首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cause of seasonal failure of a nitrifying municipal landfill leachate treatment plant utilizing a fixed biofilm was investigated by wastewater analyses and batch respirometric tests at every treatment stage. Nitrification of the leachate treatment plant was severely affected by the seasonal temperature variation. High free ammonia (NH3-N) inhibited not only nitrite oxidizing bacteria (NOB) but also ammonia oxidizing bacteria (AOB). In addition, high pH also increased free ammonia concentration to inhibit nitrifying activity especially when the NH4-N level was high. The effects of temperature and free ammonia of landfill leachate on nitrification and nitrite accumulation were investigated with a semi-pilot scale biofilm airlift reactor. Nitrification rate of landfill leachate increased with temperature when free ammonia in the reactor was below the inhibition level for nitrifiers. Leachate was completely nitrified up to a load of 1.5 kg NH4-N m(-3)d(-1) at 28 degrees C. The activity of NOB was inhibited by NH3-N resulting in accumulation of nitrite. NOB activity decreased more than 50% at 0.7 mg NH3-N L(-1). Fluorescence in situ hybridization (FISH) was carried out to analyze the population of AOB and NOB in the nitrite accumulating nitrifying biofilm. NOB were located close to AOB by forming small clusters. A significant fraction of AOB identified by probe Nso1225 specifically also hybridized with the Nitrosomonas specific probe Nsm156. The main NOB were Nitrobacter and Nitrospira which were present in almost equal amounts in the biofilm as identified by simultaneous hybridization with Nitrobacter specific probe Nit3 and Nitrospira specific probe Ntspa662.  相似文献   

2.
【背景】稳定短程硝化是实现城市污水厌氧氨氧化技术的瓶颈,目前国内外关于游离亚硝酸(Free nitrous acid,FNA)对硝化菌活性的影响大多是在曝气条件下进行研究,鲜有关于缺氧条件下FNA对硝化菌活性影响的报道。【目的】探究好氧和缺氧下FNA对氨氧化菌(Ammonia oxidizing bacteria,AOB)和亚硝酸盐氧化菌(Nitrite oxidizing bacteria,NOB:Nitrospira和Nitrobacter)活性的抑制影响。【方法】采用序批式反应器(Sequencing batch reactor,SBR),基于混合液悬浮固体浓度(Mixed liquid suspended solids,MLSS)为8 300 mg/L的全程硝化污泥条件,通过批次试验分别考察好氧和缺氧下FNA(初始浓度为1.16 mg/L)处理48 h后,AOB和NOB活性的变化情况。【结果】好氧FNA处理活性污泥48 h后,FNA浓度维持在1.16-1.17 mg/L,游离氨(Free ammonia,FA)浓度小于0.017 mg/L,AOB、Nitrospira、Nitrobacter丰度均未发生明显变化;过曝气至99 h时,与空白组相比,比氨氮氧化速率(r~+_(NH4-N))、比亚硝酸盐氮氧化速率(r_(NO2-N))均出现小幅下降,分别由3.5、4.828 mg N/(g VSS·h)降至3.3、4.668 mg N/(g VSS·h),且亚硝酸盐氮累积率(Nitrite accumulation rate,NAR)始终低于33.2%。缺氧FNA处理活性污泥48 h后,FNA浓度维持在0.64-1.16 mg/L,FA浓度低于0.039 mg/L,AOB丰度变化较小,而Nitrospira、Nitrobacter丰度均明显下降,分别由3.002 9×10~9、4.245×10~8 copies/g VSS降至1.666 5×10~8、5.163 8×10~7 copies/g VSS;过曝气至99 h时,与空白组相比,r~+_(NH4-N)值下降幅度较小,而r_(NO2-N)值明显降低,由4.828 mg N/(g VSS·h)降至0.007 mg N/(g VSS·h),且在过曝气0-292 h内,NAR均大于94%。【结论】好氧FNA处理活性污泥48 h后对AOB和NOB无明显抑制作用,但缺氧FNA处理活性污泥48 h后对AOB具有轻微抑制作用,而对NOB具有强烈的抑制作用,可以实现稳定的短程硝化。  相似文献   

3.
This study investigated the effects of ammonium and nitrite on ammonia-oxidizing bacteria (AOB) from an activated sludge process in laboratory-scale continuous-flow reactors. AOB communities were analyzed using specific PCR followed by denaturing gel gradient electrophoresis, cloning and sequencing of the 16S rRNA gene, and AOB populations were quantified using real-time PCR. To study the effect of ammonium, activated sludge from a sewage treatment system was enriched in four reactors receiving inorganic medium containing four different ammonium concentrations (2, 5, 10 and 30 mM NH(4) (+)-N). One of several sequence types of the Nitrosomonas oligotropha cluster predominated in the reactors with lower ammonium loads (2, 5 and 10 mM NH(4) (+)-N), whereas Nitrosomonas europaea was the dominant AOB in the reactor with the highest ammonium load (30 mM NH(4) (+)-N). The effect of nitrite was studied by enriching the enriched culture possessing both N. oligotropha and N. europaea in four reactors receiving 10-mM-ammonium inorganic medium containing four different nitrite concentrations (0, 2, 12 and 22 mM NO(2) (-)-N). Nitrosomonas oligotropha comprised the majority of AOB populations in the reactors without nitrite accumulation (0 and 2 mM NO(2) (-)-N), whereas N. europaea was in the majority in the 12- and 22-mM NO(2) (-)-N reactors, in which nitrite concentrations were 2.1-5.7 mM (30-80 mg N L(-1)).  相似文献   

4.
A multi‐species nitrifying biofilm model (MSNBM) is developed to describe nitrite accumulation by simultaneous free ammonia (FA) and free nitrous acid (FNA) inhibition, direct pH inhibition, and oxygen limitation in a biofilm. The MSNBM addresses the spatial gradient of pH with biofilm depth and how it induces changes of FA and FNA speciation and inhibition. Simulations using the MSNBM in a completely mixed biofilm reactor show that influent total ammonia nitrogen (TAN) concentration, bulk dissolved oxygen (DO) concentration, and buffer concentration exert significant control on the suppression of nitrite‐oxidizing bacteria (NOB) and shortcut biological nitrogen removal (SBNR), but the pH in the bulk liquid has a weaker influence. Ammonium oxidation increases the nitrite concentration and decreases the pH, which together can increase FNA inhibition of NOB in the biofilm. Thus, a low buffer concentration can accentuate SBNR. DO and influent TAN concentrations are efficient means to enhance DO limitation, which affects NOB more than ammonia‐oxidizing bacteria (AOB) inside the biofilm. With high influent TAN concentration, FA inhibition is dominant at an early phase, but finally DO limitation becomes more important as TAN degradation and biofilm growth proceed. MSNBM results indicate that oxygen depletion and FNA inhibition throughout the biofilm continuously suppress the growth of NOB, which helps achieve SBNR with a lower TAN concentration than in systems without concentration gradients. Biotechnol. Bioeng. 2010;105: 1115–1130. © 2009 Wiley Periodicals, Inc.  相似文献   

5.
Nitrification and anammox with urea as the energy source   总被引:6,自引:0,他引:6  
Urea is present in many ecosystems and can be used as an energy source by chemolithotrophic aerobic ammonia oxidizing bacteria (AOB). Thus the utilization of urea in comparison to ammonia, by AOB as well as anaerobic ammonia oxidizing (Anammox) bacteria was investigated, using enrichments cultures, inoculated with activated sludge, and molecular ecological methods. In batch enrichment cultures grown with ammonia a population established in 2 weeks, which was dominated by halophilic and halotolerant AOB as determined by fluorescence in situ hybridization (FISH) experiments, with the 16S rRNA targeting oligonucleotide probe NEU. In other batch enrichment cultures using urea, the AOB population was assessed by PCR amplification, cloning and phylogenetic analysis of amoA and ribosomal 16S rRNA genes. While only one of the 48 16S rRNA gene clones could be identified as AOB (Nitrosomonas oligotropha), the amoA approach revealed two more AOB, Nitrosomonas europaea and Nitrosomonas nitrosa to be present in the enrichment. FISH analysis of the enrichment with probe NEU and newly designed probes for a specific detection of N. oligotropha and N. nitrosa related organisms, respectively, showed that N. oligotropha-like AOB formed about 50% of the total bacterial population. Also N. nitrosa (about 15% of the total population) and N. europaea (about 5% of the total population) were relatively abundant. Additionally, continuous enrichments were performed under oxygen limitation. When ammonia was the energy source, the community in this reactor consisted of Anammox bacteria and AOB hybridizing with probe NEU. As the substrate was changed to urea, AOB related to N. oligotropha became the dominant AOB in this oxygen limited consortium. This resulted in a direct conversion of urea to dinitrogen gas, without the addition of organic carbon.  相似文献   

6.
A novel method that relies on the decoupling of the energy production and biosynthesis processes was used to characterise the maintenance, cell lysis and growth processes of Nitrosomonas sp. A Nitrosomonas culture was enriched in a sequencing batch reactor (SBR) with ammonium as the sole energy source. Fluorescent in situ hybridization (FISH) showed that Nitrosomonas bound to the NEU probe constituted 82% of the bacterial population, while no other known ammonium or nitrite oxidizing bacteria were detected. Batch tests were carried out under conditions that both ammonium and CO2 were in excess, and in the absence of one of these two substrates. The oxygen uptake rate and nitrite production rate were measured during these batch tests. The results obtained from these batch tests, along with the SBR performance data, allowed the determination of the maintenance coefficient and the in situ cell lysis rate, as well as the maximum specific growth rate of the Nitrosomonas culture. It is shown that, during normal growth, the Nitrosomonas culture spends approximately 65% of the energy generated for maintenance. The maintenance coefficient was determined to be 0.14-0.16 mgN mgCOD(biomass)(-1)h(-1), and was shown to be independent of the specific growth rate. The in situ lysis rate and the maximum specific growth rate of the Nitrosomonas culture were determined to be 0.26 and 1.0 day(-1) (0.043 h(-1)), respectively, under aerobic conditions at 30 degrees C and pH 7.  相似文献   

7.
A recent study showed that ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) coexist in the process of cattle manure composting. To investigate their physiological characteristics, liquid cultures seeded with fermenting cattle manure compost were incubated at various temperatures (37°C, 46°C, or 60°C) and ammonium concentrations (0.5, 1, 4, or 10?mM NH (4) (+) -N). The growth rates of the AOB and AOA were monitored using real-time polymerase chain reaction analysis targeting the bacterial and archaeal ammonia monooxygenase subunit A genes. AOB grew at 37°C and 4 or 10?mM NH (4) (+) -N, whereas AOA grew at 46°C and 10?mM NH (4) (+) -N. Incubation with allylthiourea indicated that the AOB and AOA grew by oxidizing ammonia. Denaturing gradient gel electrophoresis and subsequent sequencing analyses revealed that a bacterium related to Nitrosomonas halophila and an archaeon related to Candidatus Nitrososphaera gargensis were the predominant AOB and AOA, respectively, in the seed compost and in cultures after incubation. This is the first report to demonstrate that the predominant AOA in cattle manure compost can grow and can probably oxidize ammonia under moderately thermophilic conditions.  相似文献   

8.
蔡雨衡  向斯  程凯 《微生物学通报》2021,48(11):3996-4005
[背景] 氨氮浓度会明显影响亚硝化单胞菌的活性,但氨氮浓度对吸附态亚硝化单胞菌菌种的抑制动力学尚缺乏研究。[目的] 研究氨氮浓度对3种吸附态亚硝化单胞菌(Nitrosomonas eutropha CZ-4、Nitrosomonas halophila C-19和Nitrosomonas europaea SH-3)的影响。[方法] 以碳酸钙作为吸附基质,设定氨氮浓度为25-1 000 mg/L,测定3种亚硝化单胞菌(N.eutropha CZ-4、N. halophila C-19和N. europaea SH-3)的亚硝氮积累速率与最大比生长速率,并通过Edwares2模型建立氨氧化的抑制动力学方程。[结果] N. halophila C-19在初始氨氮浓度为50-100 mg/L时的亚硝氮积累最快,N. europaea SH-3的亚硝氮积累则在初始氨氮浓度为50-200 mg/L时最快,而N. eutropha CZ-4则适于在初始氨氮浓度为50-400 mg/L时积累亚硝氮;N. eutropha CZ-4的最大比生长速率出现在初始氨氮浓度为50-400 mg/L时,明显高于N. halophila C-19(25-100 mg/L),而N. europaea SH-3的生长速度在初始氨氮浓度为50-800 mg/L区间内无显著差异;N. europaea SH-3的KI(922.76 mg/L)显著高于N. eutropha CZ-4(597.88 mg/L),而CZ-4的KI又显著高于N. halophila C-19(186.24 mg/L),N. europaea SH-3的Km(72.06 mg/L)显著高于N. halophila C-19(23.23 mg/L)。[结论] 3种吸附态亚硝化单胞菌的生长和氨氧化对氨氮浓度变化的响应存在明显差异,对于认识不同亚硝化单胞菌在不同氨氮浓度污水中的功能并开发相应的工程技术具有重要意义。  相似文献   

9.
Biological nitrogen removal (BNR) based on partial nitrification and denitrification via nitrite is a cost-effective alternate to conventional nitrification and denitrification (via nitrate). The goal of this study was to investigate the microbial ecology, biokinetics, and stability of partial nitrification. Stable long-term partial nitrification resulting in 82.1 +/- 17.2% ammonia oxidation, primarily to nitrite (77.3 +/- 19.5% of the ammonia oxidized) was achieved in a lab-scale bioreactor by operation at a pH, dissolved oxygen and solids retention time of 7.5 +/- 0.1, 1.54 +/- 0.87 mg O(2)/L, and 3.0 days, respectively. Bioreactor ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) populations were most closely related to Nitrosomonas europaea and Nitrobacter spp., respectively. The AOB population fraction varied in the range 61 +/- 45% and was much higher than the NOB fraction, 0.71 +/- 1.1%. Using direct measures of bacterial concentrations in conjunction with independent activity measures and mass balances, the maximum specific growth rate (micro(max)), specific decay (b) and observed biomass yield coefficients (Y(obs)) for AOB were 1.08 +/- 1.03 day(-1), 0.32 +/- 0.34 day(-1), and 0.15 +/- 0.06 mg biomass COD/mg N oxidized, respectively. Corresponding micro(max), b, and Y(obs) values for NOB were 2.6 +/- 2.05 day(-1), 1.7 +/- 1.9 day(-1), and 0.04 +/- 0.02 mg biomass COD/mg N oxidized, respectively. The results of this study demonstrate that the highly selective partial nitrification operating conditions enriched for a narrow diversity of rapidly growing AOB and NOB populations unlike conventional BNR reactors, which host a broader diversity of nitrifying bacteria. Further, direct measures of microbial abundance enabled not only elucidation of mixed community microbial ecology but also estimation of key engineering parameters describing bioreactor systems supporting these communities.  相似文献   

10.
To achieve nitritation from complete-nitrification seed sludge at room temperature of 19 ± 1 °C, a lab-scale sequencing batch reactor (SBR) treating domestic wastewater with low C/N ratios was operated to investigate the control and optimization of nitrifying communities. Ammonia oxidizing bacteria (AOB) dominance was enhanced through the combination of low DO concentrations (<1.0 mg/L) and preset short-cycle control of aeration time. Nitritation was successfully established with NO2?-N/NOx?-N over 95%. To avoid the adverse impact of low DO concentrations on AOB activities, DO concentrations were increased to 1–2 mg/L. At the normal DO levels and temperatures, on-line control strategy of aerobic durations maintained the stability of nitritation with nitrite accumulation rate over 95% and ammonia removal above 97%. Fluorescence in-situ hybridization (FISH) analysis presented that the maximal percentage of AOB in biomass reached 10.9% and nitrite oxidizing bacteria (NOB) were washed out.  相似文献   

11.

Aims

To investigate community shifts of amoA‐encoding archaea (AEA) and ammonia‐oxidizing bacteria (AOB) in biofilter under nitrogen accumulation process.

Methods and Results

A laboratory‐scale rockwool biofilter with an irrigated water circulation system was operated for 436 days with ammonia loading rates of 49–63 NH3 g m?3 day?1. The AEA and AOB communities were investigated by denaturing gradient gel electrophoresis, sequencing and real‐time PCR analysis based on amoA genes. The results indicated that changes in abundance and community compositions occurred in a different manner between archaeal and bacterial amoA during the operation. However, both microbial community structures mainly varied when free ammonia (FA) concentrations in circulation water were increasing, which caused a temporal decline in reactor performance. Dominant amoA sequences after this transition were related to Thaumarchaeotal Group I.1b, Nitrosomonas europaea lineages and one subcluster within Nitrosospira sp. cluster 3, for archaea and bacteria, respectively.

Conclusions

The specific FA in circulation water seems to be the important factor, which relates to the AOB and AEA community shifts in the biofilter besides ammonium and pH.

Significance and Impact of the Study

One of the key factors for regulating AEA and AOB communities was proposed that is useful for optimizing biofiltration technology.  相似文献   

12.
Nitrous oxide (N(2)O) emission from soils is a major contributor to the atmospheric loading of this potent greenhouse gas. It is thought that autotrophic ammonia oxidizing bacteria (AOB) are a significant source of soil-derived N(2)O and a denitrification pathway (i.e. reduction of NO(2) (-) to NO and N(2)O), so-called nitrifier denitrification, has been demonstrated as a N(2)O production mechanism in Nitrosomonas europaea. It is thought that Nitrosospira spp. are the dominant AOB in soil, but little information is available on their ability to produce N(2)O or on the existence of a nitrifier denitrification pathway in this lineage. This study aims to characterize N(2)O production and nitrifier denitrification in seven strains of AOB representative of clusters 0, 2 and 3 in the cultured Nitrosospira lineage. Nitrosomonas europaea ATCC 19718 and ATCC 25978 were analysed for comparison. The aerobically incubated test strains produced significant (P < 0.001) amounts of N(2)O and total N(2)O production rates ranged from 2.0 amol cell(-1) h(-1), in Nitrosospira tenuis strain NV12, to 58.0 amol cell(-1) h(-1), in N. europaea ATCC 19718. Nitrosomonas europaea ATCC 19718 was atypical in that it produced four times more N(2)O than the next highest producing strain. All AOB tested were able to carry out nitrifier denitrification under aerobic conditions, as determined by production of (15)N-N(2)O from applied (15)N-NO(2) (-). Up to 13.5% of the N(2)O produced was derived from the exogenously applied (15)N-NO(2) (-). The results suggest that nitrifier denitrification could be a universal trait in the betaproteobacterial AOB and its potential ecological significance is discussed.  相似文献   

13.
To determine whether the distribution of estuarine ammonia-oxidizing bacteria (AOB) was influenced by salinity, the community structure of betaproteobacterial ammonia oxidizers (AOB) was characterized along a salinity gradient in sediments of the Ythan estuary, on the east coast of Scotland, UK, by denaturant gradient gel electrophoresis (DGGE), cloning and sequencing of 16S rRNA gene fragments. Ammonia-oxidizing bacteria communities at sampling sites with strongest marine influence were dominated by Nitrosospira cluster 1-like sequences and those with strongest freshwater influence were dominated by Nitrosomonas oligotropha-like sequences. Nitrosomonas sp. Nm143 was the prevailing sequence type in communities at intermediate brackish sites. Diversity indices of AOB communities were similar at marine- and freshwater-influenced sites and did not indicate lower species diversity at intermediate brackish sites. The presence of sequences highly similar to the halophilic Nitrosomonas marina and the freshwater strain Nitrosomonas oligotropha at identical sampling sites indicates that AOB communities in the estuary are adapted to a range of salinities, while individual strains may be active at different salinities. Ammonia-oxidizing bacteria communities that were dominated by Nitrosospira cluster 1 sequence types, for which no cultured representative exists, were subjected to stable isotope probing (SIP) with 13C-HCO3-, to label the nucleic acids of active autotrophic nitrifiers. Analysis of 13C-associated 16S rRNA gene fragments, following CsCl density centrifugation, by cloning and DGGE indicated sequences highly similar to the AOB Nitrosomonas sp. Nm143 and Nitrosomonas cryotolerans and to the nitrite oxidizer Nitrospira marina. No sequence with similarity to the Nitrosospira cluster 1 clade was recovered during SIP analysis. The potential role of Nitrosospira cluster 1 in autotrophic ammonia oxidation therefore remains uncertain.  相似文献   

14.
Applied Microbiology and Biotechnology - We investigated the effects of free ammonia (FA) and free nitrous acid (FNA) concentrations on the predominant ammonia-oxidizing bacteria (AOB) and the...  相似文献   

15.
太湖竺山湾沉积物中氨氧化原核生物的垂直分布与多样性   总被引:8,自引:0,他引:8  
原核生物驱动的氨氧化过程对于富营养化湖泊的氮循环具有重要意义。为了解太湖藻型湖区沉积物中氨氧化原核生物的垂直分布和多样性特征,采用分子生态学方法,对竺山湾沉积物剖面中氨单加氧酶基因(amoA)或16S rRNA基因等特征分子标记的变化和序列特征进行了分析。结果表明,氨氧化细菌(ammonia-oxidizing bacteria,AOB)和氨氧化古菌(ammonia-oxidizing archaea,AOA)共存于沉积物各层。AOB的优势种在5cm深度以下发生明显改变,这可能与沉积物氧化还原电位及铵态氮的变化有关;所有细菌amoA序列均属亚硝化单胞菌(Nitrosomonas)。AOA群落结构自表层至7cm深度变化不大,所有古菌amoA序列分属泉古菌CG1.1b和CG1.1a两大类群,这可能与太湖形成历史上的海陆交替过程有关。此外,沉积物各层均未发现典型厌氧氨氧化(anaerobic ammonium oxidation,anammox)细菌16S rRNA基因序列。这些发现丰富了对太湖藻型湖区氨氧化原核生物分布、多样性及环境调控原理的认识,对理解富营养化湖泊氨氧化规律、认识湖泊生态系统氮循环功能具有借鉴意义。  相似文献   

16.
Aims:  To monitor emissions of NH3 and N2O during composting and link these to ammonia oxidation rates and the community structure of ammonia oxidizing bacteria (AOB).
Methods and Results:  A laboratory-scale compost reactor treating organic household waste was run for 2 months. NH3 emissions peaked when pH started to increase. Small amounts of N2O and CH4 were also produced. In total, 16% and less than 1% of the initial N was lost as NH3-N and N2O-N respectively. The potential ammonia oxidation rate, determined by a chlorate inhibition assay, increased fourfold during the first 9 days and then remained high. Initially, both Nitrosospira and Nitrosomonas populations were detected using DGGE analysis of AOB specific 16S rRNA fragments. Only Nitrosomonas europaea was detected under thermophilic conditions, but Nitrosospira populations re-established during the cooling phase.
Conclusions:  Thermophilic conditions favoured high potential ammonia oxidation rates, suggesting that ammonia oxidation contributed to reduced NH3 emissions. Small but significant amounts of N2O were emitted during the thermophilic phase. The significance of different AOBs detected in the compost for ammonia oxidation is not clear.
Significance and Impact of Study:  This study shows that ammonia oxidation occurs at high temperature composting and therefore most likely reduces NH3 emissions.  相似文献   

17.
Liu S  Yang F  Xue Y  Gong Z  Chen H  Wang T  Su Z 《Bioresource technology》2008,99(17):8273-8279
In this study, the anammox consortium was found to adapt to the wastewater containing dissolved oxygen (DO), as the DO was gradually increased. Batch tests indicated the maximum aerobic ammonium oxidizing activity of the consortium was 1.38mmolNH(4)(+)-N(gVSS)(-1)day(-1), which played key roles in the oxygen consumption process; the maximum anaerobic ammonium oxidizing activity was slightly decreased after long-term oxygen exposure, but only from 21.23mmolNH(4)(+)-N(gVSS)(-1)day(-1) to 20.23mmolNH(4)(+)-N(gVSS)(-1)day(-1). Microbiological community analysis identified two strains similar to Nitrosomonas eutropha were responsible for oxygen consumption, which were able to exist in the autotrophic anaerobic condition for long periods and protect anammox bacteria Planctomycetales from the influence of oxygen. Microbiological composition analysis showed Nitrosomonas and Planctomycetales approximately accounted for 10% and 70% of the bacteria, respectively. The possibility of cultivation anammox consortium in presence of DO will lead to substantial savings of energy and resource in the industrial application.  相似文献   

18.
Culture enrichments and culture-independent molecular methods were employed to identify and confirm the presence of novel ammonia-oxidizing bacteria (AOB) in nitrifying freshwater aquaria. Reactors were seeded with biomass from freshwater nitrifying systems and enriched for AOB under various conditions of ammonia concentration. Surveys of cloned rRNA genes from the enrichments revealed four major strains of AOB which were phylogenetically related to the Nitrosomonas marina cluster, the Nitrosospira cluster, or the Nitrosomonas europaea-Nitrosococcus mobilis cluster of the beta subdivision of the class Proteobacteria. Ammonia concentration in the reactors determined which AOB strain dominated in an enrichment. Oligonucleotide probes and PCR primer sets specific for the four AOB strains were developed and used to confirm the presence of the AOB strains in the enrichments. Enrichments of the AOB strains were added to newly established aquaria to determine their ability to accelerate the establishment of ammonia oxidation. Enrichments containing the Nitrosomonas marina-like AOB strain were most efficient at accelerating ammonia oxidation in newly established aquaria. Furthermore, if the Nitrosomonas marina-like AOB strain was present in the original enrichment, even one with other AOB, only the Nitrosomonas marina-like AOB strain was present in aquaria after nitrification was established. Nitrosomonas marina-like AOB were 2% or less of the cells detected by fluorescence in situ hybridization analysis in aquaria in which nitrification was well established.  相似文献   

19.
Biochemical processes relevant to soil nitrogen (N) cycling are performed by soil microorganisms affiliated with diverse phylogenetic groups. For example, the oxidation of ammonia, representing the first step of nitrification, can be performed by ammonia oxidizing bacteria (AOB) and, as recently reported, also by ammonia oxidizing archaea (AOA). However, the contribution to ammonia oxidation of the phylogenetically separated AOA versus AOB and their respective responsiveness to environmental factors are still poorly understood. The present study aims at comparing the capacity of AOA and AOB to momentarily respond to N input and increased soil moisture in two contrasting forest soils. Soils from the pristine Rothwald forest and the managed Schottenwald forest were amended with either NH(4)(+)-N or NO(3)(-)-N and were incubated at 40% and 70% water-filled pore space (WFPS) for four days. Nitrification rates were measured and AOA and AOB abundance and community composition were determined via quantitative PCR (qPCR) and terminal restriction length fragment polymorphism (T-RFLP) analysis of bacterial and archaeal amoA genes. Our study reports rapid and distinct changes in AOA and AOB abundances in the two forest soils in response to N input and increased soil moisture but no significant effects on net nitrification rates. Functional microbial communities differed significantly in the two soils and responded specifically to the treatments during the short-term incubation. In the Rothwald soil the abundance and community composition of AOA were affected by the water content, whereas AOB communities responded to N amendment. In the Schottenwald soil, by contrast, AOA responded to N addition. These results suggest that AOA and AOB may be selectively influenced by soil and management factors.  相似文献   

20.
The spatial distribution and activities of nitrifying and denitrifying bacteria in sponge media were investigated using diverse tools, because understanding of in situ microbial condition of sponge phase is critical for the successful design and operation of sponge media process. The bacterial consortia within the media was composed of diverse groups including a 14.5% Nitrosomonas spp.-like ammonia oxidizing bacteria (AOB), 12.5% Nitrobacter spp.-like nitrite oxidizing bacteria (NOB), 2.0% anaerobic ammonium-oxidizing (ANAMMOX) bacteria and 71.0% other bacteria. The biofilm appeared to be most dense in the relatively outer region of the media and gradually decreased with depth, but bacterial viabilities showed space-independent feature. The fluorescent in situ hybridization results revealed that AOB and NOB co-existed in similar quantities on the side fragments of the media, which was reasonably supported by the microelectrode measurements showing the concomitant oxidation of NH(4) (+) and production of NO(3) (-) in this zone. However, a significantly higher fraction of AOB was observed in the center than side fragment. As with the overall biofilm density profile, the denitrifying bacteria were also more abundant on the side than in the center fragments. ANAMMOX bacteria detected throughout the entire depth offer another advantage for the removal of nitrogen by simultaneously converting NH(4) (+) and NO(2) (-) to nitrogen gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号