首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For determination of the physiological role and mechanism of vacuolar proteolysis in the yeast Saccharomyces cerevisiae, mutant cells lacking proteinase A, B, and carboxypeptidase Y were transferred from a nutrient medium to a synthetic medium devoid of various nutrients and morphological changes of their vacuoles were investigated. After incubation for 1 h in nutrient-deficient media, a few spherical bodies appeared in the vacuoles and moved actively by Brownian movement. These bodies gradually increased in number and after 3 h they filled the vacuoles almost completely. During their accumulation, the volume of the vacuolar compartment also increased. Electron microscopic examination showed that these bodies were surrounded by a unit membrane which appeared thinner than any other intracellular membrane. The contents of the bodies were morphologically indistinguishable from the cytosol; these bodies contained cytoplasmic ribosomes, RER, mitochondria, lipid granules and glycogen granules, and the density of the cytoplasmic ribosomes in the bodies was almost the same as that of ribosomes in the cytosol. The diameter of the bodies ranged from 400 to 900 nm. Vacuoles that had accumulated these bodies were prepared by a modification of the method of Ohsumi and Anraku (Ohsumi, Y., and Y. Anraku. 1981. J. Biol. Chem. 256:2079-2082). The isolated vacuoles contained ribosomes and showed latent activity of the cytosolic enzyme glucose-6-phosphate dehydrogenase. These results suggest that these bodies sequestered the cytosol in the vacuoles. We named these spherical bodies "autophagic bodies." Accumulation of autophagic bodies in the vacuoles was induced not only by nitrogen starvation, but also by depletion of nutrients such as carbon and single amino acids that caused cessation of the cell cycle. Genetic analysis revealed that the accumulation of autophagic bodies in the vacuoles was the result of lack of the PRB1 product proteinase B, and disruption of the PRB1 gene confirmed this result. In the presence of PMSF, wild-type cells accumulated autophagic bodies in the vacuoles under nutrient-deficient conditions in the same manner as did multiple protease-deficient mutants or cells with a disrupted PRB1 gene. As the autophagic bodies disappeared rapidly after removal of PMSF from cultures of normal cells, they must be an intermediate in the normal autophagic process. This is the first report that nutrient-deficient conditions induce extensive autophagic degradation of cytosolic components in the vacuoles of yeast cells.  相似文献   

2.
The intracellular distribution and level of acid hydrolases in Ochromonas malhamensis were studied in cells grown osmotrophically in a defined medium, in a carbon-free starvation medium, and during phagotrophy in each of these media. By cytochemical techniques, little enzymic reaction product was observed in the vacuoles of osmotrophic cells grown in the defined medium. Starved cells, however, contained autophagic vacuoles and cannibalized other Ochromonas cells. Dense enzymic reaction product was observed in the digestive vacuoles and in the Golgi cisternae of these starved cells. Moreover, starved cells and cells grown in a nutritionally complete medium ingested Escherichia coli which appeared in digestive vacuoles containing enzymic reaction product. Biochemical assays for lysosomal acid phosphatase (E.C. 3.1.3.2 orthophosphoric monoester phosphohydrolase) and acid ribonuclease (E.C. 2.7.7.16 ribonucleate nucleotido-2'-transferase) were done on Ochromonas cultures in the same experimental treatments and under identical assay conditions as the cytochemical study. During starvation, the acid hydrolase specific activities were consistently twice those found in cells grown in an osmotrophic complete medium. Ochromonas fed E. coli showed no increase in acid hydrolase specific activity as compared to controls not fed E. coli. The latency of lysosomal acid hydrolases in cells fixed with glutaraldehyde was reduced, suggesting that this fixative increases lysosomal membrane permeability and may release enzymes or their reaction products into the cytoplasmic matrix during cytochemical analysis. This could explain the cytoplasmic staining artifact sometimes observed with glutaraldehyde-fixed cells when studied by the Gomori technique. This study confirms that Ochromonas malhamensis, a phytoflagellate, does produce digestive vacuoles and can ingest bacteria, thereby fulfilling its role as a heterotroph in an aquatic food chain. When Ochromonas is grown in a nutritionally complete osmotrophic medium, phagocytosis causes appearance of acid hydrolases in the digestive vacuoles, whereas the total activity of the enzymes remains unchanged. An organic carbon-free medium strongly stimulates acid hydrolaes activity and causes these enzymes to appear in the digestive vacuoles whether phagocytosis occurs or not.  相似文献   

3.
《The Journal of cell biology》1990,110(6):1923-1933
Autophagic vacuoles form within 15 min of perfusing a liver with amino acid-depleted medium. These vacuoles are bound by a "smooth" double membrane and do not contain acid phosphatase activity. In an attempt to identify the membrane source of these vacuoles, I have used morphological techniques combined with immunological probes to localize specific membrane antigens to the limiting membranes of newly formed or nascent autophagic vacuoles. Antibodies to three integral membrane proteins of the plasma membrane (CE9, HA4, and epidermal growth factor receptor) and one of the Golgi apparatus (sialyltransferase) did not label these vacuoles. Internalized epidermal growth factor and its membrane receptor were not found in nascent autophagic vacuoles but were present in lysosome-like degradative autophagic vacuoles. All these results suggested that autophagic vacuoles were not formed from plasma membrane, Golgi apparatus, or endosome constituents. Antisera prepared against integral membrane proteins (14, 25, and 40 kD) of the RER was found to label the inner and outer limiting membranes of almost all nascent autophagic vacuoles. In addition, ribophorin II was identified at the limiting membranes of many nascent autophagic vacuoles. Finally, secretory proteins, rat serum albumin and alpha 2u- globulin, were localized to the lumen of the RER and to the intramembrane space between the inner and outer membranes of some of these vacuoles. The results were consistent with the formation of autophagic vacuoles from ribosome-free regions of the RER.  相似文献   

4.
Summary Changes in an autophagic system during differentiation of cells ofDictyostelium discoideum, NC-4 were studied under light and electron microscopes, and it was demonstrated cytochemically that acid phosphatase was almost exclusively localized in food and autophagic vacuoles. Autophagic vacuoles first appeared during formation of loose aggregates, coupled with the defecation of food vacuoles. Autophagic vacuoles seem to originate from flat sacs which segregate parts of the cytoplasm. No acid phosphatase was detected in the vacuoles when first formed, but activity appeared later probably due to fusion with Golgi-like vesicles. When starved cells were not allowed to aggregate due to a low cell density, they formed no autophagic vacuoles but retained many food vacuoles. This indicates that the formation of autophagic vacuoles is not simply due to starvation, but to cell interaction mediated by cell contact. Autophagic vacuoles containing acid phosphatase rapidly increased in number in all cells in the early stage of aggregation. After papillae formed, however, they selectively decreased in the prespore cells, but developed further and grew larger in the prestalk cells.  相似文献   

5.
Programmed cell death (PCD) is categorized as apoptotic, autophagic, or necrosis-like. Although the possibility that plural (two or three) death signals could be induced by a given stimulus has been reported, the precise mechanisms regulating PCD are not well understood. Recently, we have obtained two anti-chicken transferrin receptor (TfR) monoclonal antibodies (mAbs; D18 and D19) inducing a unique cell death. Although the cell death had several features of apoptosis, autophagic and necrosis-like morphological alterations were simultaneously observed in electron microphotographs. In addition to cells with condensed chromatin and an intact plasma membrane (apoptotic cells), cells having many vacuoles in the cytoplasm (autophagic cells), and enlarged cells with ruptured plasma membranes (necrosis-like cells) were observed in DT40 cells treated with the mAbs, however, the latter two types of dead cells were not detected upon treatment with staurosporine, a typical apoptosis inducer. In autophagic cells, numerous membrane-bound vesicles occupying most of the cytoplasmic space, which frequently contained electron-dense materials from cytoplasmic fragments and organelles, were observed. The simultaneous induction of multiple death signals from a stimulus via the TfR is of great interest to those researching cell death. In addition, activation of caspases was observed in DT40 cells treated with D19, however, the cell death was not inhibited with z-VAD-fmk, a pan-caspase inhibitor, suggesting that at least in part, a caspase-independent pathway is involved in the TfR-mediated cell death.  相似文献   

6.
BACKGROUND: The initial stages of phagocytosis and cell motility resemble each other. The extension of a pseudopod at the leading edge of a migratory cell and the formation of a phagocytic cup are actin dependent, and each rely on the plasma membrane adhering to a surface during dynamic extension. RESULTS: A myosin VII null mutant exhibited a drastic loss of adhesion to particles, consistent with the extent of an observed decrease in particle uptake. Additionally, cell-cell adhesion and the adhesion of the leading edge to the substratum during cell migration were defective in the myosin VII null cells. GFP-myosin VII rescued the phagocytosis defect of the null mutant and was distributed in the cytosol and recruited to the cortical cytoskeleton, where it appeared to be enriched at the tips of filopods. It was also localized to phagocytic cups, but only during the initial stages of particle engulfment. During migration, GFP-myosin VII is found at the leading edge of the cell. CONCLUSIONS: Myosin VII plays an important role in mediating the initial binding of cells to substrata, a novel role for an unconventional myosin.  相似文献   

7.
大鼠睾丸间质细胞的自体吞噬活动   总被引:2,自引:0,他引:2  
本文结合超微结构和细胞化学观察,研究大鼠睾丸间质细胞(Leydig细胞)中溶酶体的结??构与功能。观察结果表明,大鼠睾丸间质细胞中高尔基体非常发达,在高尔基体的成熟面存在着CMP酶阳性反应的GERL系统,说明这种细胞有不断产生溶酶体的能力。细胞化学结果也证实在睾丸间质细胞有较多的初级和次级溶酶体。睾丸间质细胞不仅有较多的溶酶体,而且还有相当数量的自噬小体,存在着活跃的自体吞噬活动。自噬小体的界膜来源于特化的光面内质网或高尔基体膜囊,包围的内容物主要是光面内质网和少量线粒体。当自噬小体与溶酶体融合后即成为自体吞噬泡,由于酶的消化作用,自体吞噬泡内的细胞器有一系列形态变化。根据CMP酶细胞化学反应,可以区分自噬小体和自体吞噬泡,后者是一种次级溶酶体,呈CMP酶阳性反应。睾丸间质细胞是分泌雄性激素的内分泌细胞,其光面内质网和线粒体在类固醇激素分泌中起重要作用,自体吞噬活动的结果是去除部分内质网和线粒体,可能在细胞水平上起着对雄性激素分泌的调节作用。  相似文献   

8.
盘基网柄菌细胞分化和凋亡的形态特征   总被引:2,自引:0,他引:2  
本文用透射电镜和DAPI荧光染色法研究了盘基网柄菌(Dictyosteliumdiscoideum)细胞分化和柄细胞的凋亡特征,结果显示:细胞丘中绝大部分细胞的线粒体内出现一小空泡,随着发育进程,空泡逐渐增大,线粒体的嵴随之变少,直至线粒体完全空泡化,最后形成单层膜的空泡。据此我们推测前孢子细胞特有的空泡来源于线粒体,并且这种细胞器水平上的内自噬现象与前孢子细胞分化密切相关。在前柄细胞分化阶段,前柄细胞中出现数个自噬泡,最初吞噬的线粒体嵴结构完整;随着前柄细胞进一步分化,部分线粒体内出现类似于前孢子细胞中的内自噬现象,并且自噬泡只吞噬这种线粒体。在凋亡后期,细胞核内核仁消失,染色体固缩形成高电子密度斑块,自噬泡采用与细胞核膜融合的方式来完成核的清除,最后柄细胞完全空泡化且包被一层纤维素壁。作者认为前柄细胞凋亡过程实质上是一种分化过程,所以有其鲜明特点:细胞出现自噬泡,标志着凋亡开始,用自噬而不是凋亡小体来清除胞内各种细胞器,直到分化最后阶段才清除细胞核和形成纤维素壁。这些特点不仅是前柄细胞凋亡的形态学指标,也和细胞发育和分化相关。  相似文献   

9.
Various morphological features of the Schwann cells of myelinated fibres in the lizard thoracic spinal roots were studied, and, when possible, quantified using morphometric methods. About 0.8% of the Schwann cells are binucleate and some display clusters of microvilli along the internodes. The percentages of the cytoplasmic area of the Schwann cell occupied by the following cytoplasmic components were determined: mitochondria, Golgi apparatus, granular endoplasmic reticulum, smooth endoplasmic reticulum, multivesicular bodies, dense bodies, autophagic vacuoles, peroxisome-like bodies, lipofuscin granules and lipid droplets. Linear relationships were found between the sectional areas of the mitochondria and granular endoplasmic reticulum of the Schwann cell and both the length of the profile of the Schwann cell plasma membrane and the size of the related axon. The results obtained are compatible both with the hypothesis that the mitochondria and granular endoplasmic reticulum of the Schwann cell are involved in the production and storage of proteins for the plasma membrane of this cell, and with the hypothesis that these organelles are involved in the production and storage of protein metabolites which are subsequently transferred to the related axons.  相似文献   

10.
Cadmium is a potent inducer of programmed cell death (PCD) in plants but the morphological changes in cells exposed to cadmium are poorly characterized. Using light and transmission electron microscopy (TEM) we have investigated the changes in ultrastructure of tobacco BY‐2 cells treated with 50 µM CdSO4. The cadmium‐induced alterations in cell morphology occurred gradually over a period of 3–4 days and the first stages of the response resembled vacuolar type of cell death. The initial formation of numerous small cytoplasmic vacuoles and dilation of endoplasmic reticulum was followed first by fusion of smaller vacuoles with each other and with big vacuoles, and then by the appearance of autophagic vacuoles containing autophagic bodies. The final stages of cell death were accompanied by necrotic features including loss of plasmalemma integrity, shrinkage of the protoplast and unprocessed cellular components. In addition, we observed a gradual degradation of nuclear material. Our results demonstrate that cadmium‐induced plant cell death is a slow process featuring elements of vacuolar cell death and terminating with necrosis.  相似文献   

11.
During Chinese hamster ovary (CHO) cell culture for foreign protein production, cells are subjected to programmed cell death (PCD). A rapid death at the end of batch culture is accelerated by nutrient starvation. In this study, type II PCD, autophagy, as well as type I PCD, apoptosis, was found to take place in two antibody-producing CHO cell lines, Ab1 and Ab2, toward the end of batch culture when glucose and glutamine were limiting. The evidence of autophagy was observed from the accumulation of a common autophagic marker, a 16 kDa form of LC3-II during batch culture. Moreover, a significant percentage of the total cells (80% of Ab1 cells and 86% of Ab2 cells) showed autophagic vacuoles containing cytoplasmic material by transmission electron microscopy. An increased level of PARP cleavage and chromosomal DNA fragmentation supported that starvation-induced apoptosis also occurred simultaneously with autophagy.  相似文献   

12.
Under nutrient-deficient conditions, the yeast S. cerevisiae sequesters its own cytoplasmic components into vacuoles in the form of "autophagic bodies" (Takeshige, K., M. Baba, S. Tsuboi, T. Noda, and Y. Ohsumi. 1992. J. Cell Biol. 119:301-311). Immunoelectron microscopy showed that two cytosolic marker enzymes, alcohol dehydrogenase and phosphoglycerate kinase, are present in the autophagic bodies at the same densities as in the cytosol, but are not present in vacuolar sap, suggesting that cytosolic enzymes are also taken up into the autophagic bodies. To understand this process, we performed morphological analyses by transmission and immunological electron microscopies using a freeze- substitution fixation method. Spherical structures completely enclosed in a double membrane were found near the vacuoles of protease-deficient mutant cells when the cells were shifted to nutrient-starvation media. Their size, membrane thickness, and contents of double membrane- structures corresponded well with those of autophagic bodies. Sometimes these double membrane structures were found to be in contact with the vacuolar membrane. Furthermore their outer membrane was occasionally seen to be continuous with the vacuolar membrane. Histochemical staining of carbohydrate strongly suggested that the structures with double membranes fused with the vacuoles. These results indicated that these structures are precursors of autophagic bodies, "autophagosomes" in yeast. All the data obtained suggested that the autophagic process in yeast is essentially similar to that of the lysosomal system in mammalian cells.  相似文献   

13.
Electron microscope studies were done on mouse liver, from 5 min to 8 wk after an intravenous injection of liposomes containing ethylenediaminetetraacetic acid (EDTA). Livers of mice receiving an injection of liposomes containing KCL instead of EDTA or an injection of a solution of EDTA were also examined. Liposomes were shown to be phagocytized by hepatocytes as well as by Kupffer cells within minutes after the injection. Initially, there was a close contact between the liposomal membrane and the cellular membrane, followed by an invagination of the latter and the formation of a distinct vesicle surrounding a single liposome or a cluster of several liposomes. No fusion between the liposomal membrane and the cell membrane was observed. Between 15 min and 6 h after liposome injection, the Kupffer cells were found to have an increased number of lysosomes and autophagic vacuoles. Within the latter, morphologically intact liposomes or remnants of liposomes could be seen. At 12 h after injection, a striking increase in macrophages was observed in the liver sinusoids of EDTA-liposome-injected mice, but not in those of KCl- liposome-injected mice. Within the macrophages, remnants of liposomes occasionally could be observed. However, the origin and the physiological role of these cells are unknown. In the hepatocytes, morphological changes were first observed 24 h after injection; there were large numbers of autophagic vacuoles, and some cells showed extensive areas of focal cytoplasmic degeneration. The morphology of the liver cells returned to normal about 7 days after injection. No morphological changes were observed in livers of mice receiving EDTA solution without liposomes. A possible mechanism by which the liposome- encapsulated chelating agents can successfully remove intracellular toxic metals is discussed. The use of liposomes as carriers seems to be a useful tool for intracellular delivery of chelating agents or drugs in general.  相似文献   

14.
It is well known that phenobarbital (PB) treatment produces an increase in the amount of cytoplasmic membranes of hepatocytes, with a parallel enhancement in the activity of drug-metabolizing enzymes. However, little is known about how the induced membranes are removed after the drug treatment is stopped. To consider this problem, the recovery of rat hepatocytes from PB induction (five daily injections, 100 mg/kg) was followed morphometrically. Treatment with PB produced a cellular enlargement (26%) due to increases in the volume of the cytoplasmic matrix (20%) and the volume (100%) and surface area (90%) of the smooth-surfaced endoplasmic reticulum (SER). The volume of the nuclei and the surface area of the Golgi apparatus were also increased, but no changes were detected in the volumes of the mitochondria or peroxisomes. The SER membranes induced by the PB were removed within 5 days after the end of the treatment period. During this period of membrane removal, we observed an increase in the volume (800%) and number (96%) of autophagic vacuoles without a change in dense bodies. A morphometric analysis of the content of the autophagic vacuoles showed that the endoplasmic reticulum membranes were preferentially removed, and from this we conclude that the formation of autophagic vacuoles was not a random process. Our findings show that the removal of excess cytoplasmic membranes is associated with an increase in autophagic activity and thus demonstrates the presence of a specific cellular mechanism which may be responsible for the bulk removal of PB-induced membranes.  相似文献   

15.
The relation between autophagy and apoptosis has not been clearly elucidated. Here, we reported that apoptosis followed autophagy in insect Spodoptera litura cells (Sl) undergoing glucose starvation. Sl cells have been adapted to Leibovitz-15 medium supplemented with glucose (1.0 g/l) and 5% fetal bovine serum (FBS), used for mammalian cell cultures. If glucose (1 g/l) or glutamine (1.6 g/l) had not been supplemented in L-15 medium with 5% FBS, Sl cells began to form many vacuoles and these vacuoles gradually enlarged in the cytoplasm, which were autophagic vacuoles. However, these large vacuoles began to disappear gradually after 48 h of glucose starvation, accompanied with remarkable apoptosis without apoptotic bodies, which was demonstrated by DNA fragmentation and activation of caspase-3-like. During glucose starvation, Sl cell ATP concentrations gradually decreased. Interestingly, if the conditioned L-15 medium without glucose was replaced with fresh L-15 medium supplemented with glucose or glutamine after the cultures had been starved seriously for 48 h or longer, the formation of apoptotic bodies was initiated. These data suggested that the partial depletion of cell ATP triggered apoptosis following autophagy in glucose-starved Sl cells and the formation of apoptotic bodies required higher level of ATP than DNA fragmentation and activation of caspase-3-like activity. Additionally, the disappearance of autophagic vacuoles, negative staining of neutral red, green staining of acridine orange and diffusion of acid phosphatase activity in Sl cells at the late stage of starvation (over 48 h) suggested that the dysfunction of lysosome was more likely to involve in apoptosis. The facts that Actinomycin D-induced apoptosis was partially inhibited and cyclosporin A, blocking the opening of mitochondrial permeability transition (MPT) pores, inhibited partially apoptosis in glucose-starved Sl cells, suggested the pathway of glucose starvation-induced apoptosis seemed to be different from that induced by actinomycin D and the opening of MPT pores on mitochondria probably involved in apoptosis triggered by glucose starvation, respectively.  相似文献   

16.
Data presented in the accompanying paper suggests nascent autophagic vacuoles are formed from RER (Dunn, W. A. 1990. J. Cell Biol. 110:1923-1933). In the present report, the maturation of newly formed or nascent autophagic vacuoles into degradative vacuoles was examined using morphological and biochemical methods combined with immunological probes. Within 15 min of formation, autophagic vacuoles acquired acid hydrolases and lysosomal membrane proteins, thus becoming degradative vacuoles. A previously undescribed type of autophagic vacuole was also identified having characteristics of both nascent and degradative vacuoles, but was different from lysosomes. This intermediate compartment contained only small amounts of cathepsin L in comparison to lysosomes and was bound by a double membrane, typical of nascent vacuoles. However, unlike nascent vacuoles vet comparable to degradative vacuoles, these vacuoles were acidic and contained the lysosomal membrane protein, lgp120, at the outer limiting membrane. The results were consistent with the stepwise acquisition of lysosomal membrane proteins and hydrolases. The presence of mannose-6-phosphate receptor in autophagic vacuoles suggested a possible role of this receptor in the delivery of newly synthesized hydrolases from the Golgi apparatus. However, tunicamycin had no significant effect on the amount of mature acid hydrolases present in a preparation of autophagic vacuoles isolated from a metrizamide gradient. Combined, the results suggested nascent autophagic vacuoles mature into degradative vacuoles in a stepwise fashion: (a) acquisition of lysosomal membrane proteins by fusing with a vesicle deficient in hydrolytic enzymes (e.g., prelysosome); (b) vacuole acidification; and (c) acquisition of hydrolases by fusing with preexisting lysosomes or Golgi apparatus-derived vesicles.  相似文献   

17.
The superficial squamous cells of rat transitional epithelium are limited, on their luminal face, by an asymmetrically thickened membrane. Patches of similar thick membrane are found in the walls of the Golgi cisternae and it is suggested that the Golgi system is the site of assembly of the thick plasma membrane. This implies membrane flow from the Golgi apparatus to the cell surface, and there is indirect evidence that the membrane is transported in the form of fusiform vacuoles, derived from the Golgi cisternae, which fuse with, and become part of, the free cell membrane. Uptake of injected Imferon shows that similar, large, thick-walled vacuoles may be formed by invagination of the free cell surface. Some of these vacuoles are subsequently transformed into multivesicular bodies and autophagic vacuoles. The formation of other large heterogeneous bodies is described, and some of these are shown to have acid phosphatase activity.  相似文献   

18.
Many organelles change their shape in the course of the cell cycle or in response to environmental conditions. Lysosomes undergo drastic changes of shape during microautophagocytosis, which include the invagination of their boundary membrane and the subsequent scission of vesicles into the lumen of the organelle. The mechanism driving these structural changes is enigmatic. We have begun to analyze this process by reconstituting microautophagocytosis in a cell-free system. Isolated yeast vacuoles took up fluorescent dyes or reporter enzymes in a cytosol-, ATP-, and temperature-dependent fashion. During the uptake reaction, vacuolar membrane invaginations, called autophagic tubes, were observed. The reaction resulted in the transient formation of autophagic bodies in the vacuolar lumen, which were degraded upon prolonged incubation. Under starvation conditions, the system reproduced the induction of autophagocytosis and depended on specific gene products, which were identified in screens for mutants deficient in autophagocytosis. Microautophagic uptake depended on the activity of the vacuolar ATPase and was sensitive to GTPgammaS, indicating a requirement for GTPases and for the vacuolar membrane potential. However, microautophagocytosis was independent of known factors for vacuolar fusion and vesicular trafficking. Therefore, scission of the invaginated membrane must occur via a novel mechanism distinct from the homotypic fusion of vacuolar membranes.  相似文献   

19.
During the fifth (last) larval instar of Oncopeltus fasciatus, morphological changes in the molting glands associated with ecdysone secretion include an increase in cytoplasmic volume relative to that of the nucleus, increased amounts of rough endoplasmic reticulum and mitochondria, and the formation of deep infoldings of the plasma membrane. On the sixth day of the fifth instar large electron-lucent areas become apparent beneath the basement membrane; however, the glands remain intact until the seventh (last) day of the instar when a dramatic fragmentation of the cytoplasm, and condensation and fragmentation of the nucleus are observed. It is likely that such changes occur rapidly, just prior to the time of ecdysis to an adult. Cell death in the molting glands of Oncopeltus is markedly different from that described for the molting glands of other insect species in that autophagic vacuoles are not observed prior to a complete loss of cellular integrity.  相似文献   

20.
A comparative study was made of the ultrastructure of parenchyma leaf cells of different soybean varieties systemically infected with soybean mosaic virus (SMV). It has been shown that virus accumulation and formation of virus-specific cylindrical inclusions (CIs) occur in the infected cells, in addition to intracellular changes showing stimulation of lytic processes, such as activation of smooth endoplasmic reticulum and Golgi apparatus, formation of cytoplasmic vacuoles, cytosegresomes, myelin-like bodies, different disturbances in the structure of cell organelles. Many infected cells demonstrated microbodies with invagination in which cylindrical inclusions were often found showing signs of destruction. It is suggested that such microbodies possess autophagic activity towards CIs. A possible relation of the observed virus-induced ultrastructural cell changes with the degree of SMV affection of investigated varieties is discussed  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号