首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT.
  • 1 Pararge aegeria (L.) is a very unusual butterfly of Britain, having a long period of adult activity, from April to October, without discrete flight periods. In central Britain it overwinters in two stages: pupae and third instar larvae, both being the progeny of late summer adults. Other larval stages die at the onset of cold winter weather. The overwintering stages give rise to the first adult generation in spring, split into two parts.
  • 2 Different temperature regimes affect development rates in larvae and pupae differently. Late larval development is more rapid than that of pupae at low temperatures, thus in cool spring weather the overlap of the two parts of the first generation is greater than in warm spring weather.
  • 3 Adults emerge continuously throughout the summer because larval development rates are variable. When summer is warm there is a partial third generation but when cool only two.
  • 4 The timing of the end of the flight period is consistent with the hypothesis that both temperature and photoperiod are important in determining whether individuals enter diapause or develop directly. In warm summers larvae develop beyond a sensitive stage before critical daylength is reached and develop directly, but in cool summers individuals enter diapause because they are at the sensitive stage when critical daylength is reached.
  • 5 It is suggested that variable development rates can facilitate parasite escape in autumn and increase the probability of adult success when weather is unpredictable, and this strategy is maintained because these benefits are greater than the cost of winter mortality of larvae.
  相似文献   

2.
The development of the Oriental latrine fly, Chrysomya megacephala (Fabricius), and hairy maggot blowfly, C. rufifacies (Macquart) (Diptera: Calliphoridae), was studied at four different temperatures (22°C, 25°C, 29°C and 31°C) in order to draw correlations between larval age, body length and body dry weight. The mean larval body length increased steadily from a minimum of 1.4 mm for C. megacephala and 1.8 mm for C. rufifacies to a maximum of 17.4 mm for C. megacephala and 15.9 mm for C. rufifacies at different temperatures. Similarly, the mean dry weight increased steadily from a minimum of 0.0007 g for C. megacephala (second instar) and 0.0008 g for C. rufifacies (second instar) to a maximum of 0.0290 g for C. megacephala and 0.0270 g for C. rufifacies at different temperatures. Entomological evidence is often used to estimate the minimum postmortem interval (mPMI) and both of these species are important from a forensic point of view. Graphs of age of larvae vs. body length and age of larvae vs. dry body weight at different temperatures can be used to estimate the larval age of these two species.  相似文献   

3.
4.
Geographical variation in Drosophila melanogaster body size is a long-standing problem of life-history evolution. Adaptation to a cold climate invariably produces large individuals, whereas evolution in tropical regions result in small individuals. The proximate mechanism was suggested to involve thermal evolution of resource processing by the developing larvae. In this study an attempt is made to merge proximate explanations, featuring temperature sensitivity of larval resource processing, and ultimate approaches focusing on adult and pre-adult life-history traits. To address the issue of temperature dependent resource allocation to adult size vs. larval survival, feeding was stopped at several stages during the larval development. Under these conditions of food deprivation, two temperate and two tropical populations reared at high and low temperatures produced different adult body sizes coinciding with different probabilities to reach the adult stage. In all cases a phenotypic trade-off between larval survival and adult size was observed. However, the underlying pattern of larval resource allocation differed between the geographical populations. In the temperate populations larval age but not weight predicted survival. Temperate larvae did not invest accumulated resources in survival, instead they preserved larval biomass to benefit adult weight. In other words, larvae from temperate populations failed to re-allocate accumulated resources to facilitate their survival. A low percentage of the larvae survived to adulthood but produced relatively large flies. Conversely, in tropical populations larval weight but not age determined the probability to reach adulthood. Tropical larvae did not invest in adult size, but facilitated their own survival. Most larvae succeeded in pupating but then produced small adults. The underlying physiological mechanism seemed to be an evolved difference in the accessibility of glycogen reserves as a result of thermal adaptation. At low rearing temperatures and in the temperate populations, glycogen levels tended to correlate positively with adult size but negatively with pupation probability. The data presented here offer an explanation of geographical variation in body size by showing that thermal evolution of resource allocation, specifically the ability to access glycogen storage, is the proximate mechanism responsible for the life-history trade-off between larval survival and adult size.  相似文献   

5.
J. Van Buskirk 《Oecologia》1987,72(2):221-225
Summary Several features of dragonfly population biology suggest that population regulation occurs in the larval stage. This study was designed to determine if density-dependent interactions among larval odonates can affect survival, growth and emergence. First-instar larvae of the dragonfly Pachydiplax longipennis were raised in outdoor experimental ponds at initial densities of 38, 152, and 608 larvae · m-2, under two levels of food availability. Food availability was supplemented in half the pools by volumetric addition of zooplankton every other day. Pools in the low food treatment did not receive the zooplankton supplement.There was a strong negative effect of density on the mean growth rate of survivors, which included both emerging tenerals and individuals overwintering in the larval stage. A higher proportion emerged from low density than high density pools. Metamorphs from high density populations were smaller and emerged slightly later than those from low density, but the absolute number of metamorphs did not differ significantly among density treatments. Food supplementation significantly increased the proportion of overwintering larvae. There were no significant food-by-density interactions, indicating that food and density acted independently on larval population dynamics. Density-dependent mechanisms can clearly contribute to odonate population regulation, especially by controlling the number of larvae which emerge and the average age at reproduction. Population-level responses to density may be a result of interference among larvae.  相似文献   

6.
The data are obtained on development time at six constant temperatures (12, 14, 16, 18, 20, 22°C) and thermal requirements for preimaginal development in a ground beetle Amara communis from Arkhangelsk (64°34′N) and St. Petersburg (59°53′N). The larval and pupal development times were found to be significantly shorter in the Arkhangelsk than in the St. Petersburg population under all temperatures. As a result, total preimaginal development appeared to be shorter by 6.2–6.6% in the Arkhangelsk population. The regression lines of the larval, pupal and total (egg-to-adult) development rate on temperature for the Arkhangelsk population run above and steeper than the respective lines for the St. Petersburg population. Both populations share the similar values of the thermal thresholds (7.2–8.2°C). This explains faster preimaginal development in the northern population under all temperatures above the threshold. Thus, the slope of the regression lines increases, i.e., the sum of degree-days decreases, whereas the thermal threshold for development exhibited no distinctive changes from south to north in this species. Adults from Arkhangelsk reared in the experiments appeared heavier on the average in comparison with those from St. Petersburg, especially at 18–22°C. Temperature did not significantly affect adult weight, except the fact that the beetles were slightly heavier at 20 and 22°C. Consequently, the well-known “temperature-size rule” is violated in this species. Relative growth rate in larvae of A. communis increased considerably with temperature rise from 14 to 22°C. It was significantly higher in the beetles from Arkhangelsk at 18–22°C. There were no differences in larval growth rate between the two populations at 14 and 16°C.  相似文献   

7.
Beet armyworm, Spodoptera exigua (Hübner), is an economic pest of chickpea, Cicer arietinum L., in Mexico and the Indian subcontinent. Larvae feed on the vegetative and reproductive stages of chickpea and the development of plant resistance is a priority in the management of this pest. Forty‐two recombinant inbred lines (RILs) from a chickpea recombinant inbred line population (CRIL‐7) developed from a cross between FLIP 84‐92C (susceptible C. arietinum) and PI 599072 (resistant C. reticulatum Lad. accession) were rated resistant (nine lines with post‐trial larval weights 0.42–0.59 mg), moderately resistant/susceptible (25 lines, larval weights 0.61–0.99 mg) and susceptible (eight lines, larval weights 1.01–2.17 mg) to beet armyworm larvae in a general glasshouse screening. Resistance and susceptibility of entries (RILs in the CRIL‐7 population, parents, checks) was based on the average weight gain and fate of early‐stage larvae on pre‐flowering plants. In a growth chamber trial, early‐instar larval weight gain differed significantly (P < 0.0001) among entries (12 RILs, parents, checks), with mean weights from 0.80 mg (resistant RIL) to 4.03 mg (susceptible kabuli cultivar). There were no significant differences (P = 0.0836) in larval mortality among the entries in the growth chamber trial, although mortality rates were 28.2–61.9%. Flavonoid and isoflavonoid extractions and analyses did not clarify the role played by these phytochemicals in chickpea resistance to S. exigua. The requisite high levels of resistance to S. exigua and other pests for breeding resistant culivars may reside in the CRIL‐7 population.  相似文献   

8.
Environmental temperature is one of the critical factors affecting fish development. The aim of this study was to examine the impact of three different rearing temperatures (16, 19 and 22°C) throughout the endogenous feeding phase of the Siberian sturgeon Acipenser baerii. This was performed by assessing (a) larval survival and growth; (b) immunofluorescence localization and expression of genes involved in muscle development and growth – myog and Igf1; and (c) stress status through the expression of thermal stress genes – Hsp70, Hsp90α and Hsp90β – and whole body cortisol. Overall survival rate and larval weight did not differ significantly across temperatures. Larvae subjected to 22°C showed faster absorption of the yolk-sac than larvae subjected to 19 or 16°C. Both at schooling and at the end of the trial, larvae reared at 16°C showed significantly lower levels of cortisol than those reared at 19 or 22°C. IGF-1 immunopositivity was particularly evident in red muscle at schooling stage in all temperatures. The expression of all Hsps as well as the myog and Igf1 genes was statistically higher in larvae reared at 16°C but limited to the schooling stage. Cortisol levels were higher in larvae at 22°C, probably because of the higher metabolism demand rather than a stress response. The observed apparent incongruity between Hsps gene expression and cortisol levels could be due to the lack of a mature system. Further studies are necessary, especially regarding the exogenous feeding phase, in order to better understand if this species is actually sensitive to thermal stress.  相似文献   

9.
At a time when global climate changes are forcing life to adapt to a warming and salinity-changing environment, it is essential to understand how future changes in ocean chemistry will affect species. This study evaluates the combined effects of temperature and salinity on survival and development of Upogebia pusilla larvae. Combinations were made from three temperatures (18, 23, and 28°C) and three salinities (15, 25, and 35). Survival, larval duration and megalopa size were compared between treatments. U. pusilla larvae developed optimally in the highest salinity (35) and higher temperatures (23–28°C). Low salinities and temperatures did not support larval survival and development, with salinity being the main restricting factor for survival, while temperature affected mainly the duration of the larval stages. Larvae at higher temperatures (23–28°C) presented a higher development rate but no differences were found in megalopa size.  相似文献   

10.
The concentrations of Cd, Pb, Cu and Zn inChironomus gr.thummi were determined for 4th instar larvae from the polluted Dyle River, tributary of the Scheldt River (Belgium). Comparison was made between larvae with deformed and normal menta. Deformed larvae showed higher overall metal concentrations than normal larvae. Especially Pb and Cu had higher concentrations in deformed larvae (16.22 mg kg–1 dry weight and 39.66 respectively) than in normal larvae (12.80 mg kg–1 dry weight and 35.70 respectively). No significant differences were found in the concentrations of Cd and Zn (mean [Cd] = 0.81 mg kg–1 dry weight and mean [Zn] = 313.12 mg kg–1 dry weight). There was no difference between the two larval groups as far as total length, dry weight and developmental stage of the imaginal discs are concerned.  相似文献   

11.
The genetically based rover/sitter behavioral difference in Drosophila melanogasterlarval foraging is expressed throughout most of the larval instars when larvae forage on food patches of differing food quality. The amount of locomotor behavior decreases when third-instar larvae of both rover and sitter strains are starved just prior to the behavioral test. Such strain differences in locomotor behavior are maintained despite the starvation-induced decrease in locomotion found in both strains. Measurements of larval body length and width, taken at 24, 48, 72, and 96 h posthatching, reveal that rover and sitter larval growth rates do not differ. The finding that rover/sitter differences are expressed in a variety of environments and throughout the majority of the larval instars should aid in attempts to uncover selection pressures which may differentially affect the two morphs in environmentally heterogeneous natural populations.  相似文献   

12.
Duration of embryonic development, egg size, larval size at hatching, and starvation tolerance of the first zoeal stage were studied in an intertidal crab from the southwestern Atlantic, Neohelice (formerly Chasmagnathus) granulata. These reproductive traits were quantified comparing (a) two populations living in ecologically contrasting coastal habitats in Argentina, a brackish lagoon, Mar Chiquita, MC vs. an open marine habitat near San Antonio, Patagonia, SA, (b) beginning vs. end of the reproductive season, and (c) two temperatures during egg development (18 vs. 27°C). Eggs in an early stage of embryonic development were in both populations larger at the beginning than at the end of the season, and were consistently larger in the SA population. These size differences persisted through larval hatching, independent of the temperature during embryogenesis. At 18°C, eggs produced at the beginning of the season developed in both populations more rapidly than those from the end of the reproductive season, while the opposite trend was observed at 27°C. The stage duration of the zoea I was in both populations shorter at the beginning as compared to the end of the season. The nutritional flexibility of the zoea I stage was compared using as indices the point-of-reserve-saturation (PRS50) and the point-of-no-return (PNR50). The PRS50 was consistently lower in larvae from SA than in those from MC. In the MC population, this index was lower at the beginning than at the end of the season, while no significant seasonal difference was observed in larvae from SA. The PNR50 varied between temperatures of embryonic development and populations, showing also significant interactions between all three factors. The PRS50 was on average lower, and the PNR50 was higher, than values previously reported for N. granulata, suggesting a stronger nutritional flexibility in the larvae used in the present study. Our results indicate significant intraspecific variability among separate populations, seasonal variation, and carry-over effects of environmental conditions prevailing during the embryonic phase, all of which may affect the performance of the larval phase.  相似文献   

13.
Consequences of climate change-driven shifts in the relative timing of spring activities of interacting species are insufficiently understood, especially for insects. We use a controlled experiment which simulates a trophic mismatch scenario in which lepidopteran larvae predominately feed on older leaves due to foliage developing faster than larvae growth rates. As a case study our experiment uses Orthosia cerasi, which is a widespread but declining woodland moth whose UK declines appear to be driven by warming temperatures. In the control experiment larvae are fed young oak Quercus robur leaves (bud burst stages six and seven), whilst in the treatment newly emerged larvae are fed young leaves but then gradually transition to feed on older leaves (post bud burst stage seven). We assess impacts on duration of the larval stage, pupal size and overwintering duration and survival. Larvae in the phenological mismatch treatment had a longer larval period, and smaller and lighter pupae. Larval diet did not carry over to influence emergence dates as earlier pupation of control larvae was balanced by an equivalent increase in the duration of the pupal stage. Increased time spent as larvae could increase predation rates from avian predators, whilst slowing the seasonal decline in food availability for those bird species. Reduced pupal size and weight are indicators of lower fecundity in emerging adults. Notably, we find that adults emerging from the mismatch treatment exhibited greater rates of abnormal vestigial wing development, which is likely to further reduce fitness. Trophic mismatches in which caterpillars have reduced availability of young leaves may thus contribute to the population declines observed in many woodland moth species due to increased mortality at larval stages, and adverse effects of early life conditions that reduce the reproductive success of emerging adults.  相似文献   

14.
1. Organisms can respond to changing climatic conditions in multiple ways including changes in phenology, body size or morphology, and range shifts. Understanding how developmental temperatures affect insect life‐history timing and morphology is crucial because body size and morphology affect multiple aspects of life history, including dispersal ability, whereas phenology can shape population performance and community interactions. 2. It was experimentally assessed how developmental temperatures experienced by aquatic larvae affected survival, phenology, and adult morphology of dragonflies [Pachydiplax longipennis (Burmeister)]. Larvae were reared under three environmental temperatures: ambient, +2.5, and +5 °C, corresponding to temperature projections for our study area 50 and 100 years in the future, respectively. Experimental temperature treatments tracked naturally‐occurring variation. 3. Clear effects of temperature were found in the rearing environment on survival and phenology: dragonflies reared at the highest temperatures had the lowest survival rates and emerged from the larval stage approximately 3 weeks earlier than animals reared at ambient temperatures. There was no effect of rearing temperature on overall body size. Although neither the relative wing nor thorax size was affected by warming, a non‐significant trend towards an interaction between sex and warming in relative thorax size suggests that males may be more sensitive to warming than females, a pattern that should be investigated further. 4. Warming strongly affected survival in the larval stage and the phenology of adult emergence. Understanding how warming in the developmental environment affects later life‐history stages is critical to interpreting the consequences of warming for organismal performance.  相似文献   

15.
The preference–performance hypothesis for insect herbivores predicts that adult females should preferentially choose hosts on which their offspring perform better. We tested this hypothesis for the sunflower moth, Homoeosoma electellum (Hulst) (Lepidoptera: Pyralidae), using 16 sunflower (pre‐breeding) lines, derived from a number of wild species of Helianthus, including Helianthus annuus L., Helianthus deserticola Heiser, Helianthus paradoxus Heiser, Helianthus praecox Engelm. & Gray ssp. hirtus (Heiser) Heiser, Helianthus praecox Engelm. & Gray ssp. runyonii (Heiser) Heiser, Helianthus petiolaris Nutt., Helianthus resinosus Small, and Helianthus tuberosus L. (Asteraceae), that are suitable for introducing wild sunflower germplasm into commercial cultivars. Female moths showed a range of ovipositional preference measures to the various lines. Combined data for three Helianthus species represented by multiple lines showed significant differences in female preference with respect to the parental species. Larval performance, determined by proportion of infested neonate larvae reaching the pupal stage, or mean pupal weight, varied across the lines and, as for the female preference data, also showed significant differences among the three parental Helianthus species represented by multiple lines. These data suggest that the characteristics in the pre‐breeding lines influencing female sunflower moth preference and larval performance likely originate from the parental species and may be consistently transferred to the derived pre‐breeding lines. Of particular note with regard to potential plant resistance mechanisms, lines derived from H. tuberosus showed consistent low preference–performance measures. Female preference and larval performance (for both measures) were strongly correlated, indicating that females preferred plants and lines on which larvae performed better, in support of the preference–performance hypothesis.  相似文献   

16.
Abstract This study reports on the low temperature tolerance and cold hardiness of larvae of false codling moth, Thaumatotibia leucotreta. We found that larvae have mean critical thermal minima (lower limits of activity) of 6.7°C which was influenced by feeding status. The effects of low temperature exposure and duration of exposure on larval survival were assessed and showed that the temperature at which 50% of the population survives is ?11.5 ± 0.3°C after 2 h exposure. The supercooling point (SCP, i.e., freezing temperature) was investigated using a range of cooling rates and under different conditions (feeding and hydration status) and using inoculative freezing treatments (in contact with water or orange juice). The SCP decreased significantly from ?15.6°C to ?17.4°C after larvae were fasted for 24 h. Twenty‐four hour treatments at either high or low relative humidity (95.9% or 2.4%) also significantly decreased SCP to ?17.2°C and ?18.2°C respectively. Inoculative freezing (by water contact) raised SCP from ?15.6°C to ?6.8°C which could have important implications for post‐harvest sterilization. Cooling rates did not affect SCP which suggests that there is limited phenotypic plasticity of SCP during the larval life‐stage, at least over the short time‐scales investigated here. In conclusion, larvae of T. leucotreta are chill‐susceptible and die upon freezing. These results are important in understanding this pest's response to temperature variation, understanding pest risk status and improving post‐harvest sterilization efficacy.  相似文献   

17.
Rising sea temperatures may potentially affect the dispersive larval phase of sessile marine invertebrates with consequences for the viability of adult populations. This study demonstrated that the planktonic larvae of Rhopaloeides odorabile, a common Great Barrier Reef sponge, survived and metamorphosed when exposed to temperatures up to 9°C above the annual maximum (~29°C). Planktonic larval duration of 54 h, at ambient temperatures (~28°C), were reduced to 18 h for larvae exposed to elevated temperatures (32–36°C). Moreover, at ambient temperatures larvae began metamorphosing after 12 h, but at 32–36°C this reduced to only 2 h. Larvae survived and could still metamorphose at temperatures as high as 38°C, but were no longer functional at 40°C. These results imply that predicted increases in sea surface temperature may reduce planktonic larval duration and dispersal capabilities, thereby contributing to population subdivision of the species.  相似文献   

18.
W. VAN  DOORSLAER  R. STOKS 《Freshwater Biology》2005,50(12):1982-1990
1. We studied the temperature‐dependence of important life‐history traits both at the embryonic (egg hatching success, embryonic development time and hatchling size) and the larval stage (larval growth rate, larval survival and larval size after 100 days) using full‐sib families of two congeneric damselflies, Coenagrion hastulatum and Coenagrion puella, that differ in latitudinal distribution. Larvae were reared in the laboratory from the egg stage at four temperatures (12, 17, 22 and 27 °C). 2. The observed patterns of thermal plasticity in embryonic traits showed that the northern species was more successful than the southern species at lower temperatures, in line with the pattern of temperature adaptation in thermal reaction norms. 3. At the larval stage, we found no consistent pattern of latitudinal compensation. The thermal family reaction norms indicate, however, the potential for latitudinal compensation to evolve. We observed an ontogenetic shift in thermal optima for larval growth rate, with a higher optimal temperature for growth rate during the first 2 weeks of the larval stage. 4. This is the first indication of the existence of latitudinal compensation at the interspecific level in an invertebrate; it is stage‐specific, being present only in the embryonic stage. We argue that compensation in the embryonic stage may be much more likely than in the larvae and stress the importance of including more then one life‐history stage when drawing conclusions about the adaptiveness of patterns in thermal reaction norms.  相似文献   

19.
Summary Growth and bioenergetics of the last instar larvae of Achaea janata fed on a wide range of rations of leaves of Ricinus communis (ad libitum to 50 or 100 mg leaf per larva per day) at 22, 27, 32 and 35° C were studied. Increase in larval mortality, extension of larval duration and decrease in final body weight were some of the adverse effects of restricted rations. Whereas larval duration was influenced by ration level, pupal period was dependent on temperature. The larvae partially compensated for restricted rations by enhancing feeding rate over the limit expected in proportion to the ration offered. The level of compensation was higher at 27° C. Influence of temperature or its interaction with ration on assimilation efficiency was more significant than the independent influence of ration; the efficiency ranged from 57 to 67%. Restriction of ration below a critical level (300 mg/larva/day at 35° C and 200 mg/larva/day at other temperatures) significantly influenced the net conversion efficiency; the lowest efficiency of 1.3% was recorded for the larvae fed 100 mg leaf/day. Energy content of the terminal larva determined the percentage of energy transferred to the imago, which ranged from 37 to 55% of the terminal larval energy.  相似文献   

20.
Larvae of the Karner blue butterfly, Lycaeidesmelissasamuelis, feed solely on wild lupine, Lupinusperennis, from the emergence to summer senescence of the plant. Wild lupine is most abundant in open areas but Karner blue females oviposit more frequently on lupines growing in moderate shade. Can differences in lupine quality between open and shaded areas help explain this disparity in resource use? Furthermore, many lupines are senescent before the second larval brood completes development. How does lupine senescence affect larval growth? We addressed these questions by measuring growth rates of larvae fed lupines of different phenological stages and lupines growing under different shade conditions. The habitat conditions under which lupines grew and plant phenological stage did not generally affect final larval or pupal weight but did significantly affect duration of the larval period. Duration was shortest for larvae fed leaves from flowering lupines and was negatively correlated with leaf nitrogen concentration. Ovipositing in areas of moderate shade should increase?second-brood larval exposure to flowering lupines. In addition, larval growth was significantly faster on shade-grown lupines that were in seed than on similar sun-grown lupines. These are possible advantages of the higher-than-expected oviposition rate on shade-grown lupines. Given the canopy-related trade-off between lupine?abundance and quality, maintenance of canopy heterogeneity is an important conservation management goal. Larvae were also fed leaves growing in poor soil conditions and leaves with mildew infection. These and other feeding treatments that we anticipated would inhibit larval growth often did not. In particular, ant-tended larvae exhibited the highest weight gain per amount of lupine eaten and a relatively fast growth rate. This represents an advantage of ant tending to Karner blue larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号