首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methanocaldococcus jannaschii prolyl-tRNA synthetase (ProRS) was previously reported to also catalyze the synthesis of cysteinyl-tRNA(Cys) (Cys-tRNA(Cys)) to make up for the absence of the canonical cysteinyl-tRNA synthetase in this organism (Stathopoulos, C., Li, T., Longman, R., Vothknecht, U. C., Becker, H., Ibba, M., and S?ll, D. (2000) Science 287, 479-482; Lipman, R. S., Sowers, K. R., and Hou, Y. M. (2000) Biochemistry 39, 7792-7798). Here we show by acid urea gel electrophoresis that pure heterologously expressed recombinant M. jannaschii ProRS misaminoacylates M. jannaschii tRNA(Pro) with cysteine. The enzyme is unable to aminoacylate purified mature M. jannaschii tRNA(Cys) with cysteine in contrast to facile aminoacylation of the same tRNA with cysteine by Methanococcus maripaludis cysteinyl-tRNA synthetase. Although M. jannaschii ProRS catalyzes the synthesis of Cys-tRNA(Pro) readily, the enzyme is unable to edit this misaminoacylated tRNA. We discuss the implications of these results on the in vivo activity of the M. jannaschii ProRS and on the nature of the enzyme involved in the synthesis of Cys-tRNA(Cys) in M. jannaschii.  相似文献   

2.
Discovery of mupirocin, an antibiotic that targets isoleucyl-tRNA synthetase, established aminoacyl-tRNA synthetase as an attractive target for the discovery of novel antibacterial agents. Despite a high degree of similarity between the bacterial and human aminoacyl-tRNA synthetases, the selectivity observed with mupirocin triggered the possibility of targeting other aminoacyl-tRNA synthetases as potential drug targets. These enzymes catalyse the condensation of a specific amino acid to its cognate tRNA in an energy-dependent reaction. Therefore, each organism is expected to encode at least twenty aminoacyl-tRNA synthetases, one for each amino acid. However, a bioinformatics search for genes encoding aminoacyl-tRNA synthetases from Mycobacterium smegmatis returned multiple genes for glutamyl (GluRS), cysteinyl (CysRS), prolyl (ProRS) and lysyl (LysRS) tRNA synthetases. The pathogenic mycobacteria, namely, Mycobacterium tuberculosis and Mycobacterium leprae, were also found to possess two genes each for CysRS and LysRS. A similar search indicated the presence of additional genes for LysRS in gram negative bacteria as well. Herein, we describe sequence and structural analysis of the additional aminoacyl-tRNA synthetase genes found in M. smegmatis. Characterization of conditional expression strains of Cysteinyl and Lysyl-tRNA synthetases generated in M. smegmatis revealed that the canonical aminoacyl-tRNA synthetase are essential, while the additional ones are not essential for the growth of M. smegmatis.  相似文献   

3.
Aminoacyl-tRNA synthetases are well known for their remarkable precision in substrate selection during aminoacyl-tRNA formation. Some synthetases enhance the accuracy of this process by editing mechanisms that lead to hydrolysis of incorrectly activated and/or charged amino acids. Prolyl-tRNA synthetases (ProRSs) can be divided into two structurally divergent groups, archaeal-type and bacterial-type enzymes. A striking difference between these groups is the presence of an insertion domain (approximately 180 amino acids) in the bacterial-type ProRS. Because the archaeal-type ProRS enzymes have been shown to recognize cysteine, we tested selected ProRSs from all three domains of life to determine whether cysteine activation is a general property of ProRS. Here we show that cysteine is activated by recombinant ProRS enzymes from the archaea Methanocaldococcus jannaschii and Methanothermobacter thermautotrophicus, from the eukaryote Saccharomyces cerevisiae, and from the bacteria Aquifex aeolicus, Borrelia burgdorferi, Clostridium sticklandii, Cytophaga hutchinsonii, Deinococcus radiodurans, Escherichia coli, Magnetospirillum magnetotacticum, Novosphingobium aromaticivorans, Rhodopseudomonas palustris, and Thermus thermophilus. This non-cognate amino acid was efficiently acylated in vitro onto tRNA(Pro), and the misacylated Cys-tRNA(Pro) was not edited by ProRS. Therefore, ProRS exhibits a natural level of mischarging that is to date unequalled among the aminoacyl-tRNA synthetases.  相似文献   

4.
Prolyl-tRNA synthetase (ProRS) is a class IIa synthetase that, according to sequence analysis, occurs in different organisms with one of two quite distinct structural architectures: prokaryote-like and eukaryote/archaeon-like. The primary sequence of ProRS from the hypothermophilic eubacterium Thermus thermophilus (ProRSTT) shows that this enzyme is surprisingly eukaryote/archaeon-like. We describe its crystal structure at 2.43 angstom resolution, which reveals a feature that is unique among class II synthetases. This is an additional zinc-containing domain after the expected class IIa anticodon-binding domain and whose C-terminal extremity, which ends in an absolutely conserved tyrosine, folds back into the active site. We also present an improved structure of ProRSTT complexed with tRNAPro(CGG) at 2.85 angstom resolution. This structure represents an initial docking state of the tRNA in which the anticodon stem-loop is engaged, particularly via the tRNAPro-specific bases G35 and G36, but the 3' end does not enter the active site. Considerable structural changes in tRNA and/or synthetase, which are probably induced by small substrates, are required to achieve the conformation active for aminoacylation.  相似文献   

5.
Most organisms form Cys-tRNA(Cys), an essential component for protein synthesis, through the action of cysteinyl-tRNA synthetase (CysRS). However, the genomes of Methanocaldococcus jannaschii, Methanothermobacter thermautotrophicus, and Methanopyrus kandleri do not contain a recognizable cysS gene encoding CysRS. It was reported that M. jannaschii prolyl-tRNA synthetase (C. Stathopoulos, T. Li, R. Longman, U. C. Vothknecht, H. D. Becker, M. Ibba, and D. S?ll, Science 287:479-482, 2000; R. S. Lipman, K. R. Sowers, and Y. M. Hou, Biochemistry 39:7792-7798, 2000) or the M. jannaschii MJ1477 protein (C. Fabrega, M. A. Farrow, B. Mukhopadhyay, V. de Crécy-Lagard, A. R. Ortiz, and P. Schimmel, Nature 411:110-114, 2001) provides the "missing" CysRS activity for in vivo Cys-tRNA(Cys) formation. These conclusions were supported by complementation of temperature-sensitive Escherichia coli cysS(Ts) strain UQ818 with archaeal proS genes (encoding prolyl-tRNA synthetase) or with the Deinococcus radiodurans DR0705 gene, the ortholog of the MJ1477 gene. Here we show that E. coli UQ818 harbors a mutation (V27E) in CysRS; the largest differences compared to the wild-type enzyme are a fourfold increase in the K(m) for cysteine and a ninefold reduction in the k(cat) for ATP. While transformants of E. coli UQ818 with archaeal and bacterial cysS genes grew at a nonpermissive temperature, growth was also supported by elevated intracellular cysteine levels, e.g., by transformation with an E. coli cysE allele (encoding serine acetyltransferase) or by the addition of cysteine to the culture medium. An E. coli cysS deletion strain permitted a stringent complementation test; growth could be supported only by archaeal or bacterial cysS genes and not by archaeal proS genes or the D. radiodurans DR0705 gene. Construction of a D. radiodurans DR0705 deletion strain showed this gene to be dispensable. However, attempts to delete D. radiodurans cysS failed, suggesting that this is an essential Deinococcus gene. These results imply that it is not established that proS or MJ1477 gene products catalyze Cys-tRNA(Cys) synthesis in M. jannaschii. Thus, the mechanism of Cys-tRNA(Cys) formation in M. jannaschii still remains to be discovered.  相似文献   

6.
Oza JP  Sowers KR  Perona JJ 《Biochemistry》2012,51(12):2378-2389
Hydrogenotrophic methanogens possessing the hydrogen-dependent dehydrogenase Hmd also encode paralogs of this protein whose function is poorly understood. Here we present biochemical evidence that the two inactive Hmd paralogs of Methanocaldococcus jannaschii, HmdII and HmdIII, form binary and ternary complexes with several components of the protein translation apparatus. HmdII and HmdIII, but not the active dehydrogenase Hmd, bind with micromolar binding affinities to a number of tRNAs and form ternary complexes with tRNA(Pro) and prolyl-tRNA synthetase (ProRS). Fluorescence spectroscopy experiments also suggest that binding of HmdII and ProRS involves distinct binding determinants on the tRNA. These biochemical data suggest the possibility of a regulatory link between energy production and protein translation pathways that may allow a rapid cellular response to altered environmental conditions.  相似文献   

7.
Escherichia coli cysteinyl-tRNA synthetase (CysRS) achieves a high level of amino acid specificity without an editing reaction. The crystal structure of CysRS bound to substrate cysteine suggested that direct thiol coordination to a tightly bound zinc ion at the base of the active site is the primary determinant of selectivity against non-cognate amino acids. This hypothesis has now been supported by spectroscopic studies of cobalt-substituted CysRS. Binding of cysteine, but not non-cognate amino acids, induces high absorption in the ligand-to-metal charge transfer region, providing evidence for formation of a metal-thiolate bond. In addition, mutations in the zinc ligands alter the absorption spectrum without reducing the discrimination against non-cognate amino acids. These results argue strongly for a major role for the zinc ion in amino acid discrimination by CysRS, where the tight zinc-thiolate interaction and the strict structural geometry of the metal ion are sufficient to reject serine by more than 20,000-fold at the binding step.  相似文献   

8.
A subset of methanogenic archaea synthesize the cysteinyl-tRNA(Cys) (Cys-tRNA(Cys)) needed for protein synthesis using both a canonical cysteinyl-tRNA synthetase (CysRS) as well as a set of two enzymes that operate via a separate indirect pathway. In the indirect route, phosphoseryl-tRNA(Cys) (Sep-tRNA(Cys)) is first synthesized by phosphoseryl-tRNA synthetase (SepRS), and this misacylated intermediate is then converted to Cys-tRNA(Cys) by Sep-tRNA:Cys-tRNA synthase (SepCysS) via a pyridoxal phosphate-dependent mechanism. Here, we explore the function of all three enzymes in the mesophilic methanogen Methanosarcina mazei. The genome of M. mazei also features three distinct tRNA(Cys) isoacceptors, further indicating the unusual and complex nature of Cys-tRNA(Cys) synthesis in this organism. Comparative aminoacylation kinetics by M. mazei CysRS and SepRS reveals that each enzyme prefers a distinct tRNA(Cys) isoacceptor or pair of isoacceptors. Recognition determinants distinguishing the tRNAs are shown to reside in the globular core of the molecule. Both enzymes also require the S-adenosylmethione-dependent formation of (m1)G37 in the anticodon loop for efficient aminoacylation. We further report a new, highly sensitive assay to measure the activity of SepCysS under anaerobic conditions. With this approach, we demonstrate that SepCysS functions as a multiple-turnover catalyst with kinetic behavior similar to bacterial selenocysteine synthase and the archaeal/eukaryotic SepSecS enzyme. Together, these data suggest that both metabolic routes and all three tRNA(Cys) species in M. mazei play important roles in the cellular physiology of the organism.  相似文献   

9.
Analysis of prolyl-tRNA synthetase (ProRS) across all three taxonomic domains (Eubacteria, Eucarya, and Archaea) reveals that the sequences are divided into two distinct groups. Recent studies show that Escherichia coli ProRS, a member of the "prokaryotic-like" group, recognizes specific tRNA bases at both the acceptor and anticodon ends, whereas human ProRS, a member of the "eukaryotic-like" group, recognizes nucleotide bases primarily in the anticodon. The archaeal Methanococcus jannaschii ProRS is a member of the eukaryotic-like group, although its tRNA(Pro) possesses prokaryotic features in the acceptor stem. We show here that, in some respects, recognition of tRNA(Pro) by M. jannaschii ProRS parallels that of human, with a strong emphasis on the anticodon and only weak recognition of the acceptor stem. However, our data also indicate differences in the details of the anticodon recognition between these two eukaryotic-like synthetases. Although the human enzyme places a stronger emphasis on G35, the M. jannaschii enzyme places a stronger emphasis on G36, a feature that is shared by E. coli ProRS. These results, interpreted in the context of an extensive sequence alignment, provide evidence of divergent adaptation by M. jannaschii ProRS; recognition of the tRNA acceptor end is eukaryotic-like, whereas the details of the anticodon recognition are prokaryotic-like. This divergence may be a reflection of the unusual dual function of this enzyme, which catalyzes specific aminoacylation with proline as well as with cysteine.  相似文献   

10.
Aminoacyl-tRNA synthetase-containing complexes have been identified in different eukaryotes, and their existence has also been suggested in some Archaea. To investigate interactions involving aminoacyl-tRNA synthetases in Archaea, we undertook a yeast two-hybrid screen for interactions between Methanothermobacter thermautotrophicus proteins using prolyl-tRNA synthetase (ProRS) as the bait. Interacting proteins identified included components of methanogenesis, protein-modifying factors, and leucyl-tRNA synthetase (LeuRS). The association of ProRS with LeuRS was confirmed in vitro by native gel electrophoresis and size exclusion chromatography. Determination of the steady-state kinetics of tRNA(Pro) charging showed that the catalytic efficiency (k(cat)/K(m)) of ProRS increased 5-fold in the complex with LeuRS compared with the free enzyme, whereas the K(m) for proline was unchanged. No significant changes in the steady-state kinetics of LeuRS aminoacylation were observed upon the addition of ProRS. These findings indicate that ProRS and LeuRS associate in M. thermautotrophicus and suggest that this interaction contributes to translational fidelity by enhancing tRNA aminoacylation by ProRS.  相似文献   

11.
12.
Aminoacyl-tRNA synthetases are responsible for activating specific amino acids and transferring them onto cognate tRNA molecules. Due to the similarity in many amino acid side chains, certain synthetases misactivate non-cognate amino acids to an extent that would be detrimental to protein synthesis if left uncorrected. To ensure accurate translation of the genetic code, some synthetases therefore utilize editing mechanisms to hydrolyze non-cognate products. Previously class II Escherichia coli proline-tRNA synthetase (ProRS) was shown to exhibit pre- and post-transfer editing activity, hydrolyzing a misactivated alanine-adenylate (Ala-AMP) and a mischarged Ala-tRNAPro variant, respectively. Residues critical for the editing activity (Asp-350 and Lys-279) are found in a novel insertion domain (INS) positioned between motifs 2 and 3 of the class defining aminoacylation active site. In this work, we present further evidence that INS is responsible for editing in ProRS. We deleted the INS from wild-type E. coli ProRS to yield DeltaINS-ProRS. While DeltaINS-ProRS was still capable of misactivating alanine, the truncated construct was defective in hydrolyzing non-cognate Ala-AMP. When the INS domain was cloned and expressed as an independent protein, it was capable of deacylating a mischarged Ala-microhelixPro variant. Similar to full-length ProRS, post-transfer editing was abolished in a K279A mutant INS. We also show that YbaK, a protein of unknown function from Haemophilus influenzae with high sequence homology to the prokaryotic INS domain, was capable of deacylating Ala-tRNAPro and Ala-microhelixPro variants but not cognate Pro-tRNAPro. Thus, we demonstrate for the first time that an independently folded class II synthetase editing domain and a previously identified homolog can catalyze a hydrolytic editing reaction.  相似文献   

13.
Zhang CM  Perona JJ  Hou YM 《Biochemistry》2003,42(37):10931-10937
Escherichia coli cysteinyl-tRNA synthetase (CysRS) achieves high amino acid specificity without the need for an editing reaction. Crystallographic and spectroscopic studies have previously demonstrated that a major determinant of the specificity is an active site zinc ion that recognizes the substrate cysteine through a strong zinc-thiolate interaction. The active site cleft of CysRS is composed of highly or strictly conserved amino acids, including four inner-sphere zinc ligands, five histidine imidazoles at the base of the cleft, and a tryptophan that flips down upon cysteine binding to complete formation of the binding pocket. Here we establish the significance of each of these major features of the active site cleft by mutational analysis. Substitutions generally lead to substantially deleterious effects on K(m) and k(cat) parameters with respect to each of the cysteine, ATP, and tRNA(Cys) substrates. These findings emphasize the importance of the highly differentiated nature of the active site and provide new insights into the origins of selectivity without editing. Most mutants are less attenuated in tRNA aminoacylation than in adenylate synthesis, suggesting that tRNA binding drives a conformational change to help assemble the active site.  相似文献   

14.
Thermus thermophilus is a thermophilic model organism distantly related to the mesophilic model organism E. coli. We reconstituted protein translation of Thermus thermophilus in vitro from purified ribosomes, transfer ribonucleic acids (tRNAs) and 33 recombinant proteins. This reconstituted system was fully functional, capable of translating natural messenger RNA (mRNA) into active full-length proteins at temperatures up to 65°C and with yields up to 60 μg/ml. Surprisingly, the synthesis of active proteins also occurred at 37°C, a temperature well below the minimal growth temperature for T. thermophilus. A polyamine was required, with tetraamine being most effective, for translation at both high and low temperatures. Using such a defined in vitro system, we demonstrated a minimal set of components that are sufficient for synthesizing active proteins at high temperatures, the functional compatibility of key translation components between T. thermophilus and E. coli, and the functional conservation of a number of resurrected ancient elongation factors. This work sets the stage for future experiments that apply abundant structural information to biochemical characterization of protein translation and folding in T. thermophilus. Because it contains significantly reduced nucleases and proteases, this reconstituted thermostable cell-free protein synthesis system may enable in vitro engineering of proteins with improved thermostability.  相似文献   

15.
Aminoacyl-tRNA synthetases (AARS) are an essential family of enzymes that catalyze the attachment of amino acids to specific tRNAs during translation. Previously, we showed that base-specific recognition of the tRNA(Pro) acceptor stem is critical for recognition by Escherichia coli prolyl-tRNA synthetase (ProRS), but not for human ProRS. To further delineate species-specific differences in acceptor stem recognition, atomic group mutagenesis was used to probe the role of sugar-phosphate backbone interactions in recognition of human tRNA(Pro). Incorporation of site-specific 2'-deoxynucleotides, as well as phosphorothioate and methylphosphonate modifications within the tRNA acceptor stem revealed an extensive network of interactions with specific functional groups proximal to the first base pair and the discriminator base. Backbone functional groups located at the base of the acceptor stem, especially the 2'-hydroxyl of A66, are also critical for aminoacylation catalytic efficiency by human ProRS. Therefore, in contrast to the bacterial system, backbone-specific interactions contribute significantly more to tRNA recognition by the human enzyme than base-specific interactions. Taken together with previous studies, these data show that ProRS-tRNA acceptor stem interactions have co-adapted through evolution from a mechanism involving 'direct readout' of nucleotide bases to one relying primarily on backbone-specific 'indirect readout'.  相似文献   

16.
We describe the recognition by Thermus thermophilus prolyl-tRNA synthetase (ProRSTT) of proline, ATP and prolyl-adenylate and the sequential conformational changes occurring when the substrates bind and the activated intermediate is formed. Proline and ATP binding cause respectively conformational changes in the proline binding loop and motif 2 loop. However formation of the activated intermediate is necessary for the final conformational ordering of a ten residue peptide ("ordering loop") close to the active site which would appear to be essential for functional tRNA 3' end binding. These induced fit conformational changes ensure that the enzyme is highly specific for proline activation and aminoacylation. We also present new structures of apo and AMP bound histidyl-tRNA synthetase (HisRS) from T. thermophilus which we compare to our previous structures of the histidine and histidyl-adenylate bound enzyme. Qualitatively, similar results to those observed with T. thermophilus prolyl-tRNA synthetase are found. However histidine binding is sufficient to induce the co-operative ordering of the topologically equivalent histidine binding loop and ordering loop. These two examples contrast with most other class II aminoacyl-tRNA synthetases whose pocket for the cognate amino acid side-chain is largely preformed. T. thermophilus prolyl-tRNA synthetase appears to be the second class II aminoacyl-tRNA synthetase, after HisRS, to use a positively charged amino acid instead of a divalent cation to catalyse the amino acid activation reaction.  相似文献   

17.
Summary Aminoacyl-tRNA synthetases are capable of converting 5-ATP into 5,5-diadenosine tetraphosphate. The reaction reflects the reversal of enzyme-bound aminoacyl-adenylate by ATP instead of PPi.In the case of a few prokaryotic as well as eukaryotic aminoacyl-tRNA synthetases, the initial rate of diadenosine tetraphosphate synthesis can be greatly enhanced upon adding small amounts of zinc. This observation enables us to establish a relationship between diadenosine tetraphosphate, a nucleotide possibly involved in controlling cell proliferation, and a metallic cofactor, which is believed to play a role in tumour growth.Abbreviations AlaRS alanyl-tRNA synthetase (EC 6.1.7) - CysRS cysteinyl-tRNA synthetase (EC 6.1.16) - HisRS histidyl-tRNA synthetase (EC 6.1.21) - HeRS isoleucyl-tRNA synthetase (EC 6.1.5) - LysRS lysyl-tRNA synthetase (EC 6.1.6) - MetRS methionyl-tRNA synthetase (EC 6.1.10) - PheRS phenylalanyl-tRNA synthetase (EC 6.1.20) - ProRS prolyl-tRNA synthetase (EC 6.1.15) - TrpRS Tryptophanyl-tRNA synthetase (EC 6.1.2) - TyrRS tyrosyl-tRNA synthetase (EC 6.1.1) - EDTA ethylene diamine tetraacetic acid  相似文献   

18.
We attempted to purify ATP citrate lyase (ACL) from Hydrogenobacter thermophilus by following the citrate-, ATP- and CoA-dependent formation of an acyl-CoA species that was detected as hydroxamate. However, citryl-CoA rather than acetyl-CoA was found, indicating that the purified enzyme was a novel citryl-CoA synthetase (CCS) rather than ACL. Because the reaction catalysed by CCS corresponds to the first half of that mediated by ACL, CCS may be responsible for citrate cleavage in H. thermophilus. Thus, a novel citrate cleavage pathway, which does not involve ACL, appears to exist in this organism. Citryl-CoA synthetase is composed of two different polypeptides: a large beta subunit of 46 kDa and a small alpha subunit of 36 kDa. The corresponding genes were cloned and sequenced. The deduced amino acid sequences of the two subunits of CCS display significant similarity to those of succinyl-CoA synthetase (SCS) in the database. As a comparison, SCS was also purified from H. thermophilus and the corresponding genes were cloned and sequenced. Citryl-CoA synthetase and SCS were homologous, but showed different substrate specificity. The deduced amino acid sequences of the CCS subunits show similarity to part of the ACL sequence. The evolutionary relationship between CCS, SCS and ACL is discussed.  相似文献   

19.
The gene encoding threonyl-tRNA synthetase (Thr-tRNA synthetase) from the extreme thermophilic eubacterium Thermus thermophilus HB8 has been cloned and sequenced. The ORF encodes a polypeptide chain of 659 amino acids (Mr 75 550) that shares strong similarities with other Thr-tRNA synthetases. Comparative analysis with the three-dimensional structure of other subclass IIa synthetases shows it to be organized into four structural modules: two N-terminal modules specific to Thr-tRNA synthetases, a catalytic core and a C-terminal anticodon-binding module. Comparison with the three-dimensional structure of Escherichia coli Thr-tRNA synthetase in complex with tRNAThr enabled identification of the residues involved in substrate binding and catalytic activity. Analysis by atomic absorption spectrometry of the enzyme overexpressed in E. coli revealed the presence in each monomer of one tightly bound zinc atom, which is essential for activity. Despite strong similarites in modular organization, Thr-tRNA synthetases diverge from other subclass IIa synthetases on the basis of their N-terminal extensions. The eubacterial and eukaryotic enzymes possess a large extension folded into two structural domains, N1 and N2, that are not significantly similar to the shorter extension of the archaebacterial enzymes. Investigation of a truncated Thr-tRNA synthetase demonstrated that domain N1 is not essential for tRNA charging. Thr-tRNA synthetase from T. thermophilus is of the eubacterial type, in contrast to other synthetases from this organism, which exhibit archaebacterial characteristics. Alignments show conservation of part of domain N2 in the C-terminal moiety of Ala-tRNA synthetases. Analysis of the nucleotide sequence upstream from the ORF showed the absence of both any anticodon-like stem-loop structure and a loop containing sequences complementary to the anticodon and the CCA end of tRNAThr. This means that the expression of Thr-tRNA synthetase in T. thermophilus is not regulated by the translational and trancriptional mechanisms described for E. coli thrS and Bacillus subtilis thrS and thrZ. Here we discuss our results in the context of evolution of the threonylation systems and of the position of T. thermophilus in the phylogenic tree.  相似文献   

20.
Aminoacyl-tRNA synthetases (aaRSs) are responsible for attaching amino acids to their cognate tRNAs during protein synthesis. In eukaryotes aaRSs are commonly found in multi-enzyme complexes, although the role of these complexes is still not completely clear. Associations between aaRSs have also been reported in archaea, including a complex between prolyl-(ProRS) and leucyl-tRNA synthetases (LeuRS) in Methanothermobacter thermautotrophicus that enhances tRNA(Pro) aminoacylation. Yeast two-hybrid screens suggested that lysyl-tRNA synthetase (LysRS) also associates with LeuRS in M. thermautotrophicus. Co-purification experiments confirmed that LeuRS, LysRS, and ProRS associate in cell-free extracts. LeuRS bound LysRS and ProRS with a comparable K(D) of about 0.3-0.9 microm, further supporting the formation of a stable multi-synthetase complex. The steady-state kinetics of aminoacylation by LysRS indicated that LeuRS specifically reduced the Km for tRNA(Lys) over 3-fold, with no additional change seen upon the addition of ProRS. No significant changes in aminoacylation by LeuRS or ProRS were observed upon the addition of LysRS. These findings, together with earlier data, indicate the existence of a functional complex of three aminoacyl-tRNA synthetases in archaea in which LeuRS improves the catalytic efficiency of tRNA aminoacylation by both LysRS and ProRS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号