首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several substituted quinolin-4-amines and heteroaromatic analogs were synthesized and evaluated for interaction with triplex polydA.2polydT and duplex polydA.polydT by using UV-thermal melting experiments. Excellent triple-helix DNA ligands with high affinity toward T.A.T triplets and triple/duplex selectivity were designed through a rational approach.  相似文献   

2.
We have used circular dichroism and UV absorption spectroscopy to characterize the formation and melting behaviour of an intramolecular DNA triple helix containing parallel T*A:T and G*G:C triplets. Our approach to induce and to stabilize a parallel triplex involves the oligonucleotide 5'-d(G4A4G4[T4]C4T4C4-[T4]G4T4G4) ([T4] represents a stretch of four thymine residues). In a 10 mM sodium cacodylate, 0.2 mM disodium EDTA (pH 7) buffer, we have shown the following significant results. (i) While in the absence of MgCl2 this oligonucleotide adopts an intramolecular hairpin duplex structure prolonged by the single strand extremity 5'-d([T4]G4T4G4), the presence of millimolar concentrations of MgCl2generates an intramolecular triplex (via double hairpin formation). (ii) In contrast to the antiparallel triplex formed by the oligonucleotide 5'-d(G4T4G4[T4]G4A4G4[T4]C4T4C4), the parallel triplex melts in a biphasic manner (a triplex to duplex transition followed by a duplex to coil transition) and is less stable than the antiparallel one. The enthalpy change associated with triplex formation (-37 kcal/mol) is approximately half that of duplex formation (-81 kcal/mol). (iii) The parallel triple helix is disrupted by increasing the concentration of KCl(>10 mM), whereas, under the same conditions, the antiparallel triplex remains stable. (iv) Netropsin, a natural DNA minor groove-binding ligand, binds to the central site A4/T4of the duplex or triplex in an equimolar stoichiometry. Its association constant K is smaller for the parallel triplex ( approximately 1 x 10(7) M-1) than for the antiparallel one ( approximately 1 x 10(8) M-1). In contrast to the antiparallel structure, netropsin binding has no apparent effect on thermal stability of the parallel triple helix.  相似文献   

3.
Data are presented on a triplex type with two parallel homologous strands for which triplex formation is almost as strong as duplex formation at least for some sequences and even at pH 7 and 0.2 M NaCl. The evidence mainly rests upon comparing thermodynamic properties of similar systems. A paperclip oligonucleotide d(A12C4T12C4A12) with two linkers C4 obviously can form a triplex with parallel back-folded adenine strand regions, because the single melting transition of this complex splits in two transitions by introducing mismatches only in the third strand region. Respectively, a hairpin duplex d(A12C4T12) and a single strand d(A12) form a triplex as a 1:1 complex in which the second adenine strand is parallel oriented to the homologous one in the Watson-Crick paired duplex. In this system the melting temperature T(m) of the triplex is practically the same as that of the duplex d(A12)-d(T12), at least within a complex concentration range of 0.2-4.0 microM. The melting behaviour of complexes between triplex stabilizing ligand BePI and the system hairpin duplex plus single strand supports the triplex model. Non-denaturing gel electrophoresis suggests the existence of a triplex for a system in which five of the twelve A-T*A base triads are substituted by C-G*C base triads. The recognition between any substituted Watson-Crick base pair (X-Y) in the hairpin duplex d(A4XA7C4T7YT4) and the correspondingly replaced base (Z) in the third strand d(A4ZA7) is mutually selective. All triplexes with matching base substitutions (Z = X) have nearly the same stability (T(m) values from 29 to 33.5 degrees C), whereas triplexes with non-matching substitutions (Z not equal X) show a clearly reduced stability (T(m) values from 15 to 22 degrees C) at 2microM equimolar oligonucleotide concentration. Most nucleic acid triple helices hitherto known are limited to homopurine-homopyrimidine sequences in the target duplex. A stable triplex formation is demonstrated for inhomogeneous sequences tolerating at least 50% pyrimidine content in the homologous strands. On the basis of the surprisingly similar thermodynamic parameters for duplex and triplex, and of the fact that this triplex type seems to be more stable than many other natural DNA triplexes known, and on the basis of semiempirical and molecule mechanical calculations, we postulate bridging interactions of the third strand with the two other strands in the triplex according to the recombination motif. This triplex, denoted by us 'recombination-like form', tolerates heterogeneous base sequences.  相似文献   

4.
We synthesized seven homologs of spermine (H2N(CH2)3NH(CH2)nNH(CH2)3NH2, where n = 2-9; n = 4 for spermine) and studied their effects on melting temperature (Tm), conformation, and precipitation of poly(dA).2poly(dT). The triplex DNA melting temperature, Tm1 was 34.4 degrees C in the presence of 150 mM KCl. Addition of spermine homologs increased Tm1 in a concentration-dependent and structure-dependent manner, with 3-6-3 (n = 6) exerting optimal stabilization. The dTm1/dlog[polyamine] values were 9-24 for these compounds. The duplex melting temperature, Tm2 was insensitive to homolog concentration and structure, suggesting their ability to stabilize triplex DNA without altering the stability of the underlying duplex. Circular dichroism spectral studies revealed psi-DNA formation in a concentration-dependent and structure-dependent manner. Phase diagrams were constructed showing the critical ionic/polyamine concentrations stabilizing different structures. These compounds also exerted structural specificity effects on precipitating triplex DNA. These data provide new insights into the ionic/structural determinants affecting triplex DNA stability and indicate that 3-6-3 is an excellent ligand to stabilize poly(dA).2poly(dT) triplex DNA under physiologic ionic conditions for antigene therapeutics.  相似文献   

5.
The interaction of ethidium bromide (EB), a DNA intercalator, with two intramolecular triplexes 5'd(G4A4G4-[T4]-C4T4C4-[T4]-G4T4G4), 5'd(G4T4G4-[T4]-G4A4G4-[T4]-C4T4C4) ([T4] represents a stretch of 4 thymine residues) and their precursor duplexes has been investigated by circular dichroism, fluorescence and UV absorption spectroscopy. Binding of EB induces a circular dichroism band in the region around 310 nm which is positive for the duplex forms but negative for the triplex forms. We observed that the binding of EB to the duplex form does not induce the formation of the triplex structures. Thermal denaturation experiments demonstrate that EB stabilizes more the parallel triple helix than the antiparallel one. Analysis of the binding process from fluorescence measurements shows that binding constants to the triple helical forms and to the hairpin reference duplex [T4]-G4A4G4-[T4]-C4T4C4) are close. However the binding site size is larger for the triplexes (4-6 base triplets) than for the duplex (2 base pairs).  相似文献   

6.
A synthetic DNA triple helix sequence was formed by annealing a pyrimidinic 21 mer single strand sequence onto the complementary purinic sequence centred on a 27 mer duplex DNA. Melting of the third strand was monitored by UV spectrophotometry in the temperature range 10-90 degrees C. The T(m) of the triplex, 37 degrees C, was well separated from the onset of duplex melting. When the same triple helix was formed on the duplex bearing one nick in the center of the pyrimidinic sequence the T(m) of the triplex was shifted to approximately 32 degrees C and overlapped the melting of the duplex. We have used fluorescence polarization anisotropy (FPA) measurements of ethidium bromide (EB) intercalated in duplex and triplex samples to determine the hydrodynamic parameters in the temperature range 10-40 degrees C. The fluorescence lifetime of EB in the samples of double and triple stranded DNA is the same (21.3 +/- 0.5 ns) at 20 degrees C, indicating that the geometries of the intercalation sites are similar. The values for the hydration radii of the duplex, normal triplex, and nicked triplex samples were 10.7 +/- 0.2, 12.2 +/- 0.2, and 12.0 +/- 0.2 A. FPA measurements on normal triplex DNA as a function of temperature gave a melting profile very similar to that derived by UV absorption spectroscopy. For the triplex carrying a nick, the melting curve obtained using FPA showed a clear shift compared with that obtained for the normal triplex sample. The torsional rigidity of the triplex forms was found to be higher than that of the duplex form.  相似文献   

7.
Oligodeoxynucleotide (ODN) directed triplex formation has therapeutic importance and depends on Hoogsteen hydrogen bonds between a duplex DNA and a third DNA strand. T*A:T triplets are formed at neutral pH and C+*G:C are favoured at acidic pH. It is demonstrated that spermine conjugation at N4 of 5-Me-dC in ODNs 1-5 (sp-ODNs) imparts zwitterionic character, thus reducing the net negative charge of ODNs 1-5. sp-ODNs form triplexes with complementary 24mer duplex 8:9 show foremost stability at neutral pH 7.3 and decrease in stability towards lower pH, unlike the normal ODNs where optimal stability is found at an acidic pH 5.5. At pH 7.3, control ODNs 6 and 7 carrying dC or 5-Me-dC, respectively, do not show any triple helix formation. The stability order of triplex containing 5-Me-dC-N4-(spermine) with normal and mismatched duplex was found to be X*G:C approximately X*A:T > X*C:G > X*T:A. The hysteresis curve of sp-ODN triplex 3*8:9 indicated a better association with complementary duplex 8:9 as compared to unmodified ODN 6 in triplex 6*8:9. pH-dependent UV difference spectra suggest that N3 protonation is not a requirement for triplex formation by sp-ODN and interstrand interaction of conjugated spermine more than compensates for loss in stability due to absence of a single Hoogsteen hydrogen bond. These results may have importance in designing oligonucleotides for antigene applications.  相似文献   

8.
D S Pilch  C Levenson  R H Shafer 《Biochemistry》1991,30(25):6081-6088
We have investigated the structure and physical chemistry of the d(C3T4C3).2[d(G3A4G3)] triple helix by polyacrylamide gel electrophoresis (PAGE), 1H NMR, and ultraviolet (UV) absorption spectroscopy. The triplex was stabilized with MgCl2 at neutral pH. PAGE studies verify the stoichiometry of the strands comprising the triplex and indicate that the orientation of the third strand in purine-purine-pyrimidine (pur-pur-pyr) triplexes is antiparallel with respect to the purine strand of the underlying duplex. Imino proton NMR spectra provide evidence for the existence of new purine-purine (pur.pur) hydrogen bonds, in addition to those of the Watson-Crick (W-C) base pairs, in the triplex structure. These new hydrogen bonds are likely to correspond to the interaction between third-strand guanine NH1 imino protons and the N7 atoms of guanine residues on the purine strand of the underlying duplex. Thermal denaturation of the triplex proceeds to single strands in one step, under the conditions used in this study. Binding of the third strand appears to enhance the thermal stability of the duplex by 1-3 degrees C, depending on the DNA concentration. The free energy of triplex formation (-26.0 +/- 0.5 kcal/mol) is approximately twice that of duplex formation (-12.6 +/- 0.7 kcal/mol), suggesting that the overall stability of the pur.pur base pairs is similar to that of the W-C base pairs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The formation of a GAA/TTC DNA triplex has been implicated in Friedreich's ataxia. The destabilization of GAA/TTC DNA triplexes either by pH or by binding to appropriate ligands was analyzed by nuclear magnetic resonance (NMR) and positive-ion electrospray mass spectrometry. The triplexes and duplexes were identified by changes in the NMR chemical shifts of H8, H1, H4, 15N7, and 15N4. The lowest pH at which the duplex is detectable depends upon the overall stability and the relative number of Hoogsteen C composite function G to T composite function A basepairs. A melting pH (pHm) of 7.6 was observed for the destabilization of the (GAA)2T4(TTC)2T4(CTT)2 triplex to the corresponding Watson-Crick duplex and the T4(CTT)2 overhang. The mass spectrometric analyses of (TTC)6.(GAA)6 composite function(TTC)6 triplex detected ions due to both triplex and single-stranded oligonucleotides under acidic conditions. The triplex ions disappeared completely at alkaline pH. Duplex and single strands were detectable only at neutral and alkaline pH values. Mass spectrometric analyses also showed that minor groove-binding ligands berenil, netropsin, and distamycin and the intercalating ligand acridine orange destabilize the (TTC)6.(GAA)6 composite function (TTC)6 triplex. These NMR and mass spectrometric methods may function as screening assays for the discovery of agents that destabilize GAA/TTC triplexes and as general methods for the characterization of structure, dynamics, and stability of DNA and DNA-ligand complexes.  相似文献   

10.
Linear polyamines are excellent promoters of triplex DNA formation. The effects of structural rigidization of polyamines on triplex DNA stability are not known at present. We wished to develop a series of polyamine analogs as secondary ligands for triplex DNA stabilization for antigene applications. To accomplish this goal, we synthesized cyclopolyamines by interconnecting the two amino or imino groups of linear polyamines with a --(CH2)n-bridge (n=3,4,5). Melting temperature (Tm) data showed that [4,3]-spermine and [4,4]-spermine stabilized poly(dA) x 2poly(dT) triplex at >25 microM concentrations (Tm = 71 degrees C at 100 microM). The dTm/dlog [polyamine] values for these compounds were 26 and 40, respectively. [4,3]-Spermine and [4,4]-spermine also stabilized triplex DNA formed by a purine-motif triplex-forming oligonucleotide, TG3TG4TG4TG3T with its target duplex, as determined by Tm, circular dichroism (CD) spectroscopy, and electrophoretic mobility shift assay (EMSA). In contrast, [4,4]-putrescine and [4,5]-putrescine as well as [4,5]-spermine had no triplex DNA stabilizing effect. CD spectra also showed triplex DNA aggregation and psi-DNA formation at >100 microM [4,3]-spermine. These data demonstrate that structural rigidization of linear polyamines has a profound effect on their ability to stabilize triplex DNA and provoke conformational transitions.  相似文献   

11.
We have demonstrated that the DNA sequence between two triplex-forming polypurine.polypyrimidine (Pu.Py) tracts was protected from DNA modifying enzymes upon formation of triplex DNA structures with an oligodeoxyribonucleotide in which two triplex-forming Pu or Py tracts were placed at the termini (triplex-bridge formation). In model experiments, when two triplex structures were formed between double-stranded DNA with the sequence (AG)17-(N)18-(T)34, and an oligodeoxyribonucleotide, (T)34-(N)18-(GA)17, not only the Pu.Py tracts but also the 18 bp non-Pu.Py sequence in the duplex DNA between the tracts was protected from restriction enzymes, HpaII methylase and DNase I. This protection occurred only when both of the Pu.Py tracts were involved as triplexes. The length of the tracts could be as short as 21 bp, while the difference in length between the non-Pu.Py sequences on the duplex and the oligodeoxyribonucleotide should be within 10 nucleotides. The efficiency of protection was enhanced in the presence of a cationic detergent, cetyltrimethylammonium bromide, during triplex formation. Protection was also observed with another type of the triplex bridge formed between (G)34 and (T)34 tracts with an oligodeoxyribonucleotide, (T)34-(N)20-(G)34. These findings suggest that the protection of specific DNA sequences from enzymes by triplex-bridge formation can be applied to any DNA sequence by placing it between two triplex-forming sequences.  相似文献   

12.
We report the discovery and SAR study of a series of N-phenyl-1H-pyrazolo[3,4-b]quinolin-4-amines as potent inducers of apoptosis. N-(3-Acetylphenyl)-2,3-dihydro-1H-cyclopenta[b]quinolin-9-amine (2) was discovered through our cell- and caspase-based HTS assays as an inducer of apoptosis. Compound 2 is active against cancer cells derived from several human solid tumors, with EC(50) values ranging from 400 to 700 nM. SAR study of hit 2 led to the discovery of N-phenyl-1H-pyrazolo[3,4-b]quinolin-4-amines as a novel series of potent apoptosis inducers, with 1,3-dimethyl-N-(4-propionylphenyl)-1H-pyrazolo[3,4-b]quinolin-amine (6b) having EC(50) values ranging from 30 to 70 nM in cancer cells. These compounds also demonstrated potent activity in the cell growth inhibition assay, with GI(50) values of 16-42 nM for compound 6b.  相似文献   

13.
Sugimoto N  Wu P  Hara H  Kawamoto Y 《Biochemistry》2001,40(31):9396-9405
The effects of cytosine protonation and various cations on the properties of parallel pyrimidine motif DNA triplexes were intensively investigated and characterized by several different techniques, such as circular dichroism (CD) conformation, ultraviolet (UV) melting, differential scanning calorimetry (DSC) thermal denaturation, and surface plasmon resonance (SPR) real-time dynamics. The comparative CD spectra of the triplex and the corresponding homoduplexes showed that the negative peak at approximately 218 nm would be the eigenpeak of the Hoogsteen paired strand, and moreover, the formation pathway of a triplex was significantly pH-dependent and fell into three groups: under acidic conditions, the triplex is formed by a one-step docking, under near physiological conditions, the Watson-Crick duplex is first structured and then accepts the Hoogsteen third strand into its major groove, and under basic conditions, the triplex is not formed. The pH-dependent thermodynamics of the global triplex, the Watson-Crick antiparallel duplex, and the Crick-Hoogsteen parallel duplex were comparatively discussed for the first time. These data revealed that the thermodynamic stabilities of the Watson-Crick-Hoogsteen triplex and the Crick-Hoogsteen duplex would be strongly dependent on cytosine protonation, but a low-pH environment somewhat destabilized the Watson-Crick duplex. The binding energy of triplex formation would be different from the unfolding energy of triplex melting under acidic conditions due to the disparity in the pathway between the formation and unfolding of a triplex. Real-time dynamic measurements showed that the association and dissociation rate constants of a duplex-to-triplex formation are (1.98 +/- 0.24) x 10(3) M(-1) s(-1) and (4.09 +/- 0.96) x 10(-4) s(-1) at 20 degrees C and pH 6.0, respectively. The formation energy of the duplex-to-triplex transition derived from SPR measurements was in agreement with the unfolding energy of the free Hoogsteen paired duplex derived from UV measurements. The calorimetric enthalpies of the triplex-to-duplex-to-single transition were 39.3 and 75.3 kcal/mol under near physiological conditions (pH 7.0), respectively, which were underestimated relative to the van't Hoff enthalpies. In addition, the effects of various cations, ionic strength, mixed-valent cations, and the position of the C(+)xG.C triplets on the thermodynamics of the triplexes were addressed under near physiological conditions. The interaction of metal ions with the triplexes clearly depended on the type and ionic strength of the cations, and the efficiency with which the cations stabilized the global triplex was in the order Mg(2+) > Mn(2+) > Ca(2+) > Ba(2+) > Na(+). These observations would be useful for the design of triplex-forming oligonucleotides for antigene drugs and therapeutic purposes.  相似文献   

14.
The replacement of phosphodiester linkages of the polyanion DNA with S-methylthiourea linkers provides the polycation deoxyribonucleic S-methylthiourea (DNmt). Molecular dynamics studies to 1,220 ps of the hybrid triplex formed from octameric DNmt strands d(Tmt)8 with a complementary DNA oligomer strand d(Ap)8 have been carried out with explicit water solvent and Na+Cl- counterions under periodic boundary conditions using the CHARMM force field and the Ewald summation method. The Watson-Crick and Hoogsteen hydrogen-bonding patterns of the A/T tracts remained intact without any structural restraints for triplex structures throughout the simulation. The duplex portion of the triplex structure equilibrated at a B-DNA conformation in terms of the helical rise and other helical parameters. The dynamic structures of the DNmt x DNA x DNmt triplex were determined by examining histograms from the last 800 ps of the dynamics run. These included the hydrogen-bonding pattern (sequence recognition), three-centered bifurcating occurrences, minor groove width variations, and bending of tracts for the hybrid triplex structures. Together with the Watson-Crick hydrogen-bondings, the strong Hoogsteen hydrogen-bondings, the partially maintained three-centered bifurcatings in the Watson-Crick pair, and the medium-strength three-centered bifurcatings in the Hoogsteen pair suggest that the hybrid triplex is energetically favorable as compared to a duplex with similar base stacking, van der Waals interactions, and helical parameters. This is in agreement with our previously reported thermodynamic study, in which only triplex structures were observed in solution. The bending angle measured between the local axis vectors of the first and last helical axis segments is about 20 degrees for the Watson-Crick portion of the averaged structure. Propeller twist (associated with three-centered hydrogen-bonding) up to -30 degrees, native to DNA AT base pairing, was also observed for the triplex structure. The sugar pseudorotation phase angles and the ring rotation angles for the DNA strand are within the C3'-endo domain and C2'-endo domain for the DNmt strand. Water spines are observed in both minor and major grooves throughout the dynamics run. The molecular dynamics simulations of the structural properties of DNmt x DNA x DNmt hybrid triplex is compared to the DNG x DNA x DNG hybrid triplex (In DNG the -O-(PO2-)-O- linkers in DNA is replaced by -NH-C(=N+H2)-NH-).  相似文献   

15.
(1S,3S,4R)-1-Phenyl-1-thymidyl-3-hydroxy-4-hydroxymethylcyclopentane (10) and their analogs were synthesized, incorporated into the oligodeoxynucleotides, and their properties were evaluated for the formation of duplex and triplex DNA. The known chiral cyclopentanone derivative was converted into the corresponding ketimine sulfonamide derivative, which was subjected to a stereoselective PhLi addition. The formed sulfonamide was hydrolyzed to afford the primary amino group, on which the thymine moiety was built. The benzyl protecting groups were removed to form the nucleoside analog having a phenyl group and the thymine unit at the 1′ position of a carbocyclic skeleton (10). In the estimation of the oligodeoxynucleotides incorporating 10 for duplex and triplex formation, the carbocyclic nucleoside analog 10 did not show the stabilizing effect for duplex formation; on the other hand, it stabilized the triplex. Therefore, the skeleton of the phenyl-substituted carbocyclic nucleoside analog 10 may be a platform for the formation of stable triplex DNA.  相似文献   

16.
Real-time biomolecular interaction analysis (BIA) has been applied to triplex formation between oligodeoxynucleotides. 5'-Biotinylated oligonucleotides were immobilised on the streptavidin-coated surface of a biosensor chip and subsequently hybridised to their complementary strand. Sequence-specific triplex formation was observed when a suitable third-strand oligopyrimidine was injected over the surface-bound duplex. In addition, a single-stranded oligonucleotide immobilised on the chip surface was able to capture a DNA duplex by triplex recognition. The presence of spermine increases the rate of association between the third strand and immobilised duplex, but at elevated spermine concentrations non-specific association is observed. A preliminary kinetic analysis of triplex formation at pH 5.2 by an 11mer third strand containing thymine, cytosine and uracil is reported. Values for the association and dissociation rate constants were determined to be (1.9 +/- 0.2) x 10(3) M-1 s-1 and (8.1 +/- 1.9) x 10(-5) s-1, respectively.  相似文献   

17.
18.
DNA condensation, precipitation, and aggregation are related phenomena involving DNA-DNA interactions in the presence of multivalent cations, and studied for their potential implications in DNA packaging in the cell. Recent studies have shown that the condensation/aggregation is a prerequisite for the cellular uptake of DNA for gene therapy applications. To elucidate the ionic and structural factors involved in DNA aggregation, we studied the precipitation and resolubilization of high molecular weight and sonicated calf thymus DNA, two therapeutic oligonucleotides, and poly(dA).2Poly(dT) triplex DNA in the presence of the tetravalent polyamine spermine using a centrifugation assay, Tm measurements, and CD spectroscopy. The ability of spermine to provoke DNA precipitation was in the following order: triplex DNA > duplex DNA > single-stranded DNA. In contrast, their resolubilization at high polyamine concentrations followed a reverse order. The effective concentration of spermine to precipitate DNA increased with Na+ in the medium. Tm data indicated the DNA stabilizing effect of spermine even in the resolubilized state. CD spectroscopy revealed a series of sequential conformational alterations of duplex and triplex DNA, with the duplex form regaining the B-DNA conformation at high concentrations (approximately 200 mM) of spermine. The triplex DNA, however, remained in a Psi-DNA conformation in the resolubilized state. Chemical structural specificity effects were exerted by spermidine and spermine analogues in precipitating and resolubilizing sonicated calf thymus DNA, with N4-methyl substitution of spermidine and a heptamethylene separation of the imino groups of spermine having the maximal difference in the precipitating ability of the analogues compared to spermidine and spermine, respectively. Therapeutically important bis(ethyl) substitution reduced the precipitating ability of the analogues compared to spermine. The effect of the cationicity of polyamines was evident with the pentamines being much more efficacious than the tetramines and triamines. These results provide new insights into the mechanism of DNA precipitation by polyamines, and suggest the importance of polyamine structure in developing gene delivery vehicles for therapeutic applications.  相似文献   

19.
Binding of triple helix forming oligonucleotides to sites in gene promoters   总被引:41,自引:0,他引:41  
A class of triplex-forming oligodeoxyribonucleotides (TFOs) is described that can bind to naturally occurring sites in duplex DNA at physiological pH in the presence of magnesium. The data are consistent with a structure in which the TFO binds in the major groove of double-stranded DNA to form a three-stranded complex that is superficially similar to previously described triplexes. The distinguishing features of this class of triplex are that TFO binding apparently involves the formation of hydrogen-bonded G.GC and T.AT triplets and the TFO is bound antiparallel with respect to the more purine-rich strand of the underlying duplex. Triplex formation is described for targets in the promoter regions of three different genes: the human c-myc and epidermal growth factor receptor genes and the mouse insulin receptor gene. All three sites are relatively GC rich and have a high percentage of purine residues on one strand. DNase I footprinting shows that individual TFOs bind selectively to their target sites at pH 7.4-7.8 in the presence of millimolar concentrations of magnesium. Electrophoretic analysis of triplex formation indicates that specific TFOs bind to their target sites with apparent dissociation constants in the 10(-7)-10(-9) M range. Strand orientation of the bound TFOs was confirmed by attaching eosin or an iron-chelating group to one end of the TFO and monitoring the pattern of damage to the bound duplex DNA. Possible hydrogen-bonding patterns and triplex structures are discussed.  相似文献   

20.
The equimolar mixture of d(CTCTTCTTTCTTTTCTTTCTTCTC) (dY24) and d(GAGAAGAAAGA) (dR11) [designated (dY24).(dR11)], forms at pH = 5 a DNA triplex, which mimicks the H-DNA structure. The DNA triplex was identified by the following criteria: (i) dY24 and dR11 co-migrate in a poly-acrylamide gel, with a mobility and a retardation coefficient comparable to those observed for an 11-triad DNA triplex, previously characterized in our laboratories (1); (ii) the intercalator ethidium bromide shows a poor affinity for (dR11).(dY24) at pH = 5, and a high affinity at pH = 8; (iii) the (dR11).(dY24) mixture is not a substrate for DNase I at pH = 5; (iv) the CD spectrum of (dR11).(dY24), at pH = 5, is consistent with those previously reported for triple-stranded DNA. The (dR11).(dY24) mixture exhibits a thermally induced co-operative transition, which appears to be monophasic, reversible and concentration dependent. This transition is attributed to the disruption of the DNA triplex into single strands. The enthalpy change of the triplex-coil transition was measured by DSC (delta Hcal = 129 +/- 6 kcal/mol) and, assuming a two-state model, by analysis of UV-denaturation curves (average of two methods delta HUV = 137 +/- 13 kcal/mol). Subtracting from delta Hcal of triplex formation the contributions due to the Watson-Crick helix and to the protonation of the C-residues, we found that each pyrimidine binding into the major groove of the duplex, through a Hoogsteen base pair, is accompanied by an average delta H = -5.8 +/- 0.6 kcal/mol. The effect on the stability of the (dR11).(dY24) triplex due to the substitution of a T:A:T triad with a T:T:T one was also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号