首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
PLAC1 is a trophoblast-specific gene that maps to a locus on the X-chromosome important to placental development. We have previously shown that PLAC1 gene expression is linked to trophoblast differentiation. The objective of this study was to define the localization of the PLAC1 polypeptide as a prerequisite to understanding its function. Polyclonal antibodies specific for the putative PLAC1 polypeptide were generated. The subcellular localization of PLAC1 in the trophoblast was examined by immunohistochemical analysis of human placenta complemented by immunoblot analysis of subcellular fractions. Brightfield immunohistochemical analysis of placental tissue indicated that the PLAC1 protein localizes to the differentiated syncytiotrophoblast in the apical region of the cell. Deconvlution immunofluorescence microscopy confirmed localization to the apical region of the syncytiotrophoblast. Its distribution included both intracellular compartments as well as loci in close association with the maternal-facing, microvillous brush border membrane (MVM). These findings were supported by immunoblot analysis of subcellular fractions. A 30 kDa band was associated with the microsomal fraction of placental lysates but not the mitochondrial, nuclear, or soluble fractions, suggesting PLAC1 is targeted to a membrane location. Plasma membranes were obtained from the fetal-facing, basal surface (BM) and the maternal-facing, MVM of the syncytiotrophoblast membrane. PLAC1 immunoreactivity was only detected in membrane fractions derived from the apical MVM consistent with immunohistochemical analyses. These data demonstrate that the PLAC1 protein is restricted primarily to the differentiated trophoblast, localizing to intracellular membranous compartment(s) in the apical region of the syncytiotrophoblast and associated with its apical, microvillous membrane surface.  相似文献   

3.
Effects of fibroblast growth factor-7 (FGF-7) on lung morphogenesis, respiratory epithelial cell differentiation, and proliferation were assessed in transgenic mice in which the human FGF-7 cDNA was controlled by a conditional promoter under the direction of regulatory elements from either the human surfactant protein-C (SP-C) or rat Clara cell secretory protein (ccsp) genes. Expression of FGF-7 was induced in respiratory epithelial cells of the fetal lung by administration of doxycycline to the dam. Prenatally, doxycycline induced FGF-7 mRNA in respiratory epithelial cells in both Sp-c and Ccsp transgenic lines, increasing lung size and causing cystadenomatoid malformation. Postnatally, mice bearing both Ccsp-rtta and (Teto)(7)-cmv-fgf-7 transgenes survived, and lung morphology was normal. Induction of FGF-7 expression by doxycycline in the Ccsp-rtta x (Teto)(7)-cmv-fgf-7 mice caused marked epithelial cell proliferation, adenomatous hyperplasia, and pulmonary infiltration with mononuclear cells. Epithelial cell hyperplasia caused by FGF-7 was largely resolved after removal of doxycycline. Surfactant proteins, TTF-1, and aquaporin 5 expression were conditionally induced by doxycycline. The Sp-c-rtta and Ccsp-rtta activator mice provide models in which expression is conditionally controlled in respiratory epithelial cells in the developing and mature lung, altering lung morphogenesis, differentiation, and proliferation.  相似文献   

4.
Keratinocyte growth factor (FGF-7/KGF) is a secreted member of the fibroblast growth factor family, which functions primarily as an important paracrine mediator of cell growth and differentiation. Inhibitory pathways of vitamin D may also involve participation of some growth factors. To determine whether vitamin D may play a role in the expression of FGF-7, we investigated FGF-7 expression in human breast cancer cells treated with 1,25-dihydroxyvitamin D3, which inhibited the growth of the cells. By means of cDNA microarray, RT-PCR, and Western blot analysis, we have shown an increase in expression of FGF-7 on both mRNA and protein levels after vitamin D exposure. This is the first demonstration of vitamin D regulation of FGF-7 expression and its possible involvement in mediating growth and differentiation by vitamin D.  相似文献   

5.
Bovine trophoblast was employed to assess the questions of whether the receptor for CSF-1 is expressed by noninvasive trophoblast and whether expression changes with differentiation within placentomes. Bovine placental poly(A) mRNA contained sequences cross-reactive with cDNA probes to c-fms and v-fms. Using a monoclonal antibody to v-fms, immunohistochemistry of postattachment bovine trophoblast showed expression of an fms-like protein between Day 29 and term. Expression occurred in both the intercotyledonary and cotyledonary trophoblast. Reactivity that was fms-like was also demonstrated on preattachment conceptuses flushed at Days 14 and 7 of gestation and on Day 7 embryos derived from in vitro oocyte maturation and fertilization. Unexpectedly, in the second half of pregnancy some cells, including binucleate cells, showed nuclear rather than cytoplasmic reactivity to the antibody. These data indicate expression of an fms-like protein in bovine placenta that does not correlate with properties of trophoblast cell invasiveness or major morphological differentiation. The data do support a universal role for this protein during mammalian placental development.  相似文献   

6.
Retinoids are known to induce the differentiation and cell cycle arrest of human myeloid leukemia cells in vitro. Differential display was used to identify putative early regulatory genes that are differentially expressed in HL-60 human promyelocytic leukemia cells treated with retinoic acid. One of the cDNAs cloned encodes sequences identifying Burkitt's lymphoma receptor 1 (BLR1), a recently described chemokine receptor. Northern blot analysis demonstrates that blr1 mRNA expression increases within 9 h of retinoic acid treatment, well before functional differentiation or G(1)/G(0) growth arrest at 48 h or onset of morphological changes, suggesting a possible regulatory function. The expression of blr1 mRNA is transient, peaking at 72 h when cells are differentiated. blr1 mRNA also is induced by other differentiation-inducing agents, 1alpha,25-dihydroxyvitamin D(3) and DMSO. Induction of blr1 mRNA by retinoic acid is not blocked by the protein synthesis inhibitor cycloheximide. In HL-60 cells stably transfected with blr1 cDNA, ectopic expression of blr1 causes an increase in ERK2 MAPK activation and promotes retinoic acid-induced G(1)/G(0) growth arrest and cell differentiation. The early expression of blr1 mRNA during differentiation, its ability to increase ERK2 activation, and its enhancement of retinoic acid-induced differentiation suggest that blr1 expression may be involved in retinoic acid-induced HL-60 differentiation.  相似文献   

7.
《The Journal of cell biology》1996,132(6):1151-1159
Several FGF family members are expressed in skeletal muscle; however, the roles of these factors in skeletal muscle development are unclear. We examined the RNA expression, protein levels, and biological activities of the FGF family in the MM14 mouse skeletal muscle cell line. Proliferating skeletal muscle cells express FGF-1, FGF-2, FGF-6, and FGF-7 mRNA. Differentiated myofibers express FGF-5, FGF-7, and reduced levels of FGF-6 mRNA. FGF-3, FGF-4, and FGF-8 were not detectable by RT-PCR in either proliferating or differentiated skeletal muscle cells. FGF-I and FGF-2 proteins were present in proliferating skeletal muscle cells, but undetectable after terminal differentiation. We show that transfection of expression constructs encoding FGF-1 or FGF-2 mimics the effects of exogenously applied FGFs, inhibiting skeletal muscle cell differentiation and stimulating DNA synthesis. These effects require activation of an FGF tyrosine kinase receptor as they are blocked by transfection of a dominant negative mutant FGF receptor. Transient transfection of cells with FGF-1 or FGF-2 expression constructs exerted a global effect on myoblast DNA synthesis, as greater than 50% of the nontransfected cells responded by initiating DNA synthesis. The global effect of cultures transfected with FGF-2 expression vectors was blocked by an anti-FGF-2 monoclonal antibody, suggesting that FGF-2 was exported from the transfected cells. Despite the fact that both FGF-l and FGF-2 lack secretory signal sequences, when expressed intracellularly, they regulate skeletal muscle development. Thus, production of FGF-1 and FGF-2 by skeletal muscle cells may act as a paracrine and autocrine regulator of skeletal muscle development in vivo.  相似文献   

8.
Trophoblast differentiation during early placental development is critical for successful pregnancy and aberrant differentiation causes preeclampsia and early pregnancy loss. During the first trimester, cytotrophoblasts are exposed to low oxygen tension (equivalent to~2%-3% O2) and differentiation proceeds along an extravillous pathway (giving rise to invasive extravillous cytotrophoblasts) and a villous pathway (giving rise to multinucleated syncytiotrophoblast). Interstitial extravillous cytotrophoblasts invade the decidua, while endovascular extravillous cytotrophoblasts are involved in re-modelling uterine spiral arteries. We tested the idea that sodium butyrate (an epigenetic modulator) induces trophoblast differentiation in early gestation rhesus monkey trophoblasts through activation of the Wnt/β-catenin pathway. The results show that syncytiotrophoblast formation was increased by butyrate, accompanied by nuclear accumulation of β-catenin, and increased expression of EnvV2 and galectin-1 (two factors thought to be involved in trophoblast fusion). Surprisingly, the expression of GCM1 and syncytin-2 was not affected by sodium butyrate. When trophoblasts were incubated with lithium chloride, a GSK3 inhibitor that mimics Wnt activation, nuclear accumulation of β-catenin also occurred but differentiation into syncytiotrophoblast was not observed. Instead the cells differentiated to mononucleated spindle-shaped cells and showed molecular and behavioral characteristics of endovascular trophoblasts. Another highly specific inhibitor of GSK3, CHIR99021, failed to induce endovascular trophoblast characteristics. These observations suggest that activation of the Wnt/β-catenin pathway correlates with both trophoblast differentiation pathways, but that additional factors determine specific cell fate decisions. Other experiments suggested that the differential effects of sodium butyrate and lithium chloride might be explained by their effects on TNFα production. The results provide valuable tools to manipulate trophoblast differentiation in vitro and to better understand the differentiation pathways that occur during early gestation.  相似文献   

9.
The mRNA expression of the ESX1L gene was analyzed by RT-PCR and in situ hybridization in human normal cytogenetically placentas, of different gestational ages. Our RT-PCR analysis showed that ESX1L mRNA is expressed from 5 weeks of gestation until term, suggesting a role not only in trophoblast differentiation but also in the maintenance of the villi and microvasculature. We also observed, by in situ hybridization, that ESX1L mRNA is expressed by cytotrophoblast from chorionic plate, syncytiotrophoblast and stromal cells of all terminal, intermediate and stem villi of term placentas. ESX1L mRNA expression was more pronounced in trophoblast cells of terminal villi than in intermediate and stem villi. In conclusion, ESX1L is expressed during all stages of placental development and is localized to sparse areas of trophoblast in terminal villi in association with cytotrophoblastic cells.  相似文献   

10.
The expression of the KGF receptor (KGFR) and its stromal ligands, KGF and FGF-10, was compared during mouse mammary gland development. KGFR expression in mammary parenchyma is maximal in mature virgin mice, declines during pregnancy and lactation, but rises after weaning. The rise in KGFR mRNA in the virgin animal corresponds to parenchymal growth. The fall in KGFR expression in pregnancy is driven by hormone-induced alveolar differentiation since the level of KGFR mRNA is 5-fold higher in isolated ductal cells compared to alveolar cells. KGF and FGF-10 expression patterns differ during ductal development. FGF-10 is also expressed at about a 15-fold higher molar level than KGF. During pregnancy and lactation, expression of KGF and FGF-10 decreases in intact fat pads but is unchanged in parenchyma-free fat pads. Thus, the decrease in KGF and FGF-10 expression observed in intact glands during pregnancy and lactation is not a direct consequence of the changing hormonal milieu but more likely reflects an increase in the ratio of epithelium to stroma. Differences in the level and pattern of expression of mRNA for KGF, FGF-10, and the KGFR during postnatal development of the mouse mammary gland are a result of morphological development, changes in the ratio of stroma to epithelium, and hormonal regulation of cell differentiation. These changes suggest that the biological roles that these growth factors play are regulated by fluctuations in both growth factor and growth factor receptor expression and that KGF and FGF-10 may have different regulatory functions.  相似文献   

11.
Retinoids are known to induce the differentiation and cell cycle arrest of human myeloid leukemia cells in vitro. Differential display was used to identify putative early regulatory genes that are differentially expressed in HL-60 human promyelocytic leukemia cells treated with retinoic acid. One of the cDNAs cloned encodes sequences identifying Burkitt's lymphoma receptor 1 (BLR1), a recently described chemokine receptor. Northern blot analysis demonstrates that blr1 mRNA expression increases within 9 h of retinoic acid treatment, well before functional differentiation or G1/G0 growth arrest at 48 h or onset of morphological changes, suggesting a possible regulatory function. The expression of blr1 mRNA is transient, peaking at 72 h when cells are differentiated. blr1 mRNA also is induced by other differentiation-inducing agents, 1α,25-dihydroxyvitamin D3 and DMSO. Induction of blr1 mRNA by retinoic acid is not blocked by the protein synthesis inhibitor cycloheximide. In HL-60 cells stably transfected with blr1 cDNA, ectopic expression of blr1 causes an increase in ERK2 MAPK activation and promotes retinoic acid-induced G1/G0 growth arrest and cell differentiation. The early expression of blr1 mRNA during differentiation, its ability to increase ERK2 activation, and its enhancement of retinoic acid-induced differentiation suggest that blr1 expression may be involved in retinoic acid-induced HL-60 differentiation.  相似文献   

12.
Fibroblast growth factor 8 (FGF-8) is expressed in a large proportion of breast cancers, whereas its level in normal mammary gland epithelium is low. Previous studies have shown that FGF-8b stimulates breast cancer cell growth in vitro and in vivo. To explore the mechanisms by which FGF-8b promotes growth, we studied its effects on cell cycle regulatory proteins and signalling pathways in mouse S115 and human MCF-7 breast cancer cells. We also studied the effect of FGF-8b on cell survival. FGF-8b induced cell cycle progression and up-regulated particularly cyclin D1 mRNA and protein in S115 cells. Silencing cyclin D1 with siRNA inhibited most but not all FGF-8b-induced proliferation. Inhibition of the FGF-8b-activated ERK/MAPK pathway decreased FGF-8b-stimulated proliferation. Blocking the constitutively active PI3K/Akt and p38 MAPK pathways also lowered FGF-8b-induced cyclin D1 expression and proliferation. Corresponding results were obtained in MCF-7 cells. In S115 and MCF-7 mouse tumours, FGF-8b increased cyclin D1 and Ki67 levels. Moreover, FGF-8b opposed staurosporine-induced S115 cell death which effect was blocked by inhibiting the PI3K/Akt pathway but not the ERK/MAPK pathway. In conclusion, our results suggest that FGF-8b increases breast cancer cell growth both by stimulating cell cycle progression and by protecting against cell death.  相似文献   

13.
14.
15.
Fibroblast growth factor interactions in the developing lung.   总被引:3,自引:0,他引:3  
Cellular activities that lead to organogenesis are mediated by epithelial-mesenchymal interactions, which ultimately result from local activation of complex gene networks. Fibroblast growth factor (FGF) signaling is an essential component of the regulatory network present in the embryonic lung, controlling proliferation, differentiation and pattern formation. However, little is known about how FGFs interact with other signaling molecules in these processes. By using cell and organ culture systems, we provide evidence that FGFs, Sonic hedgehog (Shh), bone morphogenetic protein 4 (BMP-4), and TGFbeta-1 form a regulatory circuit that is likely relevant for lung development in vivo. Our data show that FGF-10 and FGF-7, important for patterning and growth of the lung bud, are differentially regulated by FGF-1, -2 and Shh. In addition, we show that FGFs regulate expression of Shh, BMP-4 and other FGF family members. Our data support a model in which Shh, TGFbeta-1 and BMP-4 counteract the bud promoting effects of FGF-10, and where FGF levels are maintained throughout lung development by other FGFs and Shh.  相似文献   

16.
17.
Recently, multiple neurotrophic/growth factors have been proposed to play an important role in the therapeutic action of antidepressants. In this study, we prepared astrocyte- and neuron-enriched cultures from the neonatal rat cortex, and examined the changes in neurotrophic/growth factor expression by antidepressant treatment using real-time PCR. Treatment with amitriptyline (a tricyclic antidepressant) significantly increased the expression of fibroblast growth factor-2 (FGF-2), brain-derived neurotrophic factor, vascular endothelial growth factor and glial cell line-derived neurotrophic factor mRNA with a different time course in astrocyte cultures, but not in neuron-enriched cultures. Only the expression of FGF-2 was higher in astrocyte cultures than in neuron-enriched cultures. We focused on the FGF-2 production in astrocytes. Several different classes of antidepressants, but not non-antidepressants, also induced FGF-2 mRNA expression. Noradrenaline (NA) is known to induce FGF-2 expression in astrocyte cultures, as with antidepressants. Therefore, we also assessed the mechanism of NA-induced FGF-2 expression, in comparison to amitriptyline. NA increased the FGF-2 mRNA expression via α1 and β-adrenergic receptors; however, the amitriptyline-induced FGF-2 mRNA expression was not mediated via these adrenergic receptors. Furthermore, the amitriptyline-induced FGF-2 mRNA expression was completely blocked by cycloheximide (an inhibitor of protein synthesis), while the NA-induced FGF-2 mRNA was not. These data suggest that the regulation of FGF-2 mRNA expression by amitriptyline was distinct from that by NA. Taken together, antidepressant-stimulated astrocytes may therefore be important mediators that produce several neurotrophic/growth factors, especially FGF-2, through a monoamine-independent and a de novo protein synthesis-dependent mechanism.  相似文献   

18.
The uterus and the placenta synthesize insulin‐like growth factors (IGFs) and insulin‐like binding proteins (IGFBPs). These growth factors are implicated in processes of proliferation and differentiation that occur in the uterus. To determine the patterns of expression of IGFs during rat pregnancy we used in situ hybridization with digoxigenin labeled probes on uterus from day 7 to day 16 of pregnancy. In early gestation days (7–8) both IGF mRNAs showed similar tissue distribution with relative abundance in the stroma and circular muscle layer. On days 11 and 12 expression for IGF‐I mRNA was found in the mesometrial decidua and metrial gland and in the ectoplacental cone while clear expression of IGF‐II mRNA could only be found in the latter. On days 13 and 14, expression for IGF‐I mRNA could be detected in the mesometrial decidua and metrial gland but no expression was observed for IGF‐II mRNA. A gradient of IGF‐I mRNA expression could be observed in the placenta on day 16, with the trophoblastic cells of the basal zone expressing the signal with stronger intensity than in the labyrinthine zone. For IGF‐II mRNA the highest expression was associated with the labyrinthine zone. Endovascular trophoblast was positive for both mRNAs. The spatial and temporal patterns of expression suggests a role for IGFs in the process of decidualization as well as in the establishment, growth and differentiation of the various trophoblast cells of the placenta. Mol. Reprod. Dev. 53:294–305, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号