草原与荒漠草原NPP对气温响应滞后是导致这一现象发生的主要原因。  相似文献   

4.
 植被净初级生产力及其对气候变化的响应研究是全球变化的核心内容之一。在利用内蒙古典型草原连续13年的地上生物量资料对基于遥感信息的生态系统碳循环过程CASA(Carnegie-Ames-Stanford Approach)模型验证的基础上, 分析了内蒙古典型草原1982~2002年植被净初级生产力(Net primary productivity, NPP)的时间变异及其影响因子。结果表明: 1) 1982~2002年21年间内蒙古典型草原的平均年NPP为290.23 g C·m–2·a–1, 变化范围为 145.80~502.84 g C·m–2·a–1; 2)内蒙古典型草原NPP呈增加趋势, 但没有达到显著性水平, 其中1982~1999年的18年间NPP呈现非常显著的增加趋势(p<0.01), NPP增加的直接原因是由于生长旺季生长本身增强所致; 3)内蒙古典型草原NPP与年降水量呈极显著的相关关系, 年降水量显著影响NPP的变异, 而NPP与年均温无显著相关关系。  相似文献   

5.
鲁韦坤  李蒙  程晋昕  窦小东 《生态学报》2024,44(4):1441-1455
净初级生产力(NPP)和净生态系统生产力(NEP)是估算陆地生态系统碳源/汇的重要指标,云南为我国碳汇的主要区域之一,开展云南NPP和NEP时空变化特征分析对科学评估陆地生态系统碳源/汇功能,以及开展碳排放交易具有重要意义。基于BEPS模型1981—2019年NPP和NEP产品,采用线性趋势分析、文献对比等方法,研究云南NPP和NEP时空变化特征及其在云南的适用性。结果表明:(1)1981—1999年云南NPP和NEP呈水平波动,2000年后云南NPP和NEP呈明显波动上升趋势,2000—2019年云南NPP高值区域主要分布在西部和南部,而NEP高值区则主要分布在东部和西部局部地区;(2)2000—2019年云南NPP和NEP除西北部部分地区为下降趋势外,其余大部地区为上升趋势;(3)云南NPP峰值出现在7、8月,谷值出现在2月,NEP峰值出现月份与NPP基本相同,但谷值出现月份较NPP滞后1—3个月,6—10月是云南碳汇的主要月份;(4)BEPS模型估算的NPP与目前广泛应用的CASA和遥感模型结果较为一致,时空变化特征与云南生态恢复措施和气候特征吻合,其估算的NEP与陆地生物圈模型...  相似文献   

6.
中国东北样带植被净初级生产力时空动态遥感模拟   总被引:9,自引:0,他引:9       下载免费PDF全文
 中国东北样带(Northeast China Transect, NECT)是中纬度半干旱区的国际地圈-生物圈计划(IGBP)陆地样带之一, 是全球变化研究的 重要手段与热点。该研究应用生态系统碳循环过程CASA(Carnegie-Ames-Stanford Approach)模型分析了NECT从1982~1999年植被净初级生产力 (Net primary productivity, NPP)的时空变异及其影响因子。结果表明, 1) 1982~1999年NECT植被NPP为58 ~ 811 g C·m–2·a–1, 平均为426 g C·m–2·a–1, 大体上呈现由东向西逐渐递减的趋势; 2)研究时段内NECT的总NPP变异范围是0.218 ~ 0.325 Pg C, 平均为0.270 Pg C (1 Pg = 1015 g); 3) NECT的总NPP在过去18年内整体呈显著性增加趋势, 其中从1982~1990年样带NPP呈显著性增加趋势, 而后期1991~1999样带NPP没 有显著性变化趋势; 4)沿NECT不同植被类型对气候变化的响应特征是不同的, 在研究时段内, 农田、典型草原和草甸草原表现出最大的NPP增加 量, 而典型草原、荒漠草原对气候变化表现出高的敏感性; 5) NECT植被NPP的空间分布格局是由年降水量的分布格局所决定, 而NPP的时间变异 则由年降水量、年太阳总辐射的变化所影响驱动。  相似文献   

7.
Remote sensing of net primary production (NPP) is a critical tool for assessing spatial and temporal patterns of carbon exchange between the atmosphere and biosphere. However, satellite estimates suffer from a lack of large‐scale field data needed for validation, as well as the need to parameterize plant light‐use efficiencies (LUEs). In this study, we estimated cropland NPP with the Carnegie‐Ames‐Stanford‐Approach (CASA), a biogeochemical model driven by satellite observations, and then compared these results with field estimates based on harvest data from United States Department of Agriculture National Agriculture Statistics Service (NASS) county statistics. Observed interannual variations in NPP over a 17‐year period were well modelled by CASA, with exceptions mainly due to occasional difficulties in estimating NPP from harvest yields. The role of environmental stressors in agriculture was investigated by running CASA with and without temperature and moisture down‐regulators, which are used in the model to simulate climate impacts on plant LUE. In most cases, correlations with NASS data were highest with modelled stresses, while the opposite was true for irrigated and temperature resistant crops. Analysis of the spatial variability in computed LUE revealed significantly higher values for corn than for other crops, suggesting a simple parameterization of LUE for future studies based on the fraction of area with corn. Absolute values of LUE were much lower than those reported in field trials, due to uncommonly high yields in most field trials, as well as overestimates of absorbed radiation in CASA attributed to bias from temporal compositing of satellite data. Total NPP for US croplands, excluding Alaska and Hawaii, was estimated as 0.62 Pg C year?1, representing ~20% of total US NPP, and exhibited a positive trend of 3.7 Tg C year?2. These results have several implications for large‐scale carbon cycle research that are discussed, and are especially relevant for studies of the role of agriculture in the global carbon balance.  相似文献   

8.
Evaluating the role of terrestrial ecosystems in the global carbon cycle requires a detailed understanding of carbon exchange between vegetation, soil, and the atmosphere. Global climatic change may modify the net carbon balance of terrestrial ecosystems, causing feedbacks on atmospheric CO2 and climate. We describe a model for investigating terrestrial carbon exchange and its response to climatic variation based on the processes of plant photosynthesis, carbon allocation, litter production, and soil organic carbon decomposition. The model is used to produce geographical patterns of net primary production (NPP), carbon stocks in vegetation and soils, and the seasonal variations in net ecosystem production (NEP) under both contemporary and future climates. For contemporary climate, the estimated global NPP is 57.0 Gt C y–1, carbon stocks in vegetation and soils are 640 Gt C and 1358 Gt C, respectively, and NEP varies from –0.5 Gt C in October to 1.6 Gt C in July. For a doubled atmospheric CO2 concentration and the corresponding climate, we predict that global NPP will rise to 69.6 Gt C y–1, carbon stocks in vegetation and soils will increase by, respectively, 133 Gt C and 160 Gt C, and the seasonal amplitude of NEP will increase by 76%. A doubling of atmospheric CO2 without climate change may enhance NPP by 25% and result in a substantial increase in carbon stocks in vegetation and soils. Climate change without CO2 elevation will reduce the global NPP and soil carbon stocks, but leads to an increase in vegetation carbon because of a forest extension and NPP enhancement in the north. By combining the effects of CO2 doubling, climate change, and the consequent redistribution of vegetation, we predict a strong enhancement in NPP and carbon stocks of terrestrial ecosystems. This study simulates the possible variation in the carbon exchange at equilibrium state. We anticipate to investigate the dynamic responses in the carbon exchange to atmospheric CO2 elevation and climate change in the past and future.  相似文献   

9.
方浩玲  程先富  秦丽 《生态学报》2024,44(4):1601-1612
定量估算植被净初级生产力(NPP)对预测陆地碳循环趋势具有重要意义,目前广泛应用于NPP估算的CASA模型其精度仍有待提高。在已有CASA模型优化的基础上,考虑最大光能利用率(LUEmax)的动态变化来改进CASA模型,对改进前后的模拟结果进行比较,并利用改进后的模型估算2001—2020年安徽省植被NPP。结论如下:(1)改进的CASA模型可应用于研究区的植被NPP估算,NPP模拟值与实测值之间的相关性达到显著水平(R2=0.736,P<0.01)。(2)改进后模拟的安徽省植被NPP在空间表达上能够呈现更多细节,时间上较改进前在生长季NPP值更高,非生长季值更低,拉大了NPP的年内变化。(3)2001—2020年安徽省植被NPP整体呈波动上升趋势,多年平均值为547.61 gC m-2 a-1,年均增长量达2.18 gC m-2 a-1,2016—2020年间NPP增长最快。年内NPP具有明显的季节差异,表现为夏季>秋季>春季>冬...  相似文献   

10.
Interactions between the terrestrial nitrogen (N) and carbon (C) cycles shape the response of ecosystems to global change. However, the global distribution of nitrogen availability and its importance in global biogeochemistry and biogeochemical interactions with the climate system remain uncertain. Based on projections of a terrestrial biosphere model scaling ecological understanding of nitrogen–carbon cycle interactions to global scales, anthropogenic nitrogen additions since 1860 are estimated to have enriched the terrestrial biosphere by 1.3 Pg N, supporting the sequestration of 11.2 Pg C. Over the same time period, CO2 fertilization has increased terrestrial carbon storage by 134.0 Pg C, increasing the terrestrial nitrogen stock by 1.2 Pg N. In 2001–2010, terrestrial ecosystems sequestered an estimated total of 27 Tg N yr−1 (1.9 Pg C yr−1), of which 10 Tg N yr−1 (0.2 Pg C yr−1) are due to anthropogenic nitrogen deposition. Nitrogen availability already limits terrestrial carbon sequestration in the boreal and temperate zone, and will constrain future carbon sequestration in response to CO2 fertilization (regionally by up to 70% compared with an estimate without considering nitrogen–carbon interactions). This reduced terrestrial carbon uptake will probably dominate the role of the terrestrial nitrogen cycle in the climate system, as it accelerates the accumulation of anthropogenic CO2 in the atmosphere. However, increases of N2O emissions owing to anthropogenic nitrogen and climate change (at a rate of approx. 0.5 Tg N yr−1 per 1°C degree climate warming) will add an important long-term climate forcing.  相似文献   

11.
靳专  胥焘  黄应平  肖敏  张家璇  周爽爽  席颖  熊彪 《生态学报》2024,44(6):2464-2478
三峡库区蓄水后,其生态效应受到广泛关注。消落带植被固碳量作为衡量库区生态系统健康状态的重要指标,对库区碳循环与生态净化具有重要意义。针对消落带不同高程植被接受光照的时间有所差异,且受河流水位变化影响,传统的CASA模型在计算消落带植被固碳量时,存在对植物的光能利用率计算不够精确等问题。以三峡库区香溪河陡坡消落带为研究区域,提出了一种耦合RBFNN模型(Radial Basis Function Neural Network)与CASA模型(Carnegie-Ames-Stanford approach)的新方法(RBF-CASA)。基于RBFNN建立环境影响因子模型,借助高程数据及植被指数等特征计算适合消落带区域的环境影响因子。结合CASA模型中温度和水分胁迫因子,提高植被在像元尺度上的净初级生产力(Net Primary Productivity,NPP)的估算精度,并对反演结果进行验证。模型验证结果显示:RBF-CASA模型估算值与观测值的决定系数(Coefficient of determination, R2)为0.730(P<0.01, n=32)。对比原始CASA模型,平均绝对误差(Mean absolute error, MAE)降低10.991,均方根误差(Root mean square error, RMSE)降低了23.861,相对均方根误差(Relative root mean square error, RRMSE)降低5.10%,平均绝对百分误差(Mean absolute percentage error, MAPE)降低1.12%。使用提出的RBF-CASA模型在库区水位落干期(7-8月份)进行固碳量估算,结果表明:NPP月均值在66.234-134.144g C/m2之间,NPP随着高程的增加呈现起伏变化,其总量在150-155m之间达到峰值,均值在170m以上区域最高。在2021年9月植被NPP均值为35.883g C/m2,2022年9月植被NPP均值为25.964g C/m2,由于降雨量减少、长江水位下降,在2021-2022年间植被恢复情况较差。研究结果可为库区碳循环、生态净化及生态修复等决策提供科学依据。  相似文献   

12.
The interest in national terrestrial ecosystem carbon budgets has been increasing because the Kyoto Protocol has included some terrestrial carbon sinks in a legally binding framework for controlling greenhouse gases emissions. Accurate quantification of the terrestrial carbon sink must account the interannual variations associated with climate variability and change. This study used a process‐based biogeochemical model and a remote sensing‐based production efficiency model to estimate the variations in net primary production (NPP), soil heterotrophic respiration (HR), and net ecosystem production (NEP) caused by climate variability and atmospheric CO2 increases in China during the period 1981–2000. The results show that China's terrestrial NPP varied between 2.86 and 3.37 Gt C yr?1 with a growth rate of 0.32% year?1 and HR varied between 2.89 and 3.21 Gt C yr?1 with a growth rate of 0.40% year?1 in the period 1981–1998. Whereas the increases in HR were related mainly to warming, the increases in NPP were attributed to increases in precipitation and atmospheric CO2. Net ecosystem production (NEP) varied between ?0.32 and 0.25 Gt C yr?1 with a mean value of 0.07 Gt C yr?1, leading to carbon accumulation of 0.79 Gt in vegetation and 0.43 Gt in soils during the period. To the interannual variations in NEP changes in NPP contributed more than HR in arid northern China but less in moist southern China. NEP had no a statistically significant trend, but the mean annual NEP for the 1990s was lower than for the 1980s as the increases in NEP in southern China were offset by the decreases in northern China. These estimates indicate that China's terrestrial ecosystems were taking up carbon but the capacity was undermined by the ongoing climate change. The estimated NEP related to climate variation and atmospheric CO2 increases may account for from 40 to 80% to the total terrestrial carbon sink in China.  相似文献   

13.
南方丘陵山地带植被净第一性生产力时空动态特征   总被引:10,自引:7,他引:3  
王静  王克林  张明阳  章春华 《生态学报》2015,35(11):3722-3732
基于MODIS数据并结合气象资料和植被参数,利用修正过最大光能利用率的CASA(Carnegie-Ames-Stanford Approach)模型,对国家生态安全屏障区的"两屏三带"之一南方丘陵山地带2000—2010年的植被净第一性生产力(NPP)进行模拟,并对其时空分布格局进行了分析。研究结果表明:(1)研究区2000—2010年期间年NPP的变化范围为406.0—485.6 g C m-2a-1,年平均NPP为445.7 g C m-2a-1,高于全国平均水平;NPP年际上升趋势不显著(P=0.39),平均增加值为2.28 g C m-2a-1;(2)NPP空间分布特征与植被类型具有较好的一致性,单位面积NPP以混交林覆盖区最高(501.0 g C m-2a-1),草地覆盖区NPP最低(390.7 g C m-2a-1);(3)植被NPP的时空变化与气温、降雨和太阳辐射等自然因素的变化有直接关系,而社会、经济、政策等人为因素通过改变土地利用方式来间接影响。  相似文献   

14.
15.
The purpose of this study was to evaluate 10 process‐based terrestrial biosphere models that were used for the IPCC fifth Assessment Report. The simulated gross primary productivity (GPP) is compared with flux‐tower‐based estimates by Jung et al. [Journal of Geophysical Research 116 (2011) G00J07] (JU11). The net primary productivity (NPP) apparent sensitivity to climate variability and atmospheric CO2 trends is diagnosed from each model output, using statistical functions. The temperature sensitivity is compared against ecosystem field warming experiments results. The CO2 sensitivity of NPP is compared to the results from four Free‐Air CO2 Enrichment (FACE) experiments. The simulated global net biome productivity (NBP) is compared with the residual land sink (RLS) of the global carbon budget from Friedlingstein et al. [Nature Geoscience 3 (2010) 811] (FR10). We found that models produce a higher GPP (133 ± 15 Pg C yr?1) than JU11 (118 ± 6 Pg C yr?1). In response to rising atmospheric CO2 concentration, modeled NPP increases on average by 16% (5–20%) per 100 ppm, a slightly larger apparent sensitivity of NPP to CO2 than that measured at the FACE experiment locations (13% per 100 ppm). Global NBP differs markedly among individual models, although the mean value of 2.0 ± 0.8 Pg C yr?1 is remarkably close to the mean value of RLS (2.1 ± 1.2 Pg C yr?1). The interannual variability in modeled NBP is significantly correlated with that of RLS for the period 1980–2009. Both model‐to‐model and interannual variation in model GPP is larger than that in model NBP due to the strong coupling causing a positive correlation between ecosystem respiration and GPP in the model. The average linear regression slope of global NBP vs. temperature across the 10 models is ?3.0 ± 1.5 Pg C yr?1 °C?1, within the uncertainty of what derived from RLS (?3.9 ± 1.1 Pg C yr?1 °C?1). However, 9 of 10 models overestimate the regression slope of NBP vs. precipitation, compared with the slope of the observed RLS vs. precipitation. With most models lacking processes that control GPP and NBP in addition to CO2 and climate, the agreement between modeled and observation‐based GPP and NBP can be fortuitous. Carbon–nitrogen interactions (only separable in one model) significantly influence the simulated response of carbon cycle to temperature and atmospheric CO2 concentration, suggesting that nutrients limitations should be included in the next generation of terrestrial biosphere models.  相似文献   

16.
FLUXNET and modelling the global carbon cycle   总被引:3,自引:0,他引:3  
Measurements of the net CO2 flux between terrestrial ecosystems and the atmosphere using the eddy covariance technique have the potential to underpin our interpretation of regional CO2 source–sink patterns, CO2 flux responses to forcings, and predictions of the future terrestrial C balance. Information contained in FLUXNET eddy covariance data has multiple uses for the development and application of global carbon models, including evaluation/validation, calibration, process parameterization, and data assimilation. This paper reviews examples of these uses, compares global estimates of the dynamics of the global carbon cycle, and suggests ways of improving the utility of such data for global carbon modelling. Net ecosystem exchange of CO2 (NEE) predicted by different terrestrial biosphere models compares favourably with FLUXNET observations at diurnal and seasonal timescales. However, complete model validation, particularly over the full annual cycle, requires information on the balance between assimilation and decomposition processes, information not readily available for most FLUXNET sites. Site history, when known, can greatly help constrain the model‐data comparison. Flux measurements made over four vegetation types were used to calibrate the land‐surface scheme of the Goddard Institute for Space Studies global climate model, significantly improving simulated climate and demonstrating the utility of diurnal FLUXNET data for climate modelling. Land‐surface temperatures in many regions cool due to higher canopy conductances and latent heat fluxes, and the spatial distribution of CO2 uptake provides a significant additional constraint on the realism of simulated surface fluxes. FLUXNET data are used to calibrate a global production efficiency model (PEM). This model is forced by satellite‐measured absorbed radiation and suggests that global net primary production (NPP) increased 6.2% over 1982–1999. Good agreement is found between global trends in NPP estimated by the PEM and a dynamic global vegetation model (DGVM), and between the DGVM and estimates of global NEE derived from a global inversion of atmospheric CO2 measurements. Combining the PEM, DGVM, and inversion results suggests that CO2 fertilization is playing a major role in current increases in NPP, with lesser impacts from increasing N deposition and growing season length. Both the PEM and the inversion identify the Amazon basin as a key region for the current net terrestrial CO2 uptake (i.e. 33% of global NEE), as well as its interannual variability. The inversion's global NEE estimate of −1.2 Pg [C] yr−1 for 1982–1995 is compatible with the PEM‐ and DGVM‐predicted trends in NPP. There is, thus, a convergence in understanding derived from process‐based models, remote‐sensing‐based observations, and inversion of atmospheric data. Future advances in field measurement techniques, including eddy covariance (particularly concerning the problem of night‐time fluxes in dense canopies and of advection or flow distortion over complex terrain), will result in improved constraints on land‐atmosphere CO2 fluxes and the rigorous attribution of mechanisms to the current terrestrial net CO2 uptake and its spatial and temporal heterogeneity. Global ecosystem models play a fundamental role in linking information derived from FLUXNET measurements to atmospheric CO2 variability. A number of recommendations concerning FLUXNET data are made, including a request for more comprehensive site data (particularly historical information), more measurements in undisturbed ecosystems, and the systematic provision of error estimates. The greatest value of current FLUXNET data for global carbon cycle modelling is in evaluating process representations, rather than in providing an unbiased estimate of net CO2 exchange.  相似文献   

17.
Climate and biophysical regulation of terrestrial plant production and interannual responses to anomalous events were investigated using the NASA Ames model version of CASA (Carnegie–Ames–Stanford Approach) in a transient simulation mode. This ecosystem model has been calibrated for simulations driven by satellite vegetation index data from the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) over the mid-1980s. Relatively large net source fluxes of carbon were estimated from terrestrial vegetation about 6 months to 1 year following El Niño events of 1983 and 1987, whereas the years 1984 and 1988 showed a drop in net primary production (NPP) of 1–2 Pg (1015 g) C from their respective previous years. Zonal discrimination of model results implies that the northern hemisphere low latitudes could account for almost the entire 2 Pg C decrease in global terrestrial NPP predicted from 1983 to 1984. Model estimates further suggest that from 1985 to 1988, the northern middle-latitude zone (between 30° and 60°N) was the principal region driving progressive increases in NPP, mainly by an expanded growing season moving toward the zonal latitude extremes. Comparative regional analysis of model controls on NPP reveals that although Normalized Difference Vegetation Index “greenness” can alone account for 30%–90% of the variation in NPP interannual anomalies, temperature or radiation loading can have a fairly significant 1-year lag effect on annual NPP at middle- to high-latitude zones, whereas rainfall amount and temperature drying effects may carry over with at least a 2-year lag time to influence NPP in semiarid tropical zones.  相似文献   

18.
中国陆地植被净初级生产力遥感估算   总被引:106,自引:2,他引:106       下载免费PDF全文
该文在综合分析已有光能利用率模型的基础上,构建了一个净初级生产力(NPP)遥感估算模型,该模型体现了3方面的特色:1)将植被覆盖分类引入模型,并考虑植被覆盖分类精度对NPP估算的影响,由它们共同决定不同植被覆盖类型的归一化植被指数(NDVI)最大值;2)根据误差最小的原则,利用中国的NPP实测数据,模拟出各植被类型的最大光能利用率,使之更符合中国的实际情况;3)根据区域蒸散模型来模拟水分胁迫因子,与土壤水分子模型相比,这在一定程度上对有关参数实行了简化,使其实际的可操作性得到加强。模拟结果表明,1989~1993年中国陆地植被NPP平均值为3.12 Pg C (1 Pg=1015 g),NPP模拟值与观测值比较接近,690个实测点的平均相对误差为4.5%;进一步与其它模型模拟结果以及前人研究结果的比较表明,该文所构建的NPP遥感估算模型具有一定的可靠性,说明在区域及全球尺度上,利用地理信息系统技术将遥感数据和各种观测数据集成在一起,并对NPP模型进行参数校正,基本上可以实现全球范围不同生态系统NPP的动态监测。  相似文献   

19.
With representation of the global carbon cycle becoming increasingly complex in climate models, it is important to develop ways to quantitatively evaluate model performance against in situ and remote sensing observations. Here we present a systematic framework, the Carbon‐LAnd Model Intercomparison Project (C‐LAMP), for assessing terrestrial biogeochemistry models coupled to climate models using observations that span a wide range of temporal and spatial scales. As an example of the value of such comparisons, we used this framework to evaluate two biogeochemistry models that are integrated within the Community Climate System Model (CCSM) – Carnegie‐Ames‐Stanford Approach′ (CASA′) and carbon–nitrogen (CN). Both models underestimated the magnitude of net carbon uptake during the growing season in temperate and boreal forest ecosystems, based on comparison with atmospheric CO2 measurements and eddy covariance measurements of net ecosystem exchange. Comparison with MODerate Resolution Imaging Spectroradiometer (MODIS) measurements show that this low bias in model fluxes was caused, at least in part, by 1–3 month delays in the timing of maximum leaf area. In the tropics, the models overestimated carbon storage in woody biomass based on comparison with datasets from the Amazon. Reducing this model bias will probably weaken the sensitivity of terrestrial carbon fluxes to both atmospheric CO2 and climate. Global carbon sinks during the 1990s differed by a factor of two (2.4 Pg C yr?1 for CASA′ vs. 1.2 Pg C yr?1 for CN), with fluxes from both models compatible with the atmospheric budget given uncertainties in other terms. The models captured some of the timing of interannual global terrestrial carbon exchange during 1988–2004 based on comparison with atmospheric inversion results from TRANSCOM (r=0.66 for CASA′ and r=0.73 for CN). Adding (CASA′) or improving (CN) the representation of deforestation fires may further increase agreement with the atmospheric record. Information from C‐LAMP has enhanced model performance within CCSM and serves as a benchmark for future development. We propose that an open source, community‐wide platform for model‐data intercomparison is needed to speed model development and to strengthen ties between modeling and measurement communities. Important next steps include the design and analysis of land use change simulations (in both uncoupled and coupled modes), and the entrainment of additional ecological and earth system observations. Model results from C‐LAMP are publicly available on the Earth System Grid.  相似文献   

20.
Yang  Yuanhe  Shi  Yue  Sun  Wenjuan  Chang  Jinfeng  Zhu  Jianxiao  Chen  Leiyi  Wang  Xin  Guo  Yanpei  Zhang  Hongtu  Yu  Lingfei  Zhao  Shuqing  Xu  Kang  Zhu  Jiangling  Shen  Haihua  Wang  Yuanyuan  Peng  Yunfeng  Zhao  Xia  Wang  Xiangping  Hu  Huifeng  Chen  Shiping  Huang  Mei  Wen  Xuefa  Wang  Shaopeng  Zhu  Biao  Niu  Shuli  Tang  Zhiyao  Liu  Lingli  Fang  Jingyun 《中国科学:生命科学英文版》2022,65(5):861-895

Enhancing the terrestrial ecosystem carbon sink (referred to as terrestrial C sink) is an important way to slow down the continuous increase in atmospheric carbon dioxide (CO2) concentration and to achieve carbon neutrality target. To better understand the characteristics of terrestrial C sinks and their contribution to carbon neutrality, this review summarizes major progress in terrestrial C budget researches during the past decades, clarifies spatial patterns and drivers of terrestrial C sources and sinks in China and around the world, and examines the role of terrestrial C sinks in achieving carbon neutrality target. According to recent studies, the global terrestrial C sink has been increasing from a source of (?0.2±0.9) Pg C yr?1 (1 Pg=1015 g) in the 1960s to a sink of (1.9±1.1) Pg C yr?1 in the 2010s. By synthesizing the published data, we estimate terrestrial C sink of 0.20–0.25 Pg C yr?1 in China during the past decades, and predict it to be 0.15–0.52 Pg C yr?1 by 2060. The terrestrial C sinks are mainly located in the mid- and high latitudes of the Northern Hemisphere, while tropical regions act as a weak C sink or source. The C balance differs much among ecosystem types: forest is the major C sink; shrubland, wetland and farmland soil act as C sinks; and whether the grassland functions as C sink or source remains unclear. Desert might be a C sink, but the magnitude and the associated mechanisms are still controversial. Elevated atmospheric CO2 concentration, nitrogen deposition, climate change, and land cover change are the main drivers of terrestrial C sinks, while other factors such as fires and aerosols would also affect ecosystem C balance. The driving factors of terrestrial C sink differ among regions. Elevated CO2 concentration and climate change are major drivers of the C sinks in North America and Europe, while afforestation and ecological restoration are additionally important forcing factors of terrestrial C sinks in China. For future studies, we recommend the necessity for intensive and long term ecosystem C monitoring over broad geographic scale to improve terrestrial biosphere models for accurately evaluating terrestrial C budget and its dynamics under various climate change and policy scenarios.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号