首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
The growth hormone receptor (GHR) is expressed as one active, full-sequence isoform and one truncated, inactive one that lacks the intracellular signaling domain. The aim of this study was to investigate the variation in the tissue expression of the full and truncated mRNA and protein. Epstein-Barr virus-transformed human B lymphocyte lines were established from 9 normal individuals with a height standard deviation score (SDS) of - 0.1 +/- 1.1 (mean +/- SD). Tissues were also collected from 3 Rhesus monkeys, whose GHR has 94.1 % homology with the human molecule. mRNA quantitation was determined by Real Time Quantitative PCR. Growth hormone receptor expression in transformed lymphocytes was also studied by fluorescence-activated cell sorter analysis. Both isoforms were expressed in transformed lymphocytes, but individual variation in the relative mRNA expression was small (truncated isoform percentage of total receptor mRNA: 17.1 +/- 4.4, mean +/- SD). There was no correlation between donors' height SDS and the expression of either isoform or the ratio between them. Protein expression by FACS analysis showed wider variation among the subjects; however, the relative ratio was similar in all the subjects. In monkey tissues, the truncated receptor showed a tissue-specific distribution. In conclusion, the expression of both isoforms in transformed lymphocytes from normal subjects shows small differences at the RNA or protein levels, and does not correlate with height SDS. Growth hormone splice isoforms show tissue specificity, suggesting local regulation of splicing. Tissues with relatively high expression of the truncated isoform are likely to be more resistant to the effects of GH due to the dominant negative effect of this isoform. In addition, the differential tissue expression might influence the levels of growth hormone binding protein in the immediate milieu of each tissue.  相似文献   

6.
To determine the gene(s) induced by hypertonicity in the brain, we performed a differential display analysis using RNA isolated from isotonic and hypertonic rat astrocytes. One cDNA rapidly up-regulated by hypertonicity was isolated, and the DNA sequence revealed that it was identical to adenine nucleotide translocator (ANT)2. ANT2 protein exchanges intramitochondrial ATP for cytoplasmic ADP. Among three ANT isoforms, only ANT2 mRNA was up-regulated markedly from 1 to 4 h after exposure to hypertonicity. Induction of the mRNA did not require de novo protein synthesis. Furthermore, ADP translocase activity in mitochondria of astrocytes was increased significantly by hypertonicity. To see the localization and regulation of ANT2 mRNA in the brain, we performed in situ hybridization of rat brain after intraperitoneal injection of a high concentration of NaCl. Although there were only weak signals in the control, intense hybridization signals were seen in hypertonic rat whole brain. Microscopic examination showed that ANT2 signals were present in the neurons, as well as glial cells. These results suggest that ANT2 may play a role in brain cells to adapt to the hypertonic environment.  相似文献   

7.
The adenine nucleotide translocator (ANT) is a mitochondrial bi-functional protein, which catalyzes the exchange of ADP and ATP between cytosol and mitochondria and participates in many models of mitochondrial apoptosis. The human adenine nucleotide translocator sub-family is composed of four isoforms, namely ANT1–4, encoded by four nuclear genes, whose expression is highly regulated. Previous studies have revealed that ANT1 and 3 induce mitochondrial apoptosis, whereas ANT2 is anti-apoptotic. However, the role of the recently identified isoform ANT4 in the apoptotic pathway has not yet been elucidated. Here, we investigated the effects of stable heterologous expression of the ANT4 on proliferation, mitochondrial respiration and cell death in human cancer cells, using ANT3 as a control of pro-apoptotic isoform. As expected, ANT3 enhanced mitochondria-mediated apoptosis in response to lonidamine, a mitochondriotoxic chemotherapeutic drug, and staurosporine, a protein kinase inhibitor. Our results also indicate that the pro-apoptotic effect of ANT3 was accompanied by decreased rate of cell proliferation, alteration in the mitochondrial network topology, and decreased reactive oxygen species production. Of note, we demonstrate for the first time that ANT4 enhanced cell growth without impacting mitochondrial network or respiration. Moreover, ANT4 differentially regulated the intracellular levels of hydrogen peroxide without affecting superoxide anion levels. Finally, stable ANT4 overexpression protected cancer cells from lonidamine and staurosporine apoptosis in a manner independent of Bcl-2 expression. These data highlight a hitherto undefined cytoprotective activity of ANT4, and provide a novel dichotomy in the human ANT isoform sub-family with ANT1 and 3 isoforms functioning as pro-apoptotic while ANT2 and 4 isoforms render cells resistant to death inducing stimuli.  相似文献   

8.
9.
Adenine nucleotide translocases (ANTs) are mitochondrial proteins encoded by nuclear DNA that catalyze the exchange of ATP generated in the mitochondria for ADP produced in cytosol. There are four ANT isoforms in humans (hANT1-4) and three in mice (mANT1, mANT2 and mANT4), all encoded by distinct genes. The aim of this study was to quantify expression of ANT isoform genes during the adipogenesis of mouse 3T3-L1 and human Simpson–Golabi–Behmel syndrome (SGBS)-derived preadipocytes. We also studied the effects of the adipogenesis regulators, insulin and rosiglitazone, on ANT isoform expression in differentiated adipocytes and examined the expression of ANT isoforms in subcutaneous and visceral white adipose tissue (WAT) from mice and humans. We found that adipogenesis was associated with an increase in the expression of ANT isoforms, specifically mANT2 in mouse 3T3-L1 cells and hANT3 in human SGBS cells. These changes could be involved in the increases in oxidative metabolism and decreases in lactate production observed during differentiation. Insulin and rosiglitazone induced mANT2 gene expression in mature 3T3-L1 cells and hANT2 and hANT3 gene expression in SGBS adipocytes. Furthermore, human WAT expressed greater amounts of hANT3 than hANT2, and the expression of both of these isoforms was greater in subcutaneous WAT than in visceral WAT. Finally, inhibition of ANT activity by atractyloside or bongkrekic acid impaired proper adipocyte differentiation. These results suggest that changes in the expression of ANT isoforms may be involved in adipogenesis in both human and mouse WAT.  相似文献   

10.
11.
Neoplastic transformation was found to have a marked effect on the expression of nuclear DNA (nDNA)- and mitochondrial DNA (mtDNA)-encoded oxidative phosphorylation (OXPHOS) genes. Examining three pairs of human diploid fibroblasts and their SV 40-transformed counterparts revealed that mRNAs for the nuclear-encoded ATP synthase beta and the adenine nucleotide translocator (ANT) isoform 1 and 2 genes were markedly induced, whereas the mRNA for the ANT isoform 3 gene remained unchanged. The mRNA levels for the mtDNA-encoded 12 S rRNA, ND2, ATPase6+8, COIII, ND5+6, and Cytb genes were also increased, whereas the mtDNA number declined. Similar analysis of a cervical carcinoma (HeLa), fibrosarcoma (HT1080), and an Epstein-Barr virus (EBV)-transformed lymphoblastoid line (EBV-L) revealed that all three ANT isoforms were also expressed in these cells. Hence, changes in the expression of OXPHOS genes may be a common feature of transformed cells.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号