首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It was reported that PL promoter and alkaline phosphatase (phoA) signal peptide were used to construct secretory expression plasmid suitable to express glucagon and [Des-His1] glucagon in E. coli BL21 herein. Expression studies showed these two peptides could be expressed and secreted into the culture medium. The expression yield of recombinant glucagon reached 3.46 mg/L/OD600 unit of cells in shake flask. The yield of [Des-His1] glucagon was found to be higher than that of glucagon. In addition, some factors involved in secretion were studied too.Received: 26 September 2002 / Accepted: 24 October 2002  相似文献   

2.
Glucagon binding to and recognition by its cell surface receptor is the necessary first step in the cascade of events leading to the activation of adenylate cyclase by the hormone. It has long been presumed that glucagon adopts an ordered conformation upon binding to its membrane-bound receptor. A recent model of this three-dimensional structure based on biophysical data, predicts beta-turns at positions 2-5, 10-13, and 15-18, and an alpha-helical region between residues 19-27. Our approach in the design of antagonists of glucagon was to elucidate the steric and electronic features that stabilize these secondary structures to obtain analogs that bind with high affinity to the receptor but do not activate adenylate cyclase. Nineteen glucagon analogs incorporating structural changes at the amino-terminal sequence 1-5, at positions 9 and 12, and at the carboxyl-terminal helical region were synthesized. Des-His1-[Glu9]glucagon amide was recently shown to be a competitive inhibitor. Our synthetic studies in combination with this modification have resulted in seven new glucagon antagonists. The implications for the structural and conformational properties required for binding and activity of glucagon and the glucagon peptide family are discussed.  相似文献   

3.
4.
The relative potencies of seven antagonists of LH-RH to inhibit LH-RH-induced cyclic AMP accumulation and LH and FSH release were measured using rat hemipituitaries in vitro. At appropriate concentrations, [Des-His2, D-Ala6] LH-RH, [Des-His2, D-Ala6, des-Gly-NH210] LH-RH ethylamide, [Des-His2, D-Leu6] LH-RH, [D-Phe2] LH-RH, [Des-His2, Des-Gly-NH210] LH-RH propylamide, [D-Phe2, D-Leu6] LH-RH and [D-Phe2, D-Phe6] LH-RH led to parallel inhibition of cyclic AMP accumulation and LH and FSH release. [D-Phe2, D-Leu6] LH-RH and [D-Phe2, D-Phe6] LH-RH can inhibit 50% of LH-RH action at molar ratios of 100 and 30, respectively. These findings of parallel changes of cyclic AMP levels and LH and FSH release add strong support to the already obtained evidence for a mediator role of the adenylate cyclase system in the action of LH-RH in the anterior pituitary gland.  相似文献   

5.
[Tyr22] glucagon and [desHis1, Tyr22] glucagon were synthesized by an improved solid phase procedure on a Pam-resin. The course of the synthesis was monitored by quantitative ninhydrin analysis and preview sequencing. Following cleavage by the low/high HF method the peptides were purified by ion exchange chromatography and reverse phase HPLC. The overall yield of homogeneous isolated peptide from the first amino acid was 41%. Circular dichroism measurements on dilute solutions in mixed aqueous organic solvents at pH 2, 6.9 and 9.2 showed increased beta-sheet structure relative to glucagon. [Tyr22] glucagon was a full agonist with 20-30% activity in the rabbit blood glucose assay and 10% activity in the rat liver membrane adenyl cyclase assay. [desHis1, Tyr22] glucagon had only a trace of activity in the adenyl cyclase assay (less than 0.002%) but bound to membranes in a competitive [125I] glucagon assay 1.0% as well as glucagon. The analog completely inhibited formation of cAMP by natural glucagon, with 50% inhibition at a ratio of 83:1 and pA2 = 6.7. The data are discussed in terms of models of glucagon structure in dilute solution.  相似文献   

6.
超活性胰高血糖素的分泌表达   总被引:1,自引:0,他引:1  
通过多肽化学合成方法 ,人们对胰高血糖素的结构与功能关系有了比较深刻的了解 ,其中最引人注目的成就之一是发现 [Lys17,18,Glu2 1] 胰高血糖素具有比天然胰高血糖素更高的生物活性 ,称之为超活性胰高血糖素(superactiveglucagon ,下称SA glucagon)。为了通过基因工程途径获得SA glucagon ,用PCR方法从以前构建的胰高血糖素表达载体pAGluT得到SA glucagon的基因 (SAG) ,构建了含PL 启动子 ,phoA信号肽和SAG的分泌表达载体pBLSG7。pBLSG7转化到大肠杆菌BL2 1中 ,进行SAG的分泌表达 ,在摇瓶条件下 ,该菌种能分泌表达SA glucagon达 3.6 5mg/L(A60 0 =1) ,占上清液中蛋白质的 19.5 % ,并进一步研究了诱导温度和菌株对表达的影响。  相似文献   

7.
Seven rabbits were immunized with a synthetic C-terminal glucagon fragment [15--29] conjugated with bovine serum albumin by means of glutaraldehyde. Antisera for glucagon were produced in all the animals after six injections of the conjugate. One of them revealed a higher titer antiserum (G42), which did not cross react with gut glucagon-like immunoreactive material, secretin, insulin, gastric inhibitory polypeptide or vasoactive intestinal peptide. From the results of inhibition of 125 I-glucagon in binding with the antiserum by various glucagon-related fragments the immunogenic determinant of the antiserum was proved to be in the C-terminal residue of the glucagon molecule, although peptide [17--29] or [21--29] reacted weakly with the antiserum. The plasma glucagon levels measured by antiserum G 42 during an arginine test in five normal subjects were superposed on those obtained by other antiserum (G21), specific for pancreatic glucagon. Furthermore, a comparable standard curve for glucagon was obtained using antiserum G42, when a labelled p-hydroxyphenylacetylated glucagon fragment [15--29] was employed as a tracer. The present study clearly demonstrated that the C-terminal glucagon fragment could yield a specific antiserum for pancreatic glucagon, supporting the proposal that the C-terminal fragment of glucagon is responsible for such specific antisera. Furthermore, it is concluded that immunoassay for glucagon could be performed using the labelled glucagon fragment as a tracer.  相似文献   

8.
In an effort to find analogs of glucagon that would bind to the glucagon receptor of the rat liver membrane but would not activate membrane-bound adenyl cyclase, several hybrid molecules were synthesized which contained sequences from both glucagon and secretin. [Asp3, Glu9]Glucagon and [Asp3, Glu9, Arg12]glucagon were inactive in the adenyl cyclase assay even at high concentrations but retained some binding affinity for the receptor. They were able to displace 125I-glucagon completely from its receptor and could completely inhibit the activation of adenyl cyclase by natural or synthetic glucagon. The inhibition index [I/A]50 was approximately 110 for both analogs. [Asp3]Glucagon, [Glu3]glucagon and [Asp3, Lys17, 18, Glu21]glucagon were weak partial agonists, while [Asp3, Glu21]glucagon was inactive and a poor inhibitor. The peptides were synthesized by solid-phase methods and purified to homogeneity by reverse-phase high-performance liquid chromatography on C18 silica columns. These are the first fully synthetic competitive glucagon antagonists to be reported.  相似文献   

9.
10.
The effects of glucagon and glucagon-like peptide-1 (GLP-1) on the secretory activity of rat adrenocortical cells have been investigated in vitro. Neither hormones affected basal or agonist-stimulated aldosterone secretion of dispersed rat zona glomerulosa cells or basal corticosterone production of zona fasciculata-reticularis (inner) cells. In contrast, glucagon and GLP-1 partially (40%) inhibited ACTH (10(-9) M)-enhanced corticosterone secretion of inner cells, maximal effective concentration being 10(-7) M. The effect of 10(-7) M glucagon or GPL-1 was suppressed by 10(-6) M Des-His1-[Glu9]-glucagon amide (glucagon-A) and exendin-4(3-39) (GPL-1-A), which are selective antagonists of glucagon and GLP-1 receptors, respectively. Glucagon and GLP-1 (10(-7) M) decreased by about 45-50% cyclic-AMP production by dispersed inner adrenocortical cells in response to ACTH (10(-9) M), but not to the adenylate cyclase activator forskolin (10(-5) M). Again this effect was blocked by 10(-6) M glucagon-A or GLP-1-A. The exposure of dispersed inner cells to 10(-7) M glucagon plus GLP-1 completely suppressed corticosterone response to ACTH (10(-9) M). However, they only partially inhibited (by about 65-70%) both corticosterone response to forskolin (10(-5) M) or dibutyryl-cyclic-AMP (10(-5) M) and ACTH (10(-9) M)-enhanced cyclic-AMP production. Quantitative HPLC showed that 10(-7) M glucagon or GLP-1 did not affect ACTH-stimulated pregnenolone production, evoked a slight rise in progesterone and 11-deoxycorticosterone release, and markedly reduced (by about 55%) corticosterone secretion of dispersed inner adrenocortical cells. In light of these findings the following conclusion are drawn: (i) glucagon and GLP-1, via the activation of specific receptors, inhibit glucocorticoid response of rat adrenal cortex to ACTH; and (ii) the mechanism underlying the effect of glucagon and GLP-1 is probably two-fold, and involves both the inhibition of the ACTH-induced activation of adenylate cyclase and the impairment of the late steps of glucocorticoid synthesis.  相似文献   

11.
Secretion expression of recombinant glucagon in Escherichia coli   总被引:1,自引:0,他引:1  
A novel approach for the preparation of recombinant human glucagon was described. An expression vector pAGluT, containing phoA promoter, phoA signal peptide and glucagon gene, was constructed by means of genetic engineering. Escherichia coli strain YK537 was transformed with pAGluT. High-level secretory expression of recombinant human glucagon was achieved. The expression yield of recombinant human glucagon was found to be 80 mg/L, approximately 30% of the total proteins in supernatant. The biological activities and the physicochemical properties of the purified recombinant human glucagon were found to be the same as that of native glucagon. In addition, our results suggested that phoA expression system may be suitable for the expression of other small peptides.  相似文献   

12.
A novel approach for the preparation of recombinant human glucagon was described. An expression vector pAGluT, containing phoA promoter, phoA signal peptide and glucagon gene, was constructed by means of genetic engineering.Escherichia coli strain YK537 was transformed with pAGluT. High-level secretory expression of recombinant human glucagon was achieved. The expression yield of recombinant human glucagon was found to be 80 mg/L, approximately 30% of the total proteins in supernatant. The biological activities and the physicochemical properties of the purified recombinant human glucagon were found to be the same as that of native glucagon. In addition, our results suggested that phoA expression system may be suitable for the expression of other small peptides.  相似文献   

13.
A novel approach for the preparation of recombinant human glucagon was described. An expression vector pAGluT, containing phoA promoter, phoA signal peptide and glucagon gene, was constructed by means of genetic engineering.Escherichia coli strain YK537 was transformed with pAGluT. High-level secretory expression of recombinant human glucagon was achieved. The expression yield of recombinant human glucagon was found to be 80 mg/L, approximately 30% of the total proteins in supernatant. The biological activities and the physicochemical properties of the purified recombinant human glucagon were found to be the same as that of native glucagon. In addition, our results suggested that phoA expression system may be suitable for the expression of other small peptides.  相似文献   

14.
This paper reports the synthesis and the biological activities of six new glucagon analogues. In these compounds N-terminal modifications of the glucagon sequence were made, in most cases combined with changes in the C-terminal region which had been shown previously to enhance receptor affinity. The design of these analogues was based on [Lys17,18,Glu21]glucagon,1 a superagonist, which binds five times better than glucagon to the glucagon receptor, and on the potent glucagon antagonist [D-Phe4,Tyr5,Arg12]glucagon, which does not stimulate adenylate cyclase system even at very high concentrations. The N-terminal modifications involved substitution of His1 by the unnatural conformationally constrained residue, 4,5,6,7-tetrahydro-1H-imidazo[c]pyridine-6-carboxylic acid (Tip) and by desaminohistidine (dHis). In addition we prepared two analogues (6 and 7), in which we deleted the Phe6 residue, which was suggested to be part of a hydrophobic patch and involved in receptor binding. The following compounds were synthesized: [Tip1, Lys17,18,Glu21]glucagon (2); [Tip1,D-Phe4,Tyr5,Arg12,Lys17,18,Glu21]glucagon (3); [dHis1,D-Phe4,Tyr5,Arg12,Lys17,18,Glu21]glucagon (4); [dHis1,Asp3,D-Phe4,Tyr5,Arg12,Lys17,18,Glu21+ ++]glucagon (5); des-Phe6-[Tip1,D-Phe4,Tyr5,Arg12,Glu21]glucagon (6); des-Phe6-[Asp3,D-Phe4,Tyr5,Arg12,Glu21]glucagon (7). The binding potencies of these new analogues relative to glucagon (= 100) are 3.2 (2), 2.9 (3), 10.0 (4), 1.0 (5), 8.5 (6), and 1.7 (7). Analogue 2 is a partial agonist (maximum stimulation of adenylate cyclase (AC) approximately 15% and a potency 8.9% that of glucagon, while the remaining compounds 3-7 are antagonists unable to activate the AC system even at concentrations as high as 10(-5) M. In addition, in competition experiments, analogues 3-7 caused a right-shift of the glucagon stimulated adenylate cyclase dose-response curve.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The L- and M2-type pyruvate kinase from the liver of 1-day old rats demonstrated no significant activation nor inhibition by treatment with cyclic AMP, glucagon or insulin. Neither was there any change in their isozymic composition. By means of incorporation with [3H]leucine followed by immunoprecipitation, the rates of synthesis of both the L- and M2-type pyruvate kinase were not considerably affected by all three modulators. Insulin and glucagon do not direct an immediate change in the synthesis of liver pyruvate kinase and a fluctuation in the insulin/glucagon ratio is not a probable signal for regulating the isozymic expression in the neonatal period.  相似文献   

16.
B Gysin  D Trivedi  D G Johnson  V J Hruby 《Biochemistry》1986,25(25):8278-8284
The hyperglycemia and ketosis of diabetes mellitus are generally associated with elevated levels of glucagon in the blood. This suggests that glucagon is a contributing factor in the metabolic abnormalities of diabetes mellitus. A glucagon-receptor antagonist might provide important evidence for glucagons's role in this disease. In this work we describe how we combined structural modifications that led to glucagon analogues with partial agonist activity to give glucagon analogues that can act as competitive antagonists of glucagon-stimulated adenylate cyclase activity. Using solid-phase synthesis methodology and preparative reverse-phase high-performance liquid chromatography, we synthesized the following seven glucagon analogues and obtained them in high purity: [D-Phe4,Tyr5,Arg12]glucagon (2); [D-Phe4,Tyr5,Lys17,18]glucagon (3); [Phe1,Glu3,Lys17,18]glucagon (4); [Glu3,Val5,Lys17,18]glucagon (5); [Asp3,D-Phe4,Ser5,Lys17,18]glucagon (6); I4-[Asp3,D-Phe4,Ser5,Lys17,18]glucagon (7); [Pro3]glucagon (8). Purity was assessed by enzymatic total hydrolysis, by chymotryptic peptide mapping, and by reverse-phase high-performance liquid chromatography. The new analogues were tested for specific binding, for their effect on the adenylate cyclase activity in rat liver membranes, and for their effect on the blood glucose levels in normal rats relative to glucagon. Analogues showing no adenylate cyclase activity were examined for their ability to act as antagonists by displacing glucagon-stimulated adenylate cyclase dose-response curves to the right (higher concentrations). The binding potencies of the new analogues relative to glucagon (= 100) were respectively 1.0 (2), 1.3 (3), 3.8 (4), 0.4 (5), 1.3 (6), 5.3 (7), and 3 (8). Glucagon analogues 3-5 and 8 were all weak partial agonists with EC50 values of 500 (3), 250 (4), 1600 (5), and 395 nM (8), respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We have compared the ability of glucagon and three highly purified derivatives of the hormone to activate hepatic adenylate cyclase (an expression of biological activity of the hormone) and to compete with [125]glucagon for binding to sites specific for glucagon in hepatic plasma membranes. Relative to that of glucagon, biological activity and affinity of [des-Asn-28,Thr-29](homoserine lactone-27)-glucagon, prepared by CNBr treatment of glucagon, were reduced equally by 40- to 50-fold. By contrast, des-His-1-glucagon, prepared by an insoluble Edman reagent and highly purified (less than 0.5% contamination with native glucagon), displayed a 15-fold decrease in affinity but a 50-fold decrease in biological activity relative to that of the native hormone. At maximal stimulating concentrations, des-His-1-glucagon yielded 70% of the activity given by saturating concentrations of glucagon. Thus, des-His-1-glucagon can be classified as a partial weak agonist. Highly purified monoiodoglucagon and native glucagon displayed identical biological activity and affinity for the binding sites. Our findings suggest that the hydrophilic residues at the terminus of the carboxy region of glucagon are involved in the process of recognition at the glucagon receptor but do not participate in the sequence of events leading to activation of adenylate cyclase. The amino-terminal histidyl residue in glucagon plays an important but not obligatory role in the expression of hormone action and contributes to a significant extent in the recognition process.  相似文献   

18.
Production of [14C]glucose from [14C]lactate in the perfused livers of 24-h fasted adrenalectomized rats was not stimulated by 1 nM glucagon but was significantly increased by 10 nM hormone. Crossover analysis of glycolytic intermediates in these livers revealed a significant reduction in glucagon action at site(s) between fructose 6-phosphate and fructose 1,6-bisphosphate as a result of adrenalectomy. Site(s) between pyruvate and P-enolpyruvate was not affected. In isolated hepatocytes, adrenalectomy reduced glucagon response in gluconeogenesis while not affecting glucagon inactivation of pyruvate kinase. A distinct lack of glucagon action on 6-phosphofructo-1-kinase activity was noted in these cells. When hepatocytes were incubated with 30 mM glucose, lactate gluconeogenesis was greatly stimulated by glucagon. A reduction in both sensitivity and responsiveness to the hormone in gluconeogenesis was seen in the adrenalectomized rat. These changes were well correlated with similar impairment in glucagon action on 6-phosphofructo-1-kinase activity and fructose 2,6-bisphosphate content in hepatocytes from adrenalectomized rats incubated with 30 mM glucose. These results suggest that adrenalectomy impaired the gluconeogenic action of glucagon in livers of fasted rats at the level of regulation of 6-phosphofructo-1-kinase and/or fructose 2,6-bisphosphate content.  相似文献   

19.
In this study, we determined the ability of four N-terminally modified derivatives of glucagon, [3-Me-His1,Arg12]-, [Phe1,Arg12]-, [D-Ala4,Arg12]-, and [D-Phe4]glucagon, to compete with 125I-glucagon for binding sites specific for glucagon in hepatic plasma membranes and to activate the hepatic adenylate cyclase system, the second step involved in producing many of the physiological effects of glucagon. Relative to the native hormone, [3-Me-His1,Arg12]glucagon binds approximately twofold greater to hepatic plasma membranes but is fivefold less potent in the adenylate cyclase assay. [Phe1,Arg12]glucagon binds threefold weaker and is also approximately fivefold less potent in adenylate cyclase activity. In addition, both analogues are partial agonists with respect to adenylate cyclase. These results support the critical role of the N-terminal histidine residue in eliciting maximal transduction of the hormonal message. [D-Ala4,Arg12]glucagon and [D-Phe4]glucagon, analogues designed to examine the possible importance of a beta-bend conformation in the N-terminal region of glucagon for binding and biological activities, have binding potencies relative to glucagon of 31% and 69%, respectively. [D-Ala4,Arg12]glucagon is a partial agonist in the adenylate cyclase assay system having a fourfold reduction in potency, while the [D-Phe4] derivative is a full agonist essentially equipotent with the native hormone. These results do not necessarily support the role of an N-terminal beta-bend in glucagon receptor recognition. With respect to in vivo glycogenolysis activities, all of the analogues have previously been reported to be full agonists.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The role of the Tyr10-Ser11-Lys12-Tyr13 region of glucagon in the binding interaction and activation of the glucagon receptor was investigated by means of the synthetic glucagon analogues [Phe13]glucagonamide, [Phe10]glucagonamide, [Phe10]glucagon, [Phe10,13]glucagon, [Pro11]glucagon, [Pro11,Gly12]glucagonamide, [Ala11]glucagon, and [Oac11-13]glucagonamide. These analogues were synthesized by solid-phase peptide synthesis on p-methylbenzhydrylamine or Merrifield resins with protected N alpha-tert-butyloxycarbonyl amino acids. Purification by dialysis, cation-exchange chromatography, gel filtration, and preparative reverse-phase high-performance liquid chromatography (HPLC) gave products that proved homogeneous by thin-layer chromatography and HPLC and on analysis by amino acid analysis, by sequencing, and by alpha-chymotryptic peptide mapping with HPLC. Biological activities were examined by measurement of the stimulation of liver plasma membrane adenylate cyclase and by specific displacement of [125I]glucagon from glucagon receptors. The results of these studies indicate that while the biological "message" region of glucagon is located elsewhere, the 10-13 region has multiple roles in the glucagon-glucagon receptor interaction: this region provides functional groups for direct binding interaction with the receptor, and this region interacts with the receptor in such a way as to allow the "transduction message" portion of glucagon to interact and activate the receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号