首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Binding sites for the Escherichia coli protein integration host factor (IHF) include a set of conserved bases that can be summarized by the consensus sequence WATCAANNNNTTR (W is dA or dT, R is dA or dG, and N is any nucleotide). However, additional 5'-proximal bases, whose common feature is a high dA+dT content, are also thought to be required for binding at some sites. We examine the relative contribution of these two sequence elements to IHF binding to the H' and H1 sites in attP of bacteriophage lambda by using the bacteriophage P22-based challenge-phage system. IHF was unable to act as a repressor in the challenge-phage assay at H' sites containing the core consensus element but lacking the dA+dT-rich element. This indicates that both elements are required for IHF to bind to the H' site. In contrast, the core consensus determinant alone is sufficient for IHF binding to the H1 site, which lacks an upstream dA+dT-rich region. Fifty mutants that decreased or eliminated IHF binding to the H1 site were isolated. Sequence analysis showed changes in the bases in the core consensus element only, further indicating that this determinant is sufficient for IHF binding to the H1 site. We found that placement of a dA+dT-rich element upstream of the H1 core consensus element significantly increased the affinity, suggesting that the presence of a dA+dT-rich element enhances IHF binding.  相似文献   

6.
7.
8.
All of the previously described effects of integration host factor (IHF) on bacteriophage Mu development have supported the view that IHF favours transposition-replication over the alternative state of lysogenic phage growth. In this report we show that, consistent with a model in which Mu repressor binding to its operators requires a particular topology of the operator DNA, IHF stimulates repressor binding to the O1 and O2 operators and enhances Mu repression. IHF would thus be one of the keys, besides supercoiling and the H-NS protein, that lock the operator region into the appropriate topological conformation for high-affinity binding not only of the phage transposase but also of the phage repressor.  相似文献   

9.
10.
11.
12.
The IS 1-encoded protein InsA binds specifically to both ends of IS1, and acts as a repressor of IS1 gene expression and may be a direct inhibitor of the transposition process. We show here, using DNasel 'foot-printing' and gel retardation, that the InsA binding sites are located within the 24/25 bp minimal active ends of IS1 and that InsA induces DNA bending upon binding. Conformational modification of the ends of IS1 as a result of binding of the host protein integration host factor (IHF) to its site within the minimal ends has been previously observed. Using a collection of synthetic mutant ends we have mapped some of the nucleotide sequence requirements for InsA binding and for transposition activity. We show that sequences necessary for InsA binding are also essential for transposition activity. We demonstrate that InsA and IHF binding sites overlap since some sequence determinants are shared by both InsA and IHF. The data suggest that these ends contain two functional domains: one for binding of InsA and IHF, and the other for transposition activity. A third region, when present, may enhance transposition activity with an intact right end. This 'architecture' of the ends of IS1 is remarkably similar to that of IS elements IS10, IS50 and IS903.  相似文献   

13.
14.
15.
The interaction of E. coli integration host factor (IHF) with the cohesive end sites (cos's) of phages lambda and 21 has been studied by the DNAase I footprinting technique. Six potential sites in cos lambda differ from the consensus IHF binding sequence by 1 to 3 base pairs. Of the six, one site, I1, binds IHF strongly. The I1 segment protected by IHF contains two sequences that closely match the IHF consensus binding sequence. Another site, I2, binds IHF moderately well, and three sites: 10', 13 and 14 bind IHF very weakly. The 10 site does not bind IHF under the conditions used here. In phage 21 the DNA segment extending to the right from the cohesive ends, which contains three potential IHF binding sites, was examined. Two sites bind IHF well; I1, the 21 analogue of one of the lambda I1 sites, and I0, a site not analogous to a lambda site. The third 21 site, I2, binds IHF moderately well, as does the analogous I2 site in lambda. The significance of the results for lambda DNA packaging is discussed.  相似文献   

16.
An analysis of the sequence information contained in a compilation of published binding sites for E. coli integration host factor (IHF) was performed. The sequences of twenty-seven IHF sites were aligned; the base occurrences at each position, the information content, and an extended consensus sequence were obtained for the IHF site. The base occurrences at each position of the IHF site were used with a program written for the Apple Macintosh computers in order to determine the similarity scores for published IHF sites. A linear correlation was found to exist between the logarithm of IHF binding and functional data (relative free energies) and similarity scores for two groups of IHF sites. The MacTargsearch program and its potential usefulness in searching for other sites and predicting their relative activities is discussed.  相似文献   

17.
18.
19.
P Prentki  M Chandler    D J Galas 《The EMBO journal》1987,6(8):2479-2487
The integration host factor of Escherichia coli (IHF) is a small, histone-like protein which participates in the integration of bacteriophage lambda into the E. coli chromosome and in a number of regulatory processes. Our recent footprinting analysis has shown that IHF binds specifically to the ends of the transposable element IS1, as well as to several sites within a short segment of the plasmid pBR322. We have extended our studies of the binding of the IHF molecule to these sites in vitro using a gel retardation assay. We report here that IHF bends the DNA upon binding, as judged from the strong cyclic dependence of the protein-induced mobility shift on the position of the binding site. Using cloned, synthetic ends of IS1 as substrates, we have found that some mutations within the conserved bases of the IHF consensus binding sequence abolish binding, and that alterations of the flanking sequences can greatly reduce IHF binding. The presence of multiple IHF sites on a single DNA fragment increases binding very little, indicating that IHF does not bind cooperatively in this complex. We discuss the possibility that DNA bending is related to the role IHF plays in forming and stabilizing nucleoprotein complexes, and suggest that bending at the IHF sites may be important to its diverse effects in the cell.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号