首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The HST7 gene of Candida albicans encodes a protein with structural similarity to MAP kinase kinases. Expression of this gene in Saccharomyces cerevisiae complements disruption of the Ste7 MAP kinase kinase required for both mating in haploid cells and pseudohyphal growth in diploids. However, Hst7 expression does not complement loss of either the Pbs2 (Hog4) MAP kinase kinase required for response to high osmolarity, or loss of the Mkk1 and Mkk2 MAP kinase kinases required for proper cell wall biosynthesis. Intriguingly, HST7 acts as a hyperactive allele of STE7; expression of Hst7 activates the mating pathway even in the absence of upstream signaling components including the Ste7 regulator Ste11, elevates the basal level of the pheromone-inducible FUS1 gene, and amplifies the pseudohyphal growth response in diploid cells. Thus Hst7 appears to be at least partially independent of upstream activators or regulators, but selective in its activity on downstream target MAP kinases. Creation of Hst7/Ste7 hybrid proteins revealed that the C-terminal two-thirds of Hst7, which contains the protein kinase domain, is sufficient to confer this partial independence of upstream activators.Communicated by C. P. Hollenberg  相似文献   

7.
Ethanol is a widely consumed and rapidly absorbed toxin. While the physiological effects of ethanol consumption are well known, the underlying biochemical and molecular changes at the gene expression level in whole animals remain obscure. We exposed the model organism Caenorhabditis elegans to 0.2 M ethanol from the embryo to L4 larva stage and assayed gene expression changes in whole animals using RNA‐Seq and quantitative real‐time PCR. We observed gene expression changes in 1122 genes (411 up, 711 down). Cytochrome P‐450 (CYP) gene family members (12 of 78) were upregulated, whereas activated in blocked unfolded protein response (ABU) (7 of 15) were downregulated. Other detoxification gene family members were also regulated including four glutathione‐S‐transferases and three flavin monooxygenases. The results presented show specific gene expression changes following chronic ethanol exposure in C. elegans that indicate both persistent upregulation of detoxification response genes and downregulation of endoplasmic reticulum stress pathway genes.  相似文献   

8.

Background

The multi-step process of carcinogenesis can be more fully understood by characterizing gene expression changes induced in cells by carcinogens. In this study, expression microarrays were used to monitor the activity of 18,224 cDNA clones in MCF-7 and HepG2 cells exposed to the carcinogen benzo(a)pyrene (BaP) or its non-carcinogenic isomer benzo(e)pyrene (BeP). Time and concentration gene expression effects of BaP exposure have been assessed and linked to other measures of cellular stress to aid in the identification of novel genes/pathways involved in the cellular response to genotoxic carcinogens.

Results

BaP (0.25–5.0 μM; 6–48 h exposure) modulated 202 clones in MCF-7 cells and 127 in HepG2 cells, including 27 that were altered in both. In contrast, BeP did not induce consistent gene expression changes at the same concentrations. Significant time- and concentration-dependent responses to BaP were seen in both cell lines. Expression changes observed in both cell lines included genes involved in xenobiotic metabolism (e.g., CYP1B1, NQO1, MGST1, AKR1C1, AKR1C3,CPM), cell cycle regulation (e.g., CDKN1A), apoptosis/anti-apoptosis (e.g., BAX, IER3), chromatin assembly (e.g., histone genes), and oxidative stress response (e.g., TXNRD1). RTqPCR was used to validate microarray data. Phenotypic anchoring of the expression data to DNA adduct levels detected by 32P-postlabelling, cell cycle data and p53 protein expression identified a number of genes that are linked to these biological outcomes, thereby strengthening the identification of target genes. The overall response to BaP consisted of up-regulation of tumour suppressor genes and down-regulation of oncogenes promoting cell cycle arrest and apoptosis. Anti-apoptotic signalling that may increase cell survival and promote tumourigenesis was also evident.

Conclusion

This study has further characterised the gene expression response of human cells after genotoxic insult, induced after exposure to concentrations of BaP that result in minimal cytotoxiCity. We have demonstrated that investigating the time and concentration effect of a carcinogen on gene expression related to other biological end-points gives greater insight into cellular responses to such compounds and strengthens the identification of target genes.  相似文献   

9.
Chemoattractants are thought to be the first mediators generated at sites of bacterial infection. We hypothesized that signaling through G protein-coupled chemoattractant receptors may stimulate cytokine production. To test this hypothesis, a human mast cell line (HMC-1) that normally expresses receptors for complement components C3a and C5a at low levels was stably transfected to express physiologic levels of fMLP receptors. We found that fMLP, but not C3a or C5a, induced macrophage inflammatory protein (MIP)-1ss (CCL4) and monocyte chemoattractant protein-1 (CCL2) mRNA and protein. Although fMLP stimulated both sustained Ca(2+) mobilization and phosphorylation of extracellular signal-regulated kinase (ERK), these responses to C3a or C5a were transient. However, transient expression of C3a receptors in HMC-1 cells rendered the cells responsive to C3a for sustained Ca(2+) mobilization and MIP-1ss production. The fMLP-induced chemokine production was blocked by pertussis toxin, PD98059, and cyclosporin A, which respectively inhibit G(i)alpha activation, mitgen-activated protein kinase kinase-mediated ERK phosphorylation, and calcineurin-mediated activation of NFAT. Furthermore, fMLP, but not C5a, stimulated NFAT activation in HMC-1 cells. These data indicate that chemoattractant receptors induce chemokine production in HMC-1 cells with a selectivity that depends on the level of receptor expression, the length of their signaling time, and the synergistic interaction of multiple signaling pathways, including extracellular signal-regulated kinase phosphorylation, sustained Ca(2+) mobilization and NFAT activation.  相似文献   

10.
AimsThis study aims to identify by a molecular genetic approach potential targets in mast cells at which 1,4-benzodiazepines may cause their inhibitory effect on mast cell activity.Main methodsGene expression analyses with microarray gene chip and/or quantitative PCR were performed using 1,4-benzodiazepine-treated human mast cell leukemia HMC-1.2 cells, promyelocytic leukemia HL-60 cells and human mast cells from healthy volunteers and patients with mast cell activation disease (MCAD). Pathway analysis was applied to search for enriched biological functions and canonical pathways within differentially regulated genes.Key findingsBoth neoplastic and normal human mast cells express several GABAA receptor subunits at the mRNA level. In mast cells from MCAD patients expression of some GABAA receptor subunits and expression of the translocator protein TSPO are increased compared with those from healthy controls. Expression of the protein tyrosine kinases Lyn, Fgr and Yes1 was increased in HMC-1.2 cells as compared with the ontogenetically related HL60 cells. Differences in gene regulation in HMC-1.2 cells after treatment with the 1,4-benzodiazepines clonazepam, flunitrazepam and 4-chlorodiazepam suggested that signaling and gene expression induced by clonazepam was similar to that of flunitrazepam but different from that of 4-chlorodiazepam. This conclusion is supported by the results of the pathway analysis.SignificanceA novel type of GABAA receptors on mast cells appears to be involved in the inhibition of mast cell activity by 1,4-benzodiazepines. These receptors seem to be composed without γ subunits suggesting unique pharmacological properties. An action at Src-kinases, or at TSPO located in the plasma membrane may also be involved.  相似文献   

11.
Overexpression of protein kinase C-alpha and protein kinase C-delta has been shown to modulate a number of biological effects, including the cell growth and differentiation. We hypothesized that heparin, a potent antimitogenic drug, could affect the cell proliferation by inhibiting the expression of specific protein kinase C genes. Heparin, markedly but not completely, inhibited the serum-stimulated protein kinase C-alpha and -delta mRNA expression. Protein kinase C inhibition or down-regulation significantly decreased the serum-induced protein kinase C isoenzyme gene expression. Heparin failed to inhibit the residual effect of serum that was resistant to the above-mentioned treatments. Phorbol 12-myristate 13-acetate elicited an increase of protein kinase C isoenzyme gene expression that was completely prevented by protein kinase C inhibition or down-regulation. Heparin dose-dependently counteracted and ultimately abolished the increase in the protein kinase C isoenzyme gene expression elicited by phorbol 12-myristate 13-acetate. These results suggest that the inhibition of an autoregulatory role wielded by protein kinase C on the protein kinase C-alpha and -delta gene expression might represent a possible mechanism by which glycosaminoglycans modulate the cell growth.  相似文献   

12.
13.
MKK7 is a recently discovered mitogen-activated protein kinase (MAPK) kinase that is unique in that it specifically activates only the c-JUN NH(2)-terminal protein kinase (JNK) family of enzymes. Very little is known about the biological role of MKK7. We generated inducible cell lines from the human embryonal kidney carcinoma cell line, HEK293, by stable transfection with a constitutively active mutant of MKK7, MKK7(3E), fused to green fluorescent protein (GFP), under the control of an ecdysone-inducible promoter. Treatment of cells with the synthetic ecdysone analog ponasterone A induced expression of GFP-MKK7(3E) and resulted in sustained activation of endogenous JNK, but neither of the other endogenous MAPKs, ERK or p38. Red and green fluorescing cDNA copies of mRNA extracted from cells obtained before and after induction of GFP-MKK7(3E) were hybridized to microarrays containing more than 6,000 cDNAs in eight independent experiments. By selection criteria, 23 genes were differentially regulated after 24 h of induction of GFP-MKK7(3E) and 16 after 48 h. The expression of 9 genes was consistently changed after both 24 and 48 h of induction. These changes included down-regulation of three genes, c-myc, angiopoietin-2, and glucose-regulated protein 58, and up-regulation of 6 genes, tissue factor pathway inhibitor-2, GRP78, autotaxin, PPP1R7, the DKFZ cDNA p434D0818, and 1 unknown gene. Consistent with previously described roles of several of the altered genes, MKK7(3E) inhibited cell proliferation. These data implicate active MKK7 in the negative regulation of cell proliferation and provide evidence for a new role for this kinase in the regulation of a distinct, hitherto unrecognized set of genes.  相似文献   

14.
Binding of hepatocyte growth factor (HGF) to its receptor Met induces autophosphorylation and activation of the tyrosine kinase activity. In HGF-treated HepG2 cells, we studied: (i) the expression patterns of early(c-myc,c-jun,and c-fos) and delayed-early (ornithinedecarboxylase and c-met) response genes and (ii) thepossible involvement of protein kinase transducersin the control of the expression of c-metand of other genes eventually induced downstream. c-metand c-mycmRNAs peaked 1–2 h after HGF, while c-junandc-fosmRNAs slightly increased at 1 h. Ornithinedecarboxylase activity was induced earlier (4 h) thanthe mRNA (8–10 h). The transducers involved in HGF-triggered gene inductions were investigated using different protein kinase inhibitors: genistein for the receptor tyrosine kinase, herbimycin A for the nonreceptor tyrosine kinase (pp60c-src), wortmannin for phosphatidylinositol 3-kinase (PI3K) and H7 for protein kinase C (PKC). The similarity of responses to PKC inhibition led to suppose that c-mycand ornithinedecarboxylase mRNAs were induced sequentially along the same transduction pathway triggered by HGF. Ornithine decarboxylase activity seemed to be largely regulated by phosphorylation(s). The mRNA expression of c-junwas likely to undergo a negative regulation through a mechanism involving PI3K, while that ofc-metseemed to be almost independent from various protein kinases (PI3K, pp60c-src, and PKC).  相似文献   

15.
16.
Leucine-rich repeat (LRR) receptor-like kinase (RLK) proteins play key roles in a variety of biological pathways. In a previous study, we analyzed the members of the rice LRR-RLK gene family using in silico analysis. A total of 23 LRR-RLK genes were selected based on the expression patterns of a genome-wide dataset of microarrays. The Oryza sativa gamma-ray induced LRR-RLK1 (OsGIRL1) gene was highly induced by gamma irradiation. Therefore, we studied its expression pattern in response to various different abiotic and phytohormone treatments. OsGIRL1 was induced on exposure to abiotic stresses such as salt, osmotic, and heat, salicylic acid (SA), and abscisic acid (ABA), but exhibited downregulation in response to jasmonic acid (JA) treatment. The OsGIRL1 protein was clearly localized at the plasma membrane. The truncated proteins harboring juxtamembrane and kinase domains (or only harboring a kinase domain) exhibited strong autophosphorylation. The biological function of OsGIRL1 was investigated via heterologous overexpression of this gene in Arabidopsis plants subjected to gamma-ray irradiation, salt stress, osmotic stress, and heat stress. A hypersensitive response was observed in response to salt stress and heat stress, whereas a hyposensitive response was observed in response to gamma-ray treatment and osmotic stress. These results provide critical insights into the molecular functions of the rice LRR-RLK genes as receptors of external signals.  相似文献   

17.
18.
19.
Dioscorea batatas Decne (DBD) is used to heal various disorders of the kidney and lungs as an herbal agent in Korea. The purpose of the present study was to determine whether the DBD glycoprotein regulates the inflammatory reaction stimulated by phorbol-12-myristate 13-acetate plus calcium ionophore A23187 (PMACI) in human mast cells (HMC-1). The results indicate that DBD glycoprotein decreased gene expression of interleukin (IL)-1β and cyclooxygenase (COX)-2 in PMACI-stimulated HMC-1 cells through blocking of phosphorylation of p44/42 mitogen-activated protein kinase (MAPK) and p38 MAPK and DNA binding activities of nuclear factor (NF)-κB and activator protein (AP)-1. The production of intracellular reactive oxygen species (ROS) and nitric oxide (NO) is gradually reduced by concentration-dependent DBD glycoprotein treatment in PMACI-stimulated HMC-1 cells. Hence, we propose the hypothesis that DBD glycoprotein can serve as a potent anti-inflammatory agent in the treatment of inflammatory allergic diseases through inhibition of inflammation-related signal transduction in mast cell activation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号