首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary.  In vitro experiments were conducted to examine the degradation of d- and l-isomers of tryptophan (Trp) and 10 related indolic compounds by mixed rumen bacteria (B), protozoa (P) and a combination of the two (BP). The analyses were carried out by HPLC. d-Trp (1.0 mM) was not degraded by rumen microorganisms during the 24-h incubation period. The net degradation of 1 mM l-Trp was 46.5%, 8.7% and 80.0% by B, P and BP suspensions, respectively. Trp was degraded into indoleacetic acid, indolelactic acid and indole by rumen bacteria and protozoa, and into skatole, p-cresol and indolepropionic acid by rumen bacteria only. Of them, indoleacetic acid was the major product of Trp found in B (15.4%) and P (3.1%), and skatole in BP (43.2%). This is the first report of the production of indolelactic acid and p-cresol from Trp by rumen microbes. Starch, d-glucose, salinomycin and monensin inhibited the production of skatole and indole from Trp, and skatole from indoleacetic acid by rumen bacteria. Received August 2, 2001 Accepted June 21, 2002 Published online November 14, 2002 Acknowledgements The authors are extremely grateful to Dr. H. Ogawa, Professor, the University of Tokyo and Dr. T. Hasegawa, Associate Professor, Miyazaki University, for inserting a permanent fistula in goats. The present study was financially supported by research grants from Kyowa Hakko Kogyo Co. Ltd. and Daiichi Seiyaku Co., Japan. Nazimuddin Mohammed thanks the Ministry of Education, Science, Sports and Culture of Japan (Monbusho) for the award of a research studentship from 1996. Authors' address: Dr. Nazimuddin Mohammed, Laboratory of Agricultural Production Technology, Faculty of Agriculture, Field Science Center, Tokyo University of Agriculture and Technology, Saiwai-cho 3-5-8, Fuchu-shi, Tokyo 183-8509, Japan  相似文献   

2.
Biodegradation and bioconversion of extracted alkali lignin was performed under varying concentrations of carbon and nitrogen sources, by two potential Ascomycetes ligninolytic fungus isolated from soil. Fungus, F10 was identified as Aspergillus flavus, while APF4 as Emericella nidulans based upon closed similarity with their morphology and high homology in 18S rRNA gene sequences. The alkali lignin degradation was checked in term of disappearance of lignin content and colority. Selected fungus, degraded 19–41.6% of alkali lignin (0.25%, w/v) within 21 days of incubation and reduced the colority up to 14.4–21%. The activity of ligninolytic enzymes was periodically checked. During alkali lignin degradation manganese peroxidase (13.31?U/ml), lignin peroxidase (13.73?U/ml) and laccase (0.05?U/ml) activities were observed (at highest level). The alkali lignin degradation products and functional group changes in degraded lignin were analysed through gas chromatography-mass spectroscopy (GC-MS) and solid state 13C-NMR spectroscopy, respectively. The functional group modifications in alkali lignin moiety, alter its biochemical property, thus fungal mediated modified alkali lignin was further tested for reactive free radical scavenging potential with respect to hydroxyl, nitric oxide and superoxide radicals. Results demonstrate that the alkali lignin undergo degradation in studied nutritional conditions (high-carbon low nitrogen) and consequently increase its free radical scavenging activity up to 1–18%.  相似文献   

3.
胡丁璠  吴涓  范罗圣  张静 《微生物学报》2023,63(11):4344-4355
【目的】利用6株十溴联苯醚(decabromodiphenyl ether, BDE-209)降解细菌,探究复合菌对BDE-209的降解特性和降解路径,为BDE-209污染环境的生物修复提供科学依据。【方法】利用高效液相色谱法测定BDE-209的浓度,通过液相色谱-质谱联用仪分析鉴定BDE-209降解产物。【结果】短芽孢杆菌属(Achromobacter sp.) M1和无色杆菌属(Achromobacter sp.) M2的组合对BDE-209的降解效果最好,在30 ℃、pH值7.0、接种量15%的条件下,120 h后10 mg/L BDE-209的降解效率可达87.7%。相比于单一菌株,复合菌M(1+2)可以更有效、更快地降解BDE-209。在0.5-10 mg/L范围内,复合菌M(1+2)对BDE-209的降解率随着BDE-209初始浓度的增大而增大。通过液相色谱-质谱联用仪(liquid chromatograph-mass spectrometer, LC-MS)检测到11种BDE-209微生物降解产物,复合菌M(1+2)通过脱溴、羟基化、去质子化、醚键断裂和开环等反应对BDE-209进行降解。【结论】复合菌M(1+2)对BDE-209具有良好的降解能力,研究结果为进一步提高微生物对BDE-209污染环境的生物修复能力提供了良好的微生物资源。  相似文献   

4.
Protoplasts from a lignolytic fungus Fomes annosus were prepared through enzymatic hydrolysis of mycelium utilizing Novozym, a wall lytic enzyme preparation. Isolated protoplasts and living mycelium were compared in their ability to degrade 14C-labelled lignin related phenols and dehydropolymers of labelled coniferyl alcohol (synthetic lignin). The amounts of 14CO2 released from O14CH3-groups, 14C-2-side chains and 14C-rings by protoplasts was in the same range as those for intact mycelium. The methoxyl groups of synthetic lignin were more rapidly metabolized by protoplasts than by mycelium. When calculated in dpm of released 14CO2 per mg protein the decomposition of 14C-labelled synthetic lignin and lignin-related monomers in a hyphae-free system of protoplasts was considerable higher than that obtained by the intact mycelium. The presence of intact hyphae is thus not necessary for lignin degradation to occur.Non-common-abbreviations used DHP Dehydropolymer of coniferyl alcohol - LS lignosulfonates prepared from DHP  相似文献   

5.
In order to better understand which enzyme are of importance in lignin degradation, new cellulase deficient strains from Sporotrichum pulverulentum have been isolated by spontaneous and induced mutations from both wild type and from the earlier studied cellulase deficient strain 44. These new strains are xylanase positive (Xyl+), and produce considerably higher amounts of phenol oxidases (Pox) than either parent type. The new strains have been compared with the wild type and strain 44 with respect to their ability to release 14CO2 from a) vanillic acid labelled in the carboxyl, methoxyl and ring carbons; b) the dimer (4-methoxy-14C)-veratryl-glycerol--guaiacyl ether; c) 14C-ring-labelled DHP and 14C[-carbon side chain] labelled DHP.The new strains, the wild type and strain 44 were compared with respect to their ability to cause weight losses in wood blocks and to delignify wood. One of the new strains, 63-2, caused a higher weight loss in wood than either the wild type or strain 44. Another strain, 44-2, produced a higher weight loss than strain 44. An increase in acid-soluble lignin was observed in wood blocks treated for two weeks with the two new mutant strains and wild type. After prolonged incubation for 6 and 8 weeks the amount of acid-soluble lignin decreased.Abbreviations DHP Dehydrogenation polymerizate - DMS 2,2-dimethylsuccinic acid  相似文献   

6.
The mechanical properties of wheat straw fragments were measured using tensile and shear tests before and after incubation in pure cultures of the rumen fungus Neocallimastix frontalis MCH3, in pure cultures of the rumen cellulolytic bacteria Fibrobacter succinogenes S85 and Ruminococcus flavefaciens 007 and in co-cultures associating the fungus with each of the two bacterial species.

N. frontalis considerably reduced the tensile strength of the straw; on the contrary R. flavefaciens increased it and F. succinogenes did not affect it. In co-cultures, F. succinogenes and N. frontalis interacted synergistically to weaken straw resistance, whereas R. flavefaciens inhibited the fungal action. The shear test also revealed that physical and mechanical properties were strongly affected by the action of the three microorganisms. After six days of incubation the straws resistance to shearing was lower after incubation with N. frontalis or R. flavefaciens than in the presence of F. succinogenes. No synergism or antagonism between microorganisms was observed in the shear test.

These results thus clearly demonstrate a specific action of the three rumen microorganisms in physical degradation of plant material.  相似文献   


7.
The unmasking of lignin structures in wheat straw by alkali   总被引:6,自引:0,他引:6  
Durot N  Gaudard F  Kurek B 《Phytochemistry》2003,63(5):617-623
This study reports on the structural modifications of wheat straw cell wall promoted by potassium carbonate and sodium hydroxide that lead to the unmasking of some lignin structures. The first impact of the treatments was the extraction of a particular fraction of lignin enriched in C-C linked structures compared to the mean composition in reference wheat straw. Concomitantly, an apparent increase in the amount of lignin monomers released by the cleavage of alkyl-aryl ether bonds was observed in alkali-extracted samples. By summing the amount of ether linked monomers analyzed by thioacidolysis in the solubilized lignin to that found in the extracted wheat straw, an excess of up to 37% is apparent, relative to the corresponding amount in the reference wheat straw. Other modifications of the cell wall were also found. Indeed, a fraction of uronic acids was lost during the treatments and a new fractionation pattern of the lignin-carbohydrate complexes was evidenced. It can thus be concluded that a significant proportion of lignin within the cell wall was unmasked after (i) the selective removal of a particular lignin fraction, (ii) a partial saponification of the esterified fraction of lignin with uronic acids and (iii) a modification of the interactions between the cell wall constituents.  相似文献   

8.
Under aerobic conditions homogeneous lignin peroxidase catalyzed the oxidation of 1-(4'-methoxyphenyl)-2-(2″,5′-dimethoxy-4″-phenylphenoxy)-1,3-dihydroxypropane (I) to yield four products: 1-(4'-methoxy-phenyl)-1,2,3-trihydroxypropane (X), 4-[-hydroxy--(4'-methoxyphenyl)-methyl]-1,3-dioxolane-2-one (V), 4-(4'-methoxyphenyl)-5-hydroxymethyl-1,3-dioxolane-2-one (VI) and 5-hydroxy-5-carbomethoxy-4-phenyl-oxol-3-en-2-one (VIII). V, VI and VIII are all products of ring opening reactions. When the reaction was conducted under anaerobic conditions, the substrate was oxidized but no ring-cleaved products were detected. During the oxidation of I, 4 atoms of 18O from 18O2 were incorporated into the lactol product VIII.  相似文献   

9.
Degradation of polysaccharides and lignin by ruminal bacteria and fungi   总被引:1,自引:0,他引:1  
Bermudagrass (Cynodon dactylon) leaf blades and whole cordgrass (Spartina alterniflora) fiber were evaluated for degradation of cell walls by microbial groups in ruminal fluid. The groups were selected by the addition of antibiotics to the inoculum as follows: (i) whole ruminal fluid (WRF), no antibiotics; (ii) cycloheximide (C) to inhibit fungi, thus showing potential bacterial activity; (iii) streptomycin and penicillin (S,P) to inhibit fiber-degrading bacteria, showing potential fungal activity; (iv) streptomycin, penicillin, and chloramphenicol (S,P,CAM) to inhibit all bacteria including methanogens; (v) streptomycin, penicillin, and cycloheximide (S,P,C) to inhibit all microbial activity as a control; and (vi) autoclaved ruminal fluid (ARF) to inhibit all biological activity as a second control. Scanning electron microscopy of tissue degradation indicated that tissues not giving a positive histological reaction for lignin were more readily degraded. Cordgrass was more highly lignified, with more tissues resisting degradation than in bermudagrass. Patterns of degradation due to treatment resulted in three distinct groups of data based on the extent of fiber or component losses: WRF and C greater than S,P and S,P,CAM greater than S,P,C and ARF. Therefore, bacterial activity was responsible for most of the fiber loss. Fiber degradation by anaerobic fungi was significantly less (P = 0.05). Cupric oxide oxidation of undigested and digested bermudagrass fiber indicated that phenolic constituents differed in their order of resistance to removal or solubilization. Vanillyl and syringyl components of lignin were the most resistant to decomposition, whereas ferulic acid was readily solubilized from fiber in the absence of microbial activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Role of laccase in lignin degradation by white-rot fungi   总被引:16,自引:0,他引:16  
Abstract Laccase is commonly found in white-rot fungi and catalyses the abstraction of one electron from the phenolic hydroxyl group to polymerize or depolymerize lignin model compounds. Laccase degrades both β-1 and β-O-4 dimers via C α - C β cleavage, C α oxidation and alkyl-aryl cleavage. Also, aromatic ring cleavage may be detected following the action of laccase. Laccase can also oxidize non-phenolic compounds when primary mediators, such as 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate), are co-present. Laccase produces Mn(III) chelates which allow wood-decaying enzymes to penetrate wood cell walls. Laccase is considered to be capable of degrading lignin together with lignin peroxidase and manganese peroxidase.  相似文献   

11.
Bermudagrass (Cynodon dactylon) leaf blades and whole cordgrass (Spartina alterniflora) fiber were evaluated for degradation of cell walls by microbial groups in ruminal fluid. The groups were selected by the addition of antibiotics to the inoculum as follows: (i) whole ruminal fluid (WRF), no antibiotics; (ii) cycloheximide (C) to inhibit fungi, thus showing potential bacterial activity; (iii) streptomycin and penicillin (S,P) to inhibit fiber-degrading bacteria, showing potential fungal activity; (iv) streptomycin, penicillin, and chloramphenicol (S,P,CAM) to inhibit all bacteria including methanogens; (v) streptomycin, penicillin, and cycloheximide (S,P,C) to inhibit all microbial activity as a control; and (vi) autoclaved ruminal fluid (ARF) to inhibit all biological activity as a second control. Scanning electron microscopy of tissue degradation indicated that tissues not giving a positive histological reaction for lignin were more readily degraded. Cordgrass was more highly lignified, with more tissues resisting degradation than in bermudagrass. Patterns of degradation due to treatment resulted in three distinct groups of data based on the extent of fiber or component losses: WRF and C greater than S,P and S,P,CAM greater than S,P,C and ARF. Therefore, bacterial activity was responsible for most of the fiber loss. Fiber degradation by anaerobic fungi was significantly less (P = 0.05). Cupric oxide oxidation of undigested and digested bermudagrass fiber indicated that phenolic constituents differed in their order of resistance to removal or solubilization. Vanillyl and syringyl components of lignin were the most resistant to decomposition, whereas ferulic acid was readily solubilized from fiber in the absence of microbial activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A 4-alkylphenol-degrading facultative anaerobic bacterium, strain R5, was isolated from paddy soil after enrichment with 4-n-propylphenol, 4-n-butylphenol and 4-hydroxybenzoate (4-HBA) under nitrate-reducing conditions. Strain R5 is a Gram-negative rod bacillus grown on phenolic compounds with short alkyl chains (≤C2), organic acids and ethanol. The sequence of the 16S ribosomal RNA gene revealed that the strain is affiliated with Thauera sp. In the presence of 4-HBA as a carbon source, the strain transformed 4-n-alkylphenols with a medium or long-length alkyl chain (C3–C8) to the corresponding oxidised products as follows: 1-(4-hydroxyphenyl)-1-alkenes, -(4-hydroxyphenyl)-1-alkanones and/or 1-(4-hydroxyphenyl)-1-alcohols. The strain also transformed 4-i-propylphenol and 4-sec-butylphenol to (4-hydroxyphenyl)-i-propene and (4-hydroxyphenyl)-sec-butene but not 4-alkylphenols with tertiary alkyl chains (4-t-butylphenol or 4-t-octylphenol). The biotransformation did not proceed without another carbon source and was coupled with nitrate reduction. Biotransformation activity was high in the presence of p-cresol, 4-ethylphenol, 4′-hydroxyacetophenone and 4-HBA as carbon sources and low in the presence of organic acids and ethanol. We suggest that strain R5 co-metabolically transforms alkylphenols to the corresponding metabolites with oxidised alpha carbon in the alkyl chain during coupling with nitrate reduction.  相似文献   

13.
Abstract: The mechanism of oxidation of veratryl alcohol and β-0–4 dimeric lignin models is reviewed. Veratryl alcohol radicals are intermediates in both oxidation pathways. The possible role of the veratryl alcohol radical cation as a mediator is discussed. The lignin peroxidase (LIP) redox cycle is analyzed in terms of the Marcus theory of electron transfer. Reduction of both LiP-Compound I (LiP-I) and LiP-Compound II (LiP-II) by veratryl alcohol occurs in the endergonic region of the driving force. The reduction of LiP-II has a higher reorganization energy due to the change in spin state and the accompanying conformational change in the protein. It is suggested that a reversible nucleophilic addition of a carbohydrate residue located at the entrance of the active site channel plays a key role in the LiP redox cycle. Moreover. (polymeric) hydroxysubstituted benzyl radicals may reduce LiP-II via long-range electron transfer.  相似文献   

14.
Summary. In vitro studies were conducted to examine the metabolism of methionine (Met) and threonine (Thr) using mixed ruminal bacteria (B), mixed ruminal protozoa (P), and a combination of these two (BP). Rumen microorganisms were collected from fistulated goats fed with lucerne cubes (Medicago sativa) and a concentrate mixture twice a day. Microbial suspensions were anaerobically incubated with or without 1 mM each of the substrates at 39°C for 12 h. Met, Thr and their related amino compounds in both the supernatants and microbial hydrolyzates of the incubation were analyzed by HPLC. Met was degraded by 58.7, 22.1, and 67.3% as a whole in B, P, and BP suspensions, respectively, during 12 h incubation. In the case of Thr, these values were 67.3, 33.4, and 76.2% in B, P, and BP, respectively. Met was catabolized by all of the three microbial suspensions to methionine sulfoxide and 2-aminobutyric acid. Catabolism of Thr by B and BP resulted in the production of glycine and 2-aminobutyric acid, while P produced only 2-aminobutyric acid. From these results, the existence of diverse catabolic routes of Met and Thr in rumen microorganisms was indicated. Received August 2, 2000 Accepted February 27, 2001  相似文献   

15.
瘤胃微生物对纤维素的降解及其应用   总被引:4,自引:0,他引:4  
瘤胃微生物主要包括细菌、真菌和原生动物。其中,瘤胃细菌和瘤胃真菌能分泌纤维素酶,对纤维素有较强的降解能力,主要介绍了瘤胃微生物对纤维素的降解作用及其广阔的应用前景。  相似文献   

16.
An in vitro method based on observations of 14N and 15N isotope fluxes between ammonia N and non-ammonia (NAN) pools was established to study the ruminal degradation rate of rapeseed meal protein. Feed protein equal to 125 mg of N/l was incubated in the presence of rumen fluid, mineral buffer, and a carbohydrate mixture formulated to provide a constant supply of fermentable energy over the entire incubation period. The ammonia N was labelled with the 15N isotope, and the incubations were carried out for 0, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 8, and 10 h. A model with six pools was used to estimate the rate of protein degradation to ammonia N and the rate of microbial N synthesis from ammonia N. The parameter values were adjusted based on the sizes of the ammonia 14N, ammonia 15N, 14NAN, and 15NAN pools observed at different time points over the incubation period. The rate of rapeseed meal N degradation was 0.06/h (0.028 standard deviation between runs), and the predicted effective protein degradability was 0.38 (0.122 standard deviation between runs). The current approach seemed appropriate for determining microbial N synthesis from ammonia N, but measurement of the direct incorporation of amino acids into microbial N may be required to adequately characterize the metabolic events involved in ruminal protein degradation.  相似文献   

17.
The effect of pH on ruminal methanogenesis   总被引:3,自引:0,他引:3  
Abstract: When a fistulated cow was fed an all forage diet, ruminal pH remained more or less constant (6.7 to 6.9). The ruminal pH of a concentrate-fed cow decreased dramatically in the period soon after feeding, and the pH was as low as 5.45. Mixed ruminal bacteria from the forage-fed cow converted CO2 and H2 to methane, but the ruminal fluid from the concentrate-fed cow did not produce methane. When the pH of the ruminal fluid from the concentrate-fed cow was adjusted to pH 7.0, methane was eventually detected, and the absolute rate constant of methane production was as high as the one observed with ruminal fluid from the forage fed cow (0.32 h−1). Based on the zero-time intercepts of methane production, it appeared that the concentrate-fed cow had fewer methanogens than the forage-fed cow. When the mixed ruminal bacteria were incubated in a basal medium containing 100 mM acetate, methanogenesis was pH-dependent, and no methane was detected at pH values less than 6.0. Because the removal of acetic acid completely reversed the inhibition of methanogenesis, it appeared that volatile fatty acids were causing the pH-dependent inhibition. Based on these results, concentrate diets that lower ruminal pH may provide a practical means of decreasing ruminal methane production.  相似文献   

18.
Aims: Determine the susceptibility of forage chicory (Cichorium intybus L.) to degradation by ruminal fibrolytic bacteria and measure the effects on cell-wall pectic polysaccharides. Methods and Results: Large segments of fresh forage chicory were degraded in vitro by Lachnospira multiparus and Fibrobacter succinogenes, but not by Ruminococcus flavefaciens or Butyrivibrio hungatei. Cell-wall pectins were degraded extensively (95%) and rapidly by L. multiparus with a simultaneous release of uronic acids and the pectin-derived neutral monosaccharides arabinose, galactose and rhamnose. Fibrobacter succinogenes also degraded cell-wall pectins extensively, but at a slower rate than L. multiparus. Immunofluorescence microscopy using monoclonal antibodies revealed that, after incubation, homogalacturonans with both low and high degrees of methyl esterification were almost completely lost from walls of all cell types and from the middle lamella between cells. Conclusions: Only two of the four ruminal bacteria with pectinolytic activity degraded fresh chicory leaves, and each showed a different pattern of pectin breakdown. Degradation was greatest for F. succinogenes which also had cellulolytic activity. Significance and Impact of the Study: The finding of extensive removal of pectic polysaccharides from the middle lamella and the consequent decrease in particle size may explain the decreased rumination and the increased intake observed in ruminants grazing forage chicory.  相似文献   

19.
Five different species of known ecto-mycorrhizal fungi: Cenococcum geophilum, Amanita muscaria, Tricholoma aurantium, Rhizopogon luteolus and Rhizopogon roseolus were studied for their ability to metabolize the major components of plant cell walls. All strains were able to decompose 14C-labelled plant lignin, 14C-lignocellulose and 14C-DHP-lignin at a rate which was lower than the one observed for the known white rot fungi Heterobasidion annosum and Sporotrichum pulverulentum. Also 14C-(U)-holocellulose was relatively less degradable for the mycorrhizal fungi than for the white rotters. On the other hand, aromatic monomers like 14C-vanillic acid were decomposed to a much higher extent by two species of mycorrhizal fungi compared to the activity observed for Heterobasidion annosum. The results of the experiments reveal that these stains of mycorrhizal fungi are well able to utilize the major components of plant material and thus can contribute to litter decomposition in the forest floor.  相似文献   

20.
The kinetics of decay of veratryl alcohol radical cation, generated by cerium(IV) ammonium nitrate induced oxidation of veratryl alcohol, have been followed spectrophotometrically in a stopped-flow apparatus. In acidic aqueous acetonitrile the radical cation was found to decay by a first-order process, due to deprotonation from the alpha-carbon leading to an alpha-hydroxybenzyl radical with the rate constant of 17.1+/-0.5 s(-1). This value is in full agreement with those obtained by pulse radiolysis studies but much lower than the value (1.2x10(3) s(-1)) indirectly determined by EPR experiments. The implications of these results with respect to the possible role of veratryl alcohol as a mediator in the oxidative biodegradation of lignin catalysed by lignin peroxidase are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号