首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In view of the importance of biological treatment, it is the purpose of this work to present an overview of attached-growth biological wastewater treatment, considering the active role the engineers have to play in this field. This paper brings together conventional and advanced problems in the field of aerobic attached-growth (biofilm) wastewater treatment. Such an overview of biological wastewater treatment also precedes comments on some important aspects concerning the microorganisms responsible for wastewater treatment as well as considerations on the key factors governing the kinetic of the biological growth and waste treatment, together with application of fundamentals and kinetics to the analysis of these biological processes. A survey of the development of the attached-growth process and some modifications are given. These include additional details on the bioreactor progress and applications. Finally, some aspects regarding process intensification and bioreactor improvement were included.  相似文献   

2.
Combining membrane technology with biological reactors for the treatment of municipal and industrial wastewaters has led to the development of three generic membrane processes within bioreactors: for separation and recycle of solids; for bubbleless aeration of the bioreactor; and for extraction of priority organic pollutants from hostile industrial wastewaters. Commercial aerobic and anaerobic membrane separation bioreactors already provide a small footprint alternative to conventional biological treatment methods, producing a high-quality effluent at high organic loading rates. Both the bubbleless aeration and extractive membrane bioreactors are in the development stages. The former uses gas-permeable membranes to improve the mass transfer of oxygen to the bioreactor by providing bubbleless oxygen. By using a silicone membrane process, extractive membrane bioreactors transfer organic pollutants from chemically hostile wastewaters to a nutrient medium for subsequent biodegradation. All three membrane bioreactor (MBR) processes are comparatively and critically reviewed. (c) 1996 John Wiley & Sons, Inc.  相似文献   

3.
The biological treatment of waste-waters containing 1,2-dichloroethane (DCE) in conventional bioreactors results in air-stripping of DCE. In the present work, a novel bioreactor system intended to overcome this problem has been developed for the treatment of a synthetically concocted DCE-containing waste-water (1000 mg DCE l–1). The operation of a conventional air-lift bioreactor at a waste-water flow rate of 0.24 l h–1 led to 33% of the DCE supplied to the reactor being lost to the exit gas stream. The use of the novel enclosed system, operated with a recycling O2 sparge instead of air, resulted in negligible air-stripping at the same waste-water flow rate. A control system was implemented to add O2 as required to maintain the pressure of the recycle gas stream, and a scrubber removed the CO2 produced. Over 99% of DCE supplied was biodegraded during operation of this system, and virtually all carbon entering the system was evolved as CO2. Correspondence to: A. G. Livingston Correspondence to: A. G. Livingston  相似文献   

4.
Abstract

This study critically evaluates the biological processes and techniques applied to remove nitrogen and phosphorus from the anaerobic supernatant produced from the treatment of the organic fraction of municipal solid waste (OFMSW) and from its co-digestion with other biodegradable organic waste (BOW) streams. The wide application of anaerobic digestion for the treatment of several organic waste streams results in the production of high quantities of anaerobic effluents. Such effluents are characterized by high nutrient content, because organic and particulate nitrogen and phosphorus are hydrolyzed in the anaerobic digestion process. Consequently, adequate post-treatment is required in order to comply with the existing land application and discharge legislation in the European Union countries. This may include physicochemical and biological processes, with the latter being more advantageous due to their lower cost. Nitrogen removal is accomplished through the conventional nitrification/denitrification, nitritation/denitritation and the complete autotrophic nitrogen removal process; the latter is accomplished by nitritation coupled with the anoxic ammonium oxidation process. As anaerobic digestion effluents are characterized by low COD/TKN ratio, conventional denitrification/nitrification is not an attractive option; short-cut nitrogen removal processes are more promising. Both suspended and attached growth processes have been employed to treat the anaerobic supernatant. Specifically, the sequencing batch reactor, the membrane bioreactor, the conventional activated sludge and the moving bed biofilm reactor processes have been investigated. Physicochemical phosphorus removal via struvite precipitation has been extensively examined. Enhanced biological phosphorus removal from the anaerobic supernatant can take place through the sequencing anaerobic/aerobic process. More recently, denitrifying phosphorus removal via nitrite or nitrate has been explored. The removal of phosphorus from the anaerobic supernatant of OFMSW is an interesting research topic that has not yet been explored. At the moment, standardization in the design of facilities that treat anaerobic supernatant produced from the treatment of OFMSW is still under development. To move toward this direction, it is first necessary to assess the performance of alternative treatment options. It study concentrates existing data regarding the characteristics of the anaerobic supernatant produced from the treatment of OFMSW and from their co-digestion with other BOW. This provides data documenting the effect of the anaerobic digestion operating conditions on the supernatant quality and critically evaluates alternative options for the post-treatment of the liquid fraction produced from the anaerobic digestion process.  相似文献   

5.
Activated sludge is a widely used aerobic biological waste-water treatment process. A rational approach to least cost design of an integrated system is described which includes the following processes: activated sludge reactor, final settling tanks, gravity thickening, and aerobic sludge digestion. Both capital and operation and maintenance costs are considered. Biological reactor design is based on microbial kinetic concepts and continuous culture of microorganisms theory. Biological solids retention time (θc) is utilized as the primary independent design variable to which system performance is related, e.g., effluent quality, ammonia oxidation, and excess sludge production. Liquid-biomass separation is based on the batch flux technique, a rational approach to design of gravity separators (final settling tanks). Trade-offs among reactor volume, clarifier size, recycle pumping capacity, thickener capacity, digester volume, air requirements, and sludge production are discussed. The optimum design is taken as the combination of these parameters within the acceptable design domain, determined by effluent quality criteria, that results in minimum cost. While the method described is general, design of a given treatment system depends on availability, from lab or pilot studies, of system specific numerical values for biological growth coefficients and biomass setting characteristics. A design example illustrates the approach.  相似文献   

6.
Monolith reactors combine good mass transfer characteristics with low-pressure drop, the principle factors affecting the cost effectiveness of industrial processes. Recently, these specific features of the monolith reactors have drawn the attention toward the application of the monolith reactor in multiphase reaction systems. In this study, we explore the potential application of monolith reactors as bioreactor requiring gas-liquid mass transfer for substrate supply. It is demonstrated on theoretical grounds that the monolith reactor is a competitive alternative to conventional gas-liquid bioreactors such as stirred tanks, packed beds, and airlift bioreactors because it allows for a significant reduction of the energy dissipation that is normally required for gas-liquid contacting. A potential problem of monolith reactors for biological processes is clogging due to biofilm formation. This paper presents experimental results of a study into the formation and possible removal of biofilms during operation of a monolith reactor as suspended cells bioreactor. The results indicate that biofilm formation may be minimized and postponed by a proper choice of operating conditions. Periodic biofilm removal could straightforwardly be achieved by rinsing with water at moderate pressures and allows for stable operation for prolonged periods of time.  相似文献   

7.
Bioreactors are engineered systems capable of supporting a biologically active situation for conducting aerobic or anaerobic biochemical processes. Stability, operational ease, improved nutrient uptake capacity, time- and cost-effectiveness, and large quantities of biomass production, make bioreactors suitable alternatives to conventional plant tissue and cell culture (PTCC) methods. Bioreactors are employed in a wide range of plant research, and have evolved over time. Such technological progress, has led to remarkable achievements in the field of PTCC. Since the classification of bioreactors has been extensively reviewed in numerous reviews, the current article avoids repeating the same material. Alternatively, it aims to highlight the principal advances in the bioreactor hardware s used in PTCC rather than classical categorization. Furthermore, our review summarizes the most significant steps as well as current state-of-the-art of PTCC carried out in various types of bioreactor.  相似文献   

8.

Background  

Olive mill wastewater (OMW) is the aqueous effluent of olive oil producing processes. Given its high COD and content of phenols, it has to be decontaminated before being discharged. Anaerobic digestion is one of the most promising treatment process for such an effluent, as it combines high decontamination efficiency with methane production. The large scale anaerobic digestion of OMWs is normally conducted in dispersed-growth reactors, where however are generally achieved unsatisfactory COD removal and methane production yields. The possibility of intensifying the performance of the process using a packed bed biofilm reactor, as anaerobic treatment alternative, was demonstrated. Even in this case, however, a post-treatment step is required to further reduce the COD. In this work, a biological post-treatment, consisting of an aerobic biological "Manville" silica bead-packed bed aerobic reactor, was developed, tested for its ability to complete COD removal from the anaerobic digestion effluents, and characterized biologically through molecular tools.  相似文献   

9.
Anaerobic biological wastewater treatment has numerous advantages over conventional aerobic processes; anaerobic biotechnologies, however, still have a reputation for low-quality effluents and operational instabilities. In this study, anaerobic bioreactors were augmented with an oxygen-transferring membrane to improve treatment performance. Two anaerobic bioreactors were fed a synthetic high-strength wastewater (chemical oxygen demand, or COD, of 11,000 mg l(-1)) and concurrently operated until biomass concentrations and effluent quality stabilized. Membrane aeration was then initiated in one of these bioreactors, leading to substantially improved COD removal efficiency (> 95%) compared to the unaerated control bioreactor (approximately 65%). The membrane-augmented anaerobic bioreactor required substantially less base addition to maintain circumneutral pH and exhibited 75% lower volatile fatty acid concentrations compared to the unaerated control bioreactor. The membrane-aerated bioreactor, however, failed to improve nitrogenous removal efficiency and produced 80% less biogas than the control bioreactor. A third membrane-augmented anaerobic bioreactor was operated to investigate the impact of start-up procedure on nitrogenous pollutant removal. In this bioreactor, excellent COD (>90%) and nitrogenous (>95%) pollutant removal efficiencies were observed at an intermediate COD concentration (5,500 mg l(-1)). Once the organic content of the influent wastewater was increased to full strength (COD = 11,000 mg l(-1)), however, nitrogenous pollutant removal stopped. This research demonstrates that partial aeration of anaerobic bioreactors using oxygen-transferring membranes is a novel approach to improve treatment performance. Additional research, however, is needed to optimize membrane surface area versus the organic loading rate to achieve the desired effluent quality.  相似文献   

10.
Inorganic matrices were developed for fixed-film bioreactors affording protection to microorganisms and preventing loss of bioreactor productivity during system upsets. These biocarriers, designated Type-Z, contain ion-exchange properties and possess high porosity and a high level of surface area, which provide a suitable medium for microbial colonization. Viable cell populations of 109/g were attainable, and scanning electron micrographs revealed extensive external colonization and moderate internal colonization with aerobic microorganisms. Laboratory-scale bioreactors were established with various biocarriers and colonized with Pseudomonas aeruginosa, and comparative studies were performed. The data indicated that bioreactors containing the Type-Z biocarriers were more proficient at removing phenol (1,000 ppm) than bioreactors established with Flexirings (plastic) and Celite R635 (diatomaceous earth) biocarriers. More significantly, these biocarriers were shown to moderate system upsets that affect operation of full-scale biotreatment processes. For example, subjecting the Type-Z bioreactor to an influent phenol feed at pH 2 for periods of 24 h did not decrease the effluent pH or reactor performance. In contrast, bioreactors containing either Celite or Flexirings demonstrated an effluent pH drop to ~2.5 and a reduction in reactor performance by 75 to 82%. The Celite reactor recovered after 5 days, whereas the bioreactors containing Flexirings did not recover. Similar advantages were noted during either nutrient or oxygen deprivation experiments as well as alkali and organic system shocks. The available data suggest that Type-Z biocarriers represent an immobilization medium that provides an amenable environment for microbial growth and has the potential for improving the reliability of fixed-film biotreatment processes.  相似文献   

11.
Full-scale applications of autotrophic nitrogen removal technologies for the treatment of digested sludge liquor have proliferated during the last decade. Among these technologies, the aerobic/anoxic deammonification process (DEMON) is one of the major applied processes. This technology achieves nitrogen removal from wastewater through anammox metabolism inside a single bioreactor due to alternating cycles of aeration. To date, microbial community composition of full-scale DEMON bioreactors have never been reported. In this study, bacterial community structure of a full-scale DEMON bioreactor located at the Apeldoorn wastewater treatment plant was analyzed using pyrosequencing. This technique provided a higher-resolution study of the bacterial assemblage of the system compared to other techniques used in lab-scale DEMON bioreactors. Results showed that the DEMON bioreactor was a complex ecosystem where ammonium oxidizing bacteria, anammox bacteria and many other bacterial phylotypes coexist. The potential ecological role of all phylotypes found was discussed. Thus, metagenomic analysis through pyrosequencing offered new perspectives over the functioning of the DEMON bioreactor by exhaustive identification of microorganisms, which play a key role in the performance of bioreactors. In this way, pyrosequencing has been proven as a helpful tool for the in-depth investigation of the functioning of bioreactors at microbiological scale.  相似文献   

12.
Aerobic granulation may play an important role in the field of wastewater treatment due to the advantages of aerobic granules compared to the conventional sludge flocs, such as denser structure, better settleability and ensured solid-effluent separation, higher biomass concentration, and greater ability to withstand shock loadings, which is promising for a full-scale implementation. As an aid for this implementation, mathematical modeling would be an invaluable tool. In this paper, the existing mathematical models available in literature concerning aerobic granule systems are reviewed, including the modeling of the dynamic facets of the aerobic granulation process, the mass transfer and detachment in aerobic granules, the granule-based sequencing batch reactor, the fate of microbial products in granules, and the multi-scale modeling of aerobic granular sludge. An overview of the parameters used in the aerobic granular modeling approaches is also presented. Our growing knowledge on mathematical modeling of aerobic granule might facilitate the engineering and optimization of aerobic granular sludge technology as one of the most promising techniques in the biological wastewater treatment.  相似文献   

13.
A membrane bioreactor has been used to treat an industrially produced waste-water containing aniline, 4-chloroaniline, 2,3-dichloroaniline and 3,4-dichloroaniline. Conventional direct biological treatment of such effluents cannot be implemented without some form of pretreatment or dilution because of the hostile inorganic composition of the waste-water. In order to overcome this problem a membrane separation step selectively removes the organics from the waste-water and subsequent biodegradation takes place in the biological growth compartment of the reactor system. At a waste-water flow rate of 69 ml h–1 (corresponding to a contact time of approximately 1.5 h) over 99% of the organic compounds quoted above were removed and biodegraded. Correspondence to: A. G. Livingston  相似文献   

14.
Biocatalytic membrane reactors have been widely used in different industries including food, fine chemicals, biological, biomedical, pharmaceuticals, environmental treatment and so on. This article gives an overview of the different immobilized enzymatic processes and their advantages over the conventional chemical catalysts. The application of a membrane bioreactor (MBR) reduces the energy consumption, and system size, in line with process intensification. The performances of MBR are considerably influenced by substrate concentration, immobilized matrix material, types of immobilization and the type of reactor. Advantages of a membrane associated bioreactor over a free-enzyme biochemical reaction, and a packed bed reactor are, large surface area of immobilization matrix, reuse of enzymes, better product recovery along with heterogeneous reactions, and continuous operation of the reactor. The present research work highlights immobilization techniques, reactor setup, enzyme stability under immobilized conditions, the hydrodynamics of MBR, and its application, particularly, in the field of sugar, starch, drinks, milk, pharmaceutical industries and energy generation.  相似文献   

15.
Understanding the bioreactor   总被引:1,自引:0,他引:1  
Analysis of bioreactors is central for successful design and operation of biotechnical processes. The bioreactor should provide optimum conditions, with respect to temperature, pH and substrate condition, for example, besides its basic function of containment. The ability to control the substrate concentration is an important function of the bioreactor. The substrate concentration can be subject to spatial variation – advertently or inadvertently – and may also change with time in batch or fed-batch operation. The cellular metabolism will depend on local concentrations in the reactor, as well as on the physiological status of the cell. In order to understand the bioreactor operation, cellular metabolism must be considered together with the flow profile and the mass transfer characteristics of the bioreactor. Some fundamental aspects of bioreactor operation for yeast and bacterial cultivations are discussed in this short review.  相似文献   

16.
Degradation of household biowaste in reactors.   总被引:5,自引:0,他引:5  
Household derived biowaste was degraded by biological methods. The system involves the combined method of low-solids (up to 10% w/v of total solids (TS)) anaerobic digestion and aerobic degradation for the recovery of energy (biogas) and the production of fine humus-like material which can be used as a soil amender or a substrate for further thermal treatment (pyrolysis, gasification). The performance of batch and continuous processes carried out in bioreactors (stirred tank reactor, air-lift) of working volume 6 and 18 dm(3), at different temperatures (25-42 degrees C) was monitored by reduction of TS, volatile solids, chemical oxygen demand, total organic carbon, C/N in time. The application of continuous process with recirculation (33%) caused that for residence time of 8-16 h the obtained degree of organic load reduction was similar to that obtained after 72-96 h of the batch process. The experimental data of batch aerobic degradation was also subjected to kinetic analysis. The sequence of the two processes: aerobic and anaerobic or anaerobic and aerobic showed that the degree of organic load reduction was similar in both cases, while the amount of produced biogas was four times higher when the first stage was anaerobic. The final product after dewatering was subjected to pyrolysis and gasification. The gases obtained were characterised by a high heat of combustion of about 11-15 MJ Nm(-3).  相似文献   

17.
In recent years, various technologies have been developed for the removal of nitrogen from wastewater that is rich in nitrogen but poor in organic carbon, such as the effluents from anaerobic digesters and from certain industries. These technologies have resulted in several patents. The core of these technologies is some of the processes and patents described in this paper: Aerobic denitrification, Sharon, Anammox, OLAND, CANON, NOx process, DEMON. More specifically, one of the first innovative options described for removing nitrogen include partial nitrification under aerobic conditions (partial Sharon process) followed by autotrophic anaerobic oxidation (Anammox process). The partial Sharon-Anammox process can be performed under alternating oxic and anoxic conditions in the same bioreactor or in two steps in two separate bioreactors. This overview focuses on the technical and biological aspects of these new types of treatment system, and compares them to other technologies. Given the fact that nitrification is a sensitive process, special attention is paid to conditions such as temperature, dissolved oxygen, hydraulic retention time, free ammonia, nitrous acid concentration, and pH. A discussion of the pros and cons of such treatment systems is also included since autotrophic nitrogen removal has advantages as well as drawbacks. The paper concludes with a discussion of future research that could improve these systems by enhancing performance and reducing costs.  相似文献   

18.
This study demonstrates the applicability of pressurized stirred tank bioreactors for oxygen transfer enhancement in aerobic cultivation processes. The specific power input and the reactor pressure was employed as process variable. As model organism Escherichia coli, Arxula adeninivorans, Saccharomyces cerevisiae and Corynebacterium glutamicum were cultivated to high cell densities. By applying specific power inputs of approx. 48kWm(-3) the oxygen transfer rate of a E. coli culture in the non-pressurized stirred tank bioreactor was lifted up to values of 0.51moll(-1)h(-1). When a reactor pressure up to 10bar was applied, the oxygen transfer rate of a pressurized stirred tank bioreactor was lifted up to values of 0.89moll(-1)h(-1). The non-pressurized stirred tank bioreactor was able to support non-oxygen limited growth of cell densities of more than 40gl(-1) cell dry weight (CDW) of E. coli, whereas the pressurized stirred tank bioreactor was able to support non-oxygen limited growth of cell densities up to 225gl(-1) CDW of A. adeninivorans, 89gl(-1) CDW of S. cerevisiae, 226gl(-1) CDW of C. glutamicum and 110gl(-1) CDW of E. coli. Compared to literature data, some of these cell densities are the highest values ever achieved in high cell density cultivation of microorganisms in stirred tank bioreactors. By comparing the specific power inputs as well as the k(L)a values of both systems, it is demonstrated that only the pressure is a scaleable tool for oxygen transfer enhancement in industrial stirred tank bioreactors. Furthermore, it was shown that increased carbon dioxide partial pressures did not remarkably inhibit the growth of the investigated model organisms.  相似文献   

19.
Decreasing the timeframe for cell culture process development has been a key goal toward accelerating biopharmaceutical development. Advanced Microscale Bioreactors (ambr?) is an automated micro‐bioreactor system with miniature single‐use bioreactors with a 10–15 mL working volume controlled by an automated workstation. This system was compared to conventional bioreactor systems in terms of its performance for the production of a monoclonal antibody in a recombinant Chinese Hamster Ovary cell line. The miniaturized bioreactor system was found to produce cell culture profiles that matched across scales to 3 L, 15 L, and 200 L stirred tank bioreactors. The processes used in this article involve complex feed formulations, perturbations, and strict process control within the design space, which are in‐line with processes used for commercial scale manufacturing of biopharmaceuticals. Changes to important process parameters in ambr? resulted in predictable cell growth, viability and titer changes, which were in good agreement to data from the conventional larger scale bioreactors. ambr? was found to successfully reproduce variations in temperature, dissolved oxygen (DO), and pH conditions similar to the larger bioreactor systems. Additionally, the miniature bioreactors were found to react well to perturbations in pH and DO through adjustments to the Proportional and Integral control loop. The data presented here demonstrates the utility of the ambr? system as a high throughput system for cell culture process development. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:718–727, 2014  相似文献   

20.
A specially designed electronic nose was coupled to an air-lift bioreactor in order to perform on-line monitoring of released vapors. The sensor array was placed at the top of the bioreactor sensing the headspace in equilibrium with the evolving liquor at any time without the need of aspiration and pumping of gases into a separated sensor chamber. The device was applied to follow the off-gas of a bioreactor with Acidithiobacillus thiooxidans grown on beds of elemental sulfur under aerobic conditions. Evolution was monitored by acid titration, pH and optical density measurements. The electronic nose was capable to differentiate each day of reactor evolution since inoculation within periods marked off culture medium replacements using multivariate data analysis. Excellent discrimination was obtained indicating the potentiality for on-line monitoring in non-perturbed bioreactors. The prospects for electronic nose/bioreactor merging are valuable for whatever the bacterial strain or consortium used in terms of scent markers to monitor biochemical processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号